The good student, bersama Calon Guru kita belajar matematika dasar SMA dari Teorema Sisa Pada Suku Banyak (Polinomial). Sebagai contoh soal latihan untuk bahan diskusi, kita pilih dari soal pada Modul Teorema Sisa pada Suku Banyak (Polinomial) Matematika SMA Kurikulum 2013.
Teorema Sisa Pada Suku Banyak (Polinomial)
Sisa pembagian dan hasil pembagian pada suku banyak (polinomial) dapat kita ketahui dengan menggunakan metode bersusun atau skema Horner. Jika yang dicari hanya sisa pembagian polinomial, maka dapat ditentukan dengan menggunakan teorema sisa.
Secara umum teorema sisa diambil dari teorema umum pembagian, yakni: \begin{align} \text{yang dibagi}=\text{pembagi} \times \text{hasil bagi} + \text{sisa} \end{align}
Secara khusus teorema sisa dibagi atas beberapa bagian sesuai dengan karasteristik pembaginya, yaitu:
Jika polinomial $P(x)$ dibagi oleh $\left(x – a \right)$ akan mendapatkan hasil bagi $H(x)$ dan sisa $S$, maka berlaku hubungan sebagai berikut:
$\begin{align} P\left( x \right) & = \left( x-a \right) \cdot H\left( x \right) + S \\ &\text{untuk}\ x=a\ \text{berlaku} \\ P\left( a \right) & = \left( a-a \right) \cdot H\left( a \right) + S \\ P\left( a \right) & = \left( 0 \right) \cdot H\left( a \right) + S \\ P\left( a \right) & = S \end{align}$
Dari hasil di atas didapatlah apa yang di sebut dengan Teorema Sisa, yaitu "Jika suku banyak $f \left( x \right)$ berderajat $n$ dibagi dengan $(x-a)$ maka sisa pembagian adalah $f \left( a \right)$".
Jika polinomial $P(x)$ dibagi oleh $ax^{2} + bx + c$ yang dapat difaktorkan menjadi $\left(x – x_{1} \right)\left(x – x_{1} \right)$ akan mendapatkan hasil bagi $H(x)$ dan sisa $S(x)$ maka berlaku hubungan sebagai berikut:
$\begin{align} P\left( x \right) & = \left(x-x_{1} \right) \left(x-x_{2} \right) H \left( x \right) + S(x) \\ \end{align}$
Karena pembagi berderajat dua, maka sisa pembagian dapat kita misalkan dengan $S(x)=mx+n$. Sehingga dapat kita peroleh:
$\begin{align}
P\left( x \right) & = \left(x-x_{1} \right) \left(x-x_{2} \right) H \left( x \right) + mx+n \\
\hline
P\left( x_{1} \right) & = \left(x_{1}-x_{1} \right) \left(x_{1}-x_{2} \right) H \left( x_{1} \right) + mx_{1}+n \\
P\left( x_{1} \right) & = \left( 0 \right) \left(x_{1}-x_{2} \right) H \left( x_{1} \right) + mx_{1}+n \\
P\left( x_{1} \right) & = mx_{1}+n \\
\hline
P\left( x_{2} \right) & = \left(x_{2}-x_{1} \right) \left(x_{2}-x_{2} \right) H \left( x_{2} \right) + mx_{2}+n \\
P\left( x_{2} \right) & = \left( x_{2}-x_{1} \right) \left( 0 \right) H \left( x_{2} \right) + mx_{2}+n \\
P\left( x_{2} \right) & = mx_{2}+n
\end{align}$
Jika $P\left( x_{1} \right)$ dan $P\left( x_{2} \right)$ dieliminasi atau subtitusi akan diperoleh nilai $m$ dan $n$, sehingga $S(x)$ dapat dicari.
Untuk pembagi $ax^{3} + bx^{2} + cx + d$ yang dapat dirubah kebentuk $\left(x-x_{1} \right)\left(x-x_{2} \right)\left(x-x_{3} \right)$ lalu dilanjutkan dengan eliminasi atau substitusi tiga variabel dengan tiga persamaan akan diperoleh sisa pembagian.
Untuk menambah pemahaman kita terkait Teorema Sisa Pada Suku Banyak (Polinomial) ini, mari kita simak beberapa soal latihan di bawah ini. Soal latihan kita pilih dari soal latihan pada Modul Teorema Sisa Pada Suku Banyak (Polinomial) Matematika SMA Kurikulum 2013 dan soal-soal yang ditanyakan pada media sosial.
Jika tertarik untuk diskusi terkait Soal-soal Pada Suku Banyak (Polinomial) yang sudha pernah diujikan pada seleksi masuk perguruan tinggi negeri (PTN) yang dilaksanakan secara nasional atau mandiri silahkan disimak pada catatan Soal dan Pembahasan Matematika Dasar SMA Sukubanyak (Polinomial).
