--> Skip to main content

Cara Mudah Belajar Menentukan Sistem Pertidaksamaan Dari Daerah Himpunan Penyelesaian Pada Program Linear

Cara Mudah Belajar Menentukan Sistem Pertidaksamaan Dari Daerah Himpunan Penyelesaian Pada Program LinearCalon Guru belajar Menentukan Sistem Pertidaksamaan Dari Daerah Himpunan Penyelesaian yang diketahui Pada Program Linear. Program linear adalah suatu metode yang digunakan untuk memecahkan masalah yang berkaitan dengan optimasi linear (nilai maksimum dan nilai minimum). Program Linear ini salah satu materi pokok yang harus dikenal dan dipelajari siswa SMA kelas XI pada pelajaran matematika wajib.

Catatan Menentukan Sistem Pertidaksamaan Dari Daerah Himpunan Penyelesaian Pada Program Linear adalah kebalikan dari catatan sebelumnya yaitu Cara Menentukan Daerah Himpunan Penyelesaian dari Sistem Pertidaksamaan. Selain itu kita juga ada baiknya sudah mengetahui bagaimana menentukan persamaan garis.

Apabila belum memahami tentang menentukan daerah penyelesaian sistem pertidaksamaan dan cara menentukan persamaan garis, ada baiknya untuk dicoba kembali untuk memahaminya agar diskusi menentukan sistem pertidaksamaan dari daerah himpunan penyelesaian yang diketahui lebih mudah dipahami.

Untuk menentukan Sistem Pertidaksamaan Dari Daerah Himpunan Penyelesaian yang diketahui dapat diketahui dengan uji titik atau dengan menggunakan salah satu trik berikut. Trik yang kita gunakan bisa juga trik untuk menentukan daerah penyelesaian, yaitu Dengan melihat koefisien variabel $y$ pada pertidaksamaan.

  • Jika koefisien $y$ positif dan tanda pertidaksamaan $\leq$ maka Daerah Penyelesaian berada di bawah garis.
  • Jika koefisien $y$ positif dan tanda pertidaksamaan $\geq$ maka Daerah Penyelesaian berada di atas garis.

Tetapi jika mau dirubah sedikit khusus untuk menentukan sistem pertidaksamaannya menjadi seperti berikut ini:
Dengan melihat koefisien variabel $y$ pada persamaan garis.

  • Jika koefisien $y$ positif dan Daerah Penyelesaian berada di bawah garis maka tanda pertidaksamaan $\leq$.
  • Jika koefisien $y$ positif dan Daerah Penyelesaian berada di atas garis maka tanda pertidaksamaan $\geq$.
Cara Mudah Menentukan Daerah Penyelesaian Pertidaksamaan Pada Program Linear

Untuk belajar menentukan sistem pertidaksamaan program linear dari gambar daerah penyelesaian yang sudah diketahui dapat kita coba dari beberapa contoh soal berikut:


Sistem pertidaksamaan yang memenuhi untuk daerah penyelesaian seperti gambar berikut adalah...
Cara Mudah Belajar Menentukan Sistem Pertidaksamaan Dari Daerah Himpunan Penyelesaian Pada Program Linear

Untuk menentukan sistem pertidaksamaan dari gambar, pertama kita harus dapat menentukan persamaan yang membatasi daerah penyelesaian atau persamaan garis.
Persamaan garis gambar di atas adalah $2x+6y=(2)(6)$ atau $2x+6y=12$ jika kita sederhanakan menjadi $x+3y=6$.

Dengan menggunakan uji titik. Kita pilih sebarang titik yang berada pada daerah himpunan penyelesaian (yang diarsir), misal kita pilih titik $(0,0)$. Lalu kita substitusikan ke persamaan garis $x+3y=6$ lalu kita perhatikan hasilnya.