1. Soal Latihan Teorema Sisa Polinomial
Sisa dari pembagian polinomial $\left(x^{3} – 5x^{2} + 4x + 8 \right)$ dibagi $\left( x – 3 \right)$ adalah...
$\begin{align} (A)\ & 18 \\ (B)\ & 14 \\ (C)\ & 2 \\ (D)\ & -2 \\ (E)\ & -14 \end{align}$
Alternatif Pembahasan:
Berdasarkan teorema sisa jika polinomial $P(x)$ dibagi oleh $\left(x – a \right)$ maka sisanya adalah $S=P(a)$. Sehingga dapat kita peroleh sisa pembagian adalah:
$ \therefore $ Pilihan yang sesuai adalah $(C)\ 2$
2. Soal Latihan Teorema Sisa Polinomial
Sisa pembagian dari polinomial $\left( x^{3} +2x^{2} -2x + 6 \right)$ dibagi $\left(x^{2} – 2x – 3 \right)$ adalah...
$\begin{align} (A)\ & 9x+18 \\ (B)\ & 9x-18 \\ (C)\ & 18x+9 \\ (D)\ & 18x-9 \\ (E)\ & -18x-9 \end{align}$
Alternatif Pembahasan:
Berdasarkan teorema sisa polinomial $P(x)$ dibagi oleh $\left(x – x_{1} \right)\left(x – x_{2} \right)$ sisa pembagian adalah $S(x)=mx+n$ dan berlaku $P\left( x_{1} \right) = mx_{1}+n$ dan $P\left( x_{2} \right) = mx_{2}+n$ .
Untuk pembagi $\left(x^{2} – 2x – 3 \right)= \left( x+1 \right)\left( x-3 \right)$ kita peroleh nilai $x_{1}=-1$ dan $x_{2}=3$ maka dapat kita peroleh:
$\begin{align}
P\left( x \right) & = x^{3} +2x^{2} -2x + 6 \\
P\left( -1 \right) & = (-1)^{3} +2(-1)^{2} -2 (-1) + 6 \\
& = -1 + 2(1) +2 + 6 \\
& = 9 \\
\hline
P\left( 3 \right) & = (3)^{3} +2(3)^{2} -2 (3) + 6 \\
& = 27 + 2(9) -6 + 6 \\
& = 45 \\
\end{align}$
Untuk nilai $P\left( -1 \right)=9$ dan $P\left( 3 \right)=9$ dapat kita peroleh:
$\begin{align}
P\left( x_{1} \right) & = mx_{1}+n \\
P\left( -1 \right) & = m(-1)+n \\
9 & = -m+n \\
\hline
P\left( x_{2} \right) & = mx_{2}+n \\
P\left( 3 \right) & = m(3)+n \\
45 & = 3m+n \\
\end{align}$
Dari kedua persamaan di atas kita peroleh:
$\begin{align}
-m+n & = 9 \\
3m+n & = 45\ \, (-) \\
\hline
-4m & = -36\ \\
m & = 9\ \longrightarrow n=18
\end{align}$
Sisa pembagian $S(x)=mx+n$ adalah $S(x)=9x+18$
$ \therefore $ Pilihan yang sesuai adalah $(A)\ 9x+18$
3. Soal Latihan Teorema Sisa Polinomial
Sisa pembagian dari polinomial $\left( x^{3} -2x^{2} -6x + 8 \right)$ dibagi $\left(x^{2} – 9 \right)$ adalah...
$\begin{align} (A)\ & 3x+10 \\ (B)\ & 3x-10 \\ (C)\ & 10x+3 \\ (D)\ & 10x-3 \\ (E)\ & -10x-3 \end{align}$
Alternatif Pembahasan:
Berdasarkan teorema sisa polinomial $P(x)$ dibagi oleh $\left(x – x_{1} \right)\left(x – x_{2} \right)$ sisa pembagian adalah $S(x)=mx+n$ dan berlaku $P\left( x_{1} \right) = mx_{1}+n$ dan $P\left( x_{2} \right) = mx_{2}+n$ .
Untuk pembagi $\left(x^{2} – 9 \right)= \left( x+3 \right)\left( x-3 \right)$ kita peroleh nilai $x_{1}=-3$ dan $x_{2}=3$ maka dapat kita peroleh:
$\begin{align}
P\left( x \right) & = x^{3} -2x^{2} -6x + 8 \\
P\left( -3 \right) & = \left( -3 \right)^{3} -2\left( -3 \right)^{2} -6\left( -3 \right) + 8 \\
& = -27 -18 + 18 + 8 \\
& = -19 \\
\hline
P\left( 3 \right) & = \left( 3 \right)^{3} -2\left( 3 \right)^{2} -6\left( 3 \right) + 8 \\
& = 27 - 18 - 18 + 8 \\
& = -1
\end{align}$
Untuk nilai $P\left( -3 \right)=-19$ dan $P\left( 3 \right)=-1$ dapat kita peroleh:
$\begin{align}
P\left( x_{1} \right) & = mx_{1}+n \\
P\left( -3 \right) & = m(-3)+n \\
-19 & = -3m+n \\
\hline
P\left( x_{2} \right) & = mx_{2}+n \\
P\left( 3 \right) & = m(3)+n \\
-1 & = 3m+n \\
\end{align}$
Dari kedua persamaan di atas kita peroleh:
$\begin{align}
-3m+n & = -19 \\
3m+n & = -1 \ \, (-) \\
\hline
-6m & = -18\ \\
m & = 3\ \longrightarrow n=-10
\end{align}$
Sisa pembagian $S(x)=mx+n$ adalah $S(x)=3x-10$
$ \therefore $ Pilihan yang sesuai adalah $(B)\ 3x-10$
4. Soal Latihan Teorema Sisa Polinomial
Jika polinom $F(x)$ dibagi $(x – 4)$ maka sisanya $12$. Dan jika $F(x)$ dibagi dengan $(x + 3)$ maka sisanya $–2$. Tentukan sisanya jika polinom $F(x)$ dibagi dengan $\left(x^{2} – x – 12 \right)$
$\begin{align} (A)\ & 2x+4 \\ (B)\ & 2x-4 \\ (C)\ & -2x+4 \\ (D)\ & 4x-2 \\ (E)\ & 4x+2 \end{align}$
Alternatif Pembahasan:
Berdasarkan teorema sisa jika polinomial $P(x)$ dibagi oleh $\left(x – a \right)$ maka sisanya adalah $S=P(a)$.
Sehingga jika polinom $F(x)$ dibagi $(x – 4)$ sisanya $12$ maka $F(4)=12$,
dan jika polinom $F(x)$ dibagi $(x +3)$ sisanya $-2$ maka $F(-3)=-2$.
Polinomial $F(x)$ dibagi oleh $\left(x^{2} – x – 12 \right)$ sehingga dapat kita peroleh:
$\begin{align}
F\left( x \right) & = \left(x^{2} – x – 12 \right) \cdot H(x) + S(x) \\
F\left( x \right) & = \left( x-4 \right)\left( x+3 \right) \cdot H(x) + mx+n \\
F\left( 4 \right) & = \left( 4-4 \right)\left( x+3 \right) \cdot H(4) + m(4) +n \\
12 & = 4m +n \\
\hline
F\left( -3 \right) & = \left( x-4 \right)\left( -3+3 \right) \cdot H(-3) + m(-3) +n \\
-2 & = -3m +n
\end{align}$
Dari kedua persamaan di atas kita peroleh:
$\begin{align}
4m+n & = 12 \\
-3m+n & = -2 \ \, (-) \\
\hline
7m & = 14\ \\
m & = 2\ \longrightarrow n=4
\end{align}$
Sisa pembagian $S(x)=mx+n$ adalah $S(x)=2x+4$
$ \therefore $ Pilihan yang sesuai adalah $(A)\ 2x+4$
5. Soal Latihan Teorema Sisa Polinomial
Jika polinomial $F(x)$ dibagi $(x +5)$ maka sisanya $15$, dan jika $F(x)$ dibagi dengan $\left(x^{2} -5x+6 \right)$ maka sisanya $2x-17$. Tentukan sisanya jika polinomial $F(x)$ dibagi dengan $\left(x^{2} +3 x – 10 \right)$
$\begin{align} (A)\ & 4x + 5 \\ (B)\ & 4x - 5 \\ (C)\ & –4x - 5 \\ (D)\ & –5x + 4 \\ (E)\ & –5x – 4 \end{align}$
Alternatif Pembahasan:
Berdasarkan teorema sisa jika polinomial $P(x)$ dibagi oleh $\left(x – a \right)$ maka sisanya adalah $S=P(a)$.
Sehingga jika polinom $F(x)$ dibagi $(x +5)$ sisanya $15$ maka $F(-5)=15$.