$\begin{align}
x+3y & = 6 \\
(0)+3(0) & = 6 \\
0+0 & = 6 \\
0 & = 6 \end{align}$

Dari hasil di atas kita peroleh bahwa $0 \leq 6 $ sehingga titik $(0,0)$ berada pada daerah kurang dari atau sama dengan $6$. Kesimpulan yang dapat kita ambil daerah yang diarsir adalah daerah pertidaksamaan $x+3y \leq 6$

Dengan menggunakan trik dan memperhatikan gambar.
Dari gambar dapat kita peroleh persamaan garis yaitu $x+3y=6$, koefisien $y$ positif dan daerah penyelesaian (yang diarsir) ada di bawah garis. Sehingga trik yang kita gunakan adalah " Jika koefisien $y$ positif dan Daerah Penyelesaian berada di bawah garis maka tanda pertidaksamaan $\leq$. " sehingga sistem pertidaksamaan adalah $x+3y \leq 6$.

Sistem pertidaksamaan yang memenuhi untuk daerah penyelesaian seperti gambar berikut adalah...
Cara Mudah Menentukan Daerah Penyelesaian dan Sistem Pertidaksamaan Pada Program Linear
Untuk menentukan sistem pertidaksamaan dari gambar, pertama kita harus dapat menentukan persamaan yang membatasi daerah penyelesaian.
Cara Mudah Menentukan Daerah Penyelesaian dan Sistem Pertidaksamaan Pada Program Linear
Pada gambar ada tiga garis yang membatasi daerah penyelesaian yaitu garis $x=0$, $y=1$ dan $7x+5y = 35$.

Dengan menggunakan trik dan memperhatikan dari gambar di atas:
  • garis $x=0$, daerah penyelesaian ada di kanan garis sehingga sistem pertidaksamaan adalah $x \geq 0$.
  • garis $y=1$, daerah penyelesaian ada di atas garis sehingga sistem pertidaksamaan adalah $y \geq 1$.
  • garis $7x+5y=35$, koefisien $y$ positif dan daerah penyelesaian ada di bawah garis sehingga sistem pertidaksamaan adalah $7x+5y \leq 35$.
Sistem pertidaksamaan adalah $x \geq 0$, $y \geq 1 $ dan $7x+5y \leq 35$

Sistem pertidaksamaan yang memenuhi untuk daerah penyelesaian seperti gambar berikut adalah...
Cara Mudah Menentukan Daerah Penyelesaian dan Sistem Pertidaksamaan Pada Program Linear
Alternatif Pembahasan:
show

Untuk menentukan sistem pertidaksamaan dari gambar, pertama kita harus dapat menentukan persamaan yang membatasi daerah penyelesaian.

Soal dan Pembahasan UNBK Matematika IPS 2018 (*Simulasi UNBK 2019)
Pada gambar ada tiga garis yang membatasi daerah penyelesaian yaitu garis $x+y=4$, $-x+y=0$ dan $-x+5y=20$. Jika kesulitan untuk menentukan persamaan garis, dapat menyimak penjelasannya pada Bank Soal dan Pembahasan Matematika Dasar Persamaan Garis

Dengan menggunakan trik dan memperhatikan dari gambar di atas:
  • garis $x+y=4$, koefisien $y$ positif dan daerah penyelesaian ada di atas garis sehingga sistem pertidaksamaan adalah $x+y \geq 4$.
  • garis $-x+y=0$, koefisien $y$ positif dan daerah penyelesaian ada di atas garis sehingga sistem pertidaksamaan adalah $-x+y \geq 0$.
  • garis $-x+5y=20$, koefisien $y$ positif dan daerah penyelesaian ada di bawah garis sehingga sistem pertidaksamaan adalah $-x+5y \leq 20$.
Sistem pertidaksamaan adalah $x+y \geq 4$, $-x+y \geq 0$ dan $-x+5y \leq 20$


Sistem pertidaksamaan yang memenuhi untuk daerah penyelesaian seperti gambar berikut adalah...
Cara Mudah Menentukan Daerah Penyelesaian dan Sistem Pertidaksamaan Pada Program Linear
Alternatif Pembahasan:
show

Untuk menentukan sistem pertidaksamaan dari gambar, pertama kita harus dapat menentukan persamaan yang membatasi daerah penyelesaian.