Polinomial $F(x)$ dibagi oleh $\left( x^{2} -5x+6 \right)$ sisanya $2x-17$ sehingga dapat kita peroleh:
$\begin{align}
F\left( x \right) & = \left(x^{2} -5x+6 \right) \cdot H(x) + 2x-17 \\
F\left( x \right) & = \left( x-2 \right)\left( x-3 \right) \cdot H(x) + 2x-17 \\
F\left( 2 \right) & = \left( 2-2 \right)\left( 2-3 \right) \cdot H(2) + 2(2)-17 \\
F\left( 2 \right) & = -13
\end{align}$
Polinomial $F(x)$ dibagi oleh $\left(x^{2} +3 x – 10 \right)$ sehingga dapat kita peroleh:
$\begin{align}
F\left( x \right) & = \left(x^{2} +3 x – 10 \right) \cdot H(x) + S(x) \\
F\left( x \right) & = \left( x+5 \right)\left( x-2 \right) \cdot H(x) + mx+n \\
F\left( -5 \right) & = \left( -5+5 \right)\left( -5-2 \right) \cdot H(-5) + m(-5) +n \\
15 & = -5m +n \\
\hline
F\left( 2 \right) & = \left( 2+5 \right)\left( 2-2 \right) \cdot H(2) + m(2) +n \\
-13 & = 2m +n \\
\end{align}$
Dari kedua persamaan di atas kita peroleh:
$\begin{align}
-5m+n & = 15 \\
2m+n & = -13 \ \, (-) \\
\hline
-7m & = 28\ \\
m & = -4\ \longrightarrow n=-5
\end{align}$
Sisa pembagian $S(x)=mx+n$ adalah $S(x)=–4x – 5$
$ \therefore $ Pilihan yang sesuai adalah $(C)\ –4x – 5$
6. Soal Latihan Teorema Sisa Polinomial
Polinomial $x^{4}-8x^{2} +2ax+b $ dibagi $x^{2} -x-2$ mendapatkan sisa $3x-4$. Nilai $a$ dan $b$ adalah...
$\begin{align} (A)\ & a=-3\ \text{dan}\ b=6 \\ (B)\ & a=3\ \text{dan}\ b=-6 \\ (C)\ & a=3\ \text{dan}\ b=6 \\ (D)\ & a=-6\ \text{dan}\ b=3 \\ (E)\ & a=6\ \text{dan}\ b=3 \end{align}$
Alternatif Pembahasan:
Polinomial $x^{4}-8x^{2} +2ax+b $ dibagi oleh $x^{2} -x-2$ sisanya $3x-4$ sehingga dapat kita peroleh:
$\begin{align}
x^{4}-8x^{2} +2ax+b & = \left( x^{2} -x-2 \right) \cdot H(x) + 3x-4 \\
x^{4}-8x^{2} +2ax+b & = \left( x-2 \right)\left( x+1 \right) \cdot H(x) + 3x-4 \\
\hline
\text{untuk}\ x=2 & \\
\hline
(2)^{4}-8(2)^{2} +2a(2)+b & = \left( 2-2 \right)\left( 2+1 \right) \cdot H(2) + 3(2)-4 \\
16-32 +4a+b & = 2 \\
4a+b & = 18 \\
\hline
\text{untuk}\ x=-1 & \\
\hline
(-1)^{4}-8(-1)^{2} +2a(-1)+b & = \left( -1-2 \right)\left( -1+1 \right) \cdot H(-1) + 3(-1)-4 \\
1-8 -2a+b & = -7 \\
-2a+b & = 0
\end{align}$
Dari kedua persamaan di atas kita peroleh:
$\begin{align}
4a+b & = 18 \\
-2a+b & = 0 \ \, (-) \\
\hline
6a & = 18\ \\
a & = 3\ \longrightarrow b=6
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(C)\ a=3\ \text{dan}\ b=6$
7. Soal Latihan Teorema Sisa Polinomial
Sisa dari pembagian polinomial $\left( x^{4} – 3x^{3} + 5x^{2} + 6 \right)$ dibagi $\left( x – 2 \right)$ adalah...
$\begin{align} (A)\ & 32 \\ (B)\ & 20 \\ (C)\ & 18 \\ (D)\ & 16 \\ (E)\ & 12 \end{align}$
Alternatif Pembahasan:
Berdasarkan teorema sisa jika polinomial $P(x)$ dibagi oleh $\left(x – a \right)$ maka sisanya adalah $S=P(a)$. Sehingga dapat kita peroleh sisa pembagian adalah:
$ \therefore $ Pilihan yang sesuai adalah $(E)\ 12$
8. Soal Latihan Teorema Sisa Polinomial
Sisa dari pembagian polinomial $\left( 4x^{3} – 8x^{2} + 3x – 16 \right)$ dibagi $\left( 2x + 1 \right)$ adalah...
$\begin{align} (A)\ & -20 \\ (B)\ & -18 \\ (C)\ & -12 \\ (D)\ & 10 \\ (E)\ & 18 \end{align}$
Alternatif Pembahasan:
Berdasarkan teorema sisa jika polinomial $P(x)$ dibagi oleh $\left(x – a \right)$ maka sisanya adalah $S=P(a)$. Sehingga dapat kita peroleh sisa pembagian adalah:
$ \therefore $ Pilihan yang sesuai adalah $(C)\ -12$
9. Soal Latihan Teorema Sisa Polinomial
Sisa pembagian dari polinomial $\left( x^{4} + 4x^{3} – x^{2} – 10x – 8 \right)$ dibagi $\left(x^{2} +x – 2 \right)$ adalah...
$\begin{align} (A)\ & 2x+3 \\ (B)\ & -2x-12 \\ (C)\ & 3x-5 \\ (D)\ & 2x+4 \\ (E)\ & 4x-1 \end{align}$
Alternatif Pembahasan:
Berdasarkan teorema sisa polinomial $P(x)$ dibagi oleh $\left(x – x_{1} \right)\left(x – x_{2} \right)$ sisa pembagian adalah $S(x)=mx+n$ dan berlaku $P\left( x_{1} \right) = mx_{1}+n$ dan $P\left( x_{2} \right) = mx_{2}+n$ .
Untuk pembagi $\left( x^{2} +x – 2 \right)= \left( x+2 \right)\left( x-1 \right)$ kita peroleh nilai $x_{1}=-2$ dan $x_{2}=1$ maka dapat kita peroleh:
$\begin{align}
P\left( x \right) & = x^{4} + 4x^{3} – x^{2} – 10x – 8 \\
P\left( -2 \right) & = (-2)^{4} + 4(-2)^{3} – (-2)^{2} – 10(-2) – 8 \\
& = 16 - 32 - 4 + 20 -8 \\
& = -8 \\
\hline
P\left( 1 \right) & = (1)^{4} + 4(1)^{3} – (1)^{2} – 10(1) – 8 \\
& = 1 + 4 - 1 - 10 -8 \\
& = -14
\end{align}$
Untuk nilai $P\left( -2 \right)=-8$ dan $P\left( 1 \right)=-14$ dapat kita peroleh:
$\begin{align}
P\left( x_{1} \right) & = mx_{1}+n \\
P\left( -2 \right) & = m(-2)+n \\
-8 & = -2m+n \\
\hline
P\left( x_{2} \right) & = mx_{2}+n \\
P\left( 1 \right) & = m(1)+n \\
-14 & = m+n \\
\end{align}$
Dari kedua persamaan di atas kita peroleh:
$\begin{align}
-2m+n & = -8 \\
m+n & = -14\ \, (-) \\
\hline
-3m & = 6\ \\
m & = -2\ \longrightarrow n=-12
\end{align}$
Sisa pembagian $S(x)=mx+n$ adalah $S(x)=-2x-12$
$ \therefore $ Pilihan yang sesuai adalah $(B)\ -2x-12$
10. Soal Latihan Teorema Sisa Polinomial
Sisa pembagian dari polinomial $\left( 3x^{3} – 5x^{2} + 4x – 10 \right)$ dibagi $\left(x^{2} - 4 \right)$ adalah...
$\begin{align} (A)\ & 3x-9 \\ (B)\ & 6x+5 \\ (C)\ & 3x+8 \\ (D)\ & 12x-4 \\ (E)\ & 16x-30 \end{align}$
Alternatif Pembahasan:
Berdasarkan teorema sisa polinomial $P(x)$ dibagi oleh $\left(x – x_{1} \right)\left(x – x_{2} \right)$ sisa pembagian adalah $S(x)=mx+n$ dan berlaku $P\left( x_{1} \right) = mx_{1}+n$ dan $P\left( x_{2} \right) = mx_{2}+n$ .
Untuk pembagi $\left( x^{2} -4 \right)= \left( x+2 \right)\left( x-2 \right)$ kita peroleh nilai $x_{1}=-2$ dan $x_{2}=2$ maka dapat kita peroleh:
$\begin{align}
P\left( x \right) & = 3x^{3} – 5x^{2} + 4x – 10 \\
P\left( -2 \right) & = 3(-2)^{3} – 5(-2)^{2} + 4(-2) – 10 \\
& = -24 - 20 - 8 -10 \\
& = -62 \\
\hline
P\left( 2 \right) & = 3( 2)^{3} – 5( 2)^{2} + 4( 2) – 10 \\
& = 24 - 20 + 8 - 10 \\
& = 2
\end{align}$
Untuk nilai $P\left( -2 \right)=-62$ dan $P\left( 2 \right)=2$ dapat kita peroleh:
$\begin{align}
P\left( x_{1} \right) & = mx_{1}+n \\
P\left( -2 \right) & = m(-2)+n \\
-62 & = -2m+n \\
\hline
P\left( x_{2} \right) & = mx_{2}+n \\
P\left( 2 \right) & = m(2)+n \\
2 & = 2m+n \\
\end{align}$
Dari kedua persamaan di atas kita peroleh:
$\begin{align}
-2m+n & = -62 \\
2m+n & = 2\ \, (-) \\
\hline
-4m & = -64\ \\
m & = 16\ \longrightarrow n=-30
\end{align}$
Sisa pembagian $S(x)=mx+n$ adalah $S(x)=16x-30$
$ \therefore $ Pilihan yang sesuai adalah $(E)\ 16x-30$
11. Soal Latihan Teorema Sisa Polinomial
Jika polinom $F(x)$ dibagi $(x +2)$ maka sisanya $5$, dan jika $F(x)$ dibagi dengan $(x -4)$ akan bersisa $17$. Jika $F(x)$ dibagi $\left(x^{2} – 2x – 8 \right)$ akan bersisa...