Soal dan Pembahasan UNBK Matematika IPS 2018 (*Simulasi UNBK 2019)
Pada gambar ada empat garis yang membatasi daerah penyelesaian yaitu garis $x=0$, $y=0$, $2x+3y=6$ dan $2x+y=4$. Jika kesulitan untuk menentukan persamaan garis, dapat menyimak penjelasannya pada Bank Soal dan Pembahasan Matematika Dasar Persamaan Garis

Dengan menggunakan trik dan memperhatikan dari gambar di atas:
  • garis $x=0$, daerah penyelesaian ada di kanan garis sehingga sistem pertidaksamaan adalah $x \geq 0$.
  • garis $y=0$, daerah penyelesaian ada di atas garis sehingga sistem pertidaksamaan adalah $y \geq 0$.
Untuk daerah penyelesaian $A$ adalah daerah penyelesaian untuk dua pertidaksamaan, yaitu:
  • garis $2x+3y=6$, koefisien $y$ positif dan daerah penyelesaian ada di atas garis sehingga sistem pertidaksamaan adalah $2x+3y \geq 6$ atau $2x+3y-6 \geq 0$
  • garis $2x+y=4$, koefisien $y$ positif dan daerah penyelesaian ada di bawah garis sehingga sistem pertidaksamaan adalah $2x+y \leq 4$ atau $2x+y-4 \leq 0$
Dengan menggunakan konsep jika $a \leq 0$ dan $b \geq 0$ maka $ab \leq 0$, dengan daerah penyelesaian $A$ adalah daerah penyelesaian $2x+3y-6 \geq 0$ dan $2x+y-4 \leq 0$, sehingga berlaku daerah penyelesaian $A$ adalah $\left( 2x+3y-6 \right) \left(2x+y-4 \right) \leq 0$.

Untuk daerah penyelesaian $B$ adalah daerah penyelesaian untuk dua pertidaksamaan, yaitu:
  • garis $2x+3y=6$, koefisien $y$ positif dan daerah penyelesaian ada di atas garis sehingga sistem pertidaksamaan adalah $2x+3y \leq 6$ atau $2x+3y-6 \leq 0$
  • garis $2x+y=4$, koefisien $y$ positif dan daerah penyelesaian ada di bawah garis sehingga sistem pertidaksamaan adalah $2x+y \geq 4$ atau $2x+y-4 \geq 0$
Dengan menggunakan konsep jika $a \leq 0$ dan $b \geq 0$ maka $ab \leq 0$, dengan daerah penyelesaian $B$ adalah daerah penyelesaian $2x+3y-6 \leq 0$ dan $2x+y-4 \geq 0$, sehingga berlaku daerah penyelesaian $B$ adalah $\left( 2x+3y-6 \right) \left(2x+y-4 \right) \leq 0$.

Sistem pertidaksamaan yang memenuhi untuk gambar adalah $x \geq 0$, $y \geq 0$ dan $\left( 2x+3y-6 \right) \left(2x+y-4 \right) \leq 0$


Untuk segala sesuatu hal yang perlu kita diskusikan terkait Cara Mudah Belajar Menentukan Sistem Pertidaksamaan Dari Daerah Himpunan Penyelesaian Pada Program Linear silahkan disampaikan 🙏 CMIIW😊.

Jangan Lupa Untuk Berbagi 🙏 Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊

Video pilihan khusus untuk Anda 😊 Belajar pertidaksamaan Bentuk akar;

youtube image
Comment Policy: Tanggapan atau pertanyaan terkait "Cara Mudah Belajar Menentukan Sistem Pertidaksamaan Dari Daerah Himpunan Penyelesaian Pada Program Linear" silahkan disampaikan 😊 dan terima kasih 🙏 support Anda untuk defantri.com
Buka Komentar
Tutup Komentar