$\begin{align} (A)\ & -3x-8 \\ (B)\ & -2x+5 \\ (C)\ & 2x+9 \\ (D)\ & 3x+2 \\ (E)\ & -2x+11 \end{align}$
Alternatif Pembahasan:
Berdasarkan teorema sisa jika polinomial $P(x)$ dibagi oleh $\left(x – a \right)$ maka sisanya adalah $S=P(a)$.
Sehingga jika polinom $F(x)$ dibagi $(x +2)$ sisanya $5$ maka $F(-2)=5$,
dan jika polinom $F(x)$ dibagi $(x -4)$ sisanya $17$ maka $F(4)=17$.
Polinomial $F(x)$ dibagi oleh $\left(x^{2} – 2x – 8 \right)$ sehingga dapat kita peroleh:
$\begin{align}
F\left( x \right) & = \left(x^{2} – 2x – 8 \right) \cdot H(x) + S(x) \\
F\left( x \right) & = \left( x+2 \right)\left( x-4 \right) \cdot H(x) + mx+n \\
F\left( -2 \right) & = \left( -2+2 \right)\left( -2-4 \right) \cdot H(-2) + m(-2) +n \\
5 & = -2m +n \\
\hline
F\left( 4 \right) & = \left( 4+2 \right)\left( 4-4 \right) \cdot H(4) + m(4) +n \\
17 & = 4m +n
\end{align}$
Dari kedua persamaan di atas kita peroleh:
$\begin{align}
-2m+n & = 5 \\
4m+n & = 17 \ \, (-) \\
\hline
-6m & = -12\ \\
m & = 2\ \longrightarrow n=9
\end{align}$
Sisa pembagian $S(x)=mx+n$ adalah $S(x)=2x+9$
$ \therefore $ Pilihan yang sesuai adalah $(C)\ 2x+9$
12. Soal Latihan Teorema Sisa Polinomial
Jika $F(x)$ dibagi $(x -2)$ maka sisanya $6$, dan jika $F(x)$ dibagi dengan $\left(x^{2} -3x-10 \right)$ akan bersisa $2x+6$. Jika $F(x)$ dibagi $\left(x^{2} -4 \right)$ akan bersisa...
$\begin{align} (A)\ & x+4 \\ (B)\ & 3x-4 \\ (C)\ & 2x+5 \\ (D)\ & 2x-4 \\ (E)\ & 3x+2 \end{align}$
Alternatif Pembahasan:
Berdasarkan teorema sisa jika polinomial $P(x)$ dibagi oleh $\left(x – a \right)$ maka sisanya adalah $S=P(a)$.
Sehingga jika polinom $F(x)$ dibagi $(x -2)$ sisanya $6$ maka $F(2)=6$.
Polinomial $F(x)$ dibagi oleh $\left(x^{2} – 3x – 10 \right)$ sisanya $2x+6$ sehingga dapat kita peroleh:
$\begin{align}
F\left( x \right) & = \left(x^{2} – 3x – 10 \right) \cdot H(x) + 2x+6 \\
F\left( x \right) & = \left( x+2 \right)\left( x-5 \right) \cdot H(x) + 2x+6 \\
F\left( -2 \right) & = \left( -2+2 \right)\left( -2-5 \right) \cdot H(-2) + 2(-2)+6 \\
F\left( -2 \right) & = 2
\end{align}$
Polinomial $F(x)$ dibagi oleh $\left(x^{2} -4 \right)$ sehingga dapat kita peroleh:
$\begin{align}
F\left( x \right) & = \left(x^{2} -4 \right) \cdot H(x) + S(x) \\
F\left( x \right) & = \left( x+2 \right)\left( x-2 \right) \cdot H(x) + mx+n \\
F\left( -2 \right) & = \left( -2+2 \right)\left( -2-2 \right) \cdot H(-2) + m(-2) +n \\
2 & = -2m +n \\
\hline
F\left( 2 \right) & = \left( 2+2 \right)\left( 2-2 \right) \cdot H(2) + m(2) +n \\
6 & = 2m +n \\
\end{align}$
Dari kedua persamaan di atas kita peroleh:
$\begin{align}
-2m+n & = 2 \\
2m+n & = 6 \ \, (-) \\
\hline
-4m & = -4\ \\
m & = 1\ \longrightarrow n=4
\end{align}$
Sisa pembagian $S(x)=mx+n$ adalah $S(x)= x +4$
$ \therefore $ Pilihan yang sesuai adalah $(A)\ x+4$
13. Soal Latihan Teorema Sisa Polinomial
Polinomial $F(x)$ dibagi oleh $x^{2}-4$ akan bersisa $2x+9$, dan jika dibagi $x^{2} -4x-5$ sisanya $4x-1$. Jika $F(x)$ dibagi $x^{2} - x-2$ maka akan bersisa...
$\begin{align} (A)\ & 2x+9 \\ (B)\ & 3x-5 \\ (C)\ & 6x+1 \\ (D)\ & 4x+6 \\ (E)\ & x-4 \end{align}$
Alternatif Pembahasan:
Berdasarkan teorema sisa polinomial $P(x)$ dibagi oleh $\left(x – x_{1} \right)\left(x – x_{2} \right)$ sisa pembagian adalah $S(x)=mx+n$ dan berlaku $P\left( x_{1} \right) = mx_{1}+n$ dan $P\left( x_{2} \right) = mx_{2}+n$ .
Polinomial $F(x)$ dibagi oleh $x^{2}-4$ sisanya $2x+9$ sehingga dapat kita peroleh:
$\begin{align}
F\left( x \right) & = \left(x^{2} – 4 \right) \cdot H(x) + 2x+9 \\
F\left( x \right) & = \left( x+2 \right)\left( x-2 \right) \cdot H(x) + 2x+9 \\
F\left( 2 \right) & = \left( 2+2 \right)\left( 2-2 \right) \cdot H( 2) + 2( 2)+9 \\
F\left( 2 \right) & = 13
\end{align}$
Polinomial $F(x)$ dibagi oleh $x^{2}-4x-5$ sisanya $4x-1$ sehingga dapat kita peroleh:
$\begin{align}
F\left( x \right) & = \left( x^{2}-4x-5 \right) \cdot H(x) + 4x-1 \\
F\left( x \right) & = \left( x-5 \right)\left( x+1 \right) \cdot H(x) + 4x-1 \\
F\left( -1 \right) & = \left( -1-5 \right)\left( -1+1 \right) \cdot H(-1) + 4(-1)-1 \\
F\left( -1 \right) & = -5
\end{align}$
Polinomial $F(x)$ dibagi oleh $\left( x^{2} - x-2\right)$ sehingga dapat kita peroleh:
$\begin{align}
F\left( x \right) & = \left( x^{2} - x-2 \right) \cdot H(x) + S(x) \\
F\left( x \right) & = \left( x+1 \right)\left( x-2 \right) \cdot H(x) + mx+n \\
F\left( 2 \right) & = \left( 2+1 \right)\left( 2-2 \right) \cdot H(2) + m(2) +n \\
13 & = 2m +n \\
\hline
F\left( -1 \right) & = \left( -1+1 \right)\left( -1-2 \right) \cdot H(-1) + m(-1) +n \\
-5 & = -m +n \\
\end{align}$
Dari kedua persamaan di atas kita peroleh:
$\begin{align}
2m+n & = 13 \\
-m+n & = -5 \ \, (-) \\
\hline
3m & = 18\ \\
m & = 6\ \longrightarrow n=1
\end{align}$
Sisa pembagian $S(x)=mx+n$ adalah $S(x)= 6x +1$
$ \therefore $ Pilihan yang sesuai adalah $(C)\ 6x+1$
14. Soal Latihan Teorema Sisa Polinomial
Jika $4x^{4} – 12x^{3} + 13x^{2} + px + 2$ habis dibagi oleh $\left(2x – 1 \right)$ maka nilai $p$ sama dengan...
$\begin{align} (A)\ & -8 \\ (B)\ & -6 \\ (C)\ & 4 \\ (D)\ & 5 \\ (E)\ & 10 \end{align}$
Alternatif Pembahasan:
Dari teorema sisa jika polinomial $P(x)$ dibagi oleh $\left(x – a \right)$ maka sisanya adalah $S=P(a)$.
Polinomial $P(x)=4x^{4} – 12x^{3} + 13x^{2} + px + 2$ habis dibagi oleh $2x-1$ atau sisa pembagian adalah nol. Sehingga dapat kita peroleh:
$\begin{align}
P\left( \frac{1}{2} \right) & = 0 \\
4\left( \frac{1}{2} \right)^{4} – 12\left( \frac{1}{2} \right)^{3} + 13\left( \frac{1}{2} \right)^{2} + \left( \frac{1}{2} \right)p + 2 & = 0 \\
4\left( \frac{1}{16} \right) – 12\left( \frac{1}{8} \right) + 13\left( \frac{1}{4} \right) + \dfrac{p}{2} + 2 & = 0 \\
\dfrac{1}{4} – \dfrac{6}{4} + \dfrac{13}{4} + \dfrac{p}{2} + 2 & = 0 \\
1 -6 +13 + 2p + 8 & = 0 \\
2p + 16 & = 0 \\
p & = -8 \\
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(A)\ -8$
15. Soal Latihan Teorema Sisa Polinomial
Polinom $\left( a^{10} – 4 \right)$ dibagi dengan $a^{2} + 2$ mendapatkan sisa...
$\begin{align} (A)\ & 32 \\ (B)\ & 25 \\ (C)\ & 24 \\ (D)\ & -28 \\ (E)\ & -36 \end{align}$
Alternatif Pembahasan:
Dari teorema sisa jika polinomial $P(x)$ dibagi oleh $\left(x – a \right)$ maka untuk $x-a=0$ atau $x=a$ diperoleh sisanya adalah $S=P(a)$.
Polinomial $P(a)= \left(a^{10} – 4 \right)$ dibagi oleh $a^{2} + 2$ maka untuk $a^{2} + 2=0$ atau $a^{2} = - 2$ diperoleh sisanya adalah $S=P\left( a^{2} \right)$ atau $S=P\left( -2 \right)$
$\begin{align}
P \left( a \right)\ & = a^{10} – 4 \\
P\left( a^{2} \right)\ & = \left( a^{2} \right)^{5} – 4 \\
P\left( -2 \right)\ & = \left( -2 \right)^{5} – 4 \\
& = -32 – 4 = - 36 \\
\end{align}$
Sebagai pembanding, berikut sisa pembagian $\left( a^{10} – 4 \right)$ dibagi $a^{2} + 2$ dengan cara Metode Horner Kino:
$ \therefore $ Pilihan yang sesuai adalah $(E)\ -36$
16. Soal Latihan Teorema Sisa Polinomial
Polinom $\left( a^{4} – 3b^{2} \right)$ dibagi dengan $a^{2} -b$ mendapatkan sisa...
$\begin{align} (A)\ & -2b^{2} \\ (B)\ & 2b+b^{2} \\ (C)\ & b^{2}-1 \\ (D)\ & 3b \\ (E)\ & b^{2}2b \end{align}$
Alternatif Pembahasan:
Dari teorema sisa jika polinomial $P(x)$ dibagi oleh $\left(x – a \right)$ maka untuk $x-a=0$ atau $x=a$ diperoleh sisanya adalah $S=P(a)$.
Polinomial $P\left(a \right)=a^{4} – 3b^{2}$ dibagi oleh $a^{2} -b$ maka untuk $a^{2} - 2=0$ atau $a^{2} = b$ diperoleh sisanya adalah $S=P\left( a^{2} \right)$ atau $S=P\left( b \right)$
$\begin{align}
P \left( a \right)\ & = a^{4} – 3b^{2} \\
P\left( a^{2} \right)\ & = \left( a^{2} \right)^{2} – 3b^{2} \\
P\left( b \right)\ & = \left( b \right)^{2} – 3b^{2} \\
& = b^{2} – 3b^{2} = -2b^{2}
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(A)\ -2b^{2}$
17. Soal Latihan Teorema Sisa Polinomial
Polinom $F(x)=x^{5} + x^{4} – 13x^{2} + 19$ dibagi oleh $x-k$ menghasilkan sisa $k^{5}-17$. Nilai $k$ antara lain adalah...
$\begin{align} (A)\ & 3\ \text{atau}\ 4 \\ (B)\ & 2\ \text{atau}\ -3 \\ (C)\ & -4\ \text{atau}\ 2 \\ (D)\ & 4\ \text{atau}\ -3 \\ (E)\ & 2\ \text{atau}\ 5 \end{align}$
Alternatif Pembahasan:
Dari teorema sisa jika polinomial $P(x)$ dibagi oleh $\left(x – a \right)$ maka untuk $x-a=0$ atau $x=a$ diperoleh sisanya adalah $S=P(a)$.
Polinomial $F(x)=x^{5} + x^{4} – 13x^{2} + 19$ dibagi oleh $x-k$ menghasilkan $k^{5}-17$ maka untuk $x-k=0$ atau $x=k$ diperoleh sisanya adalah $S=F\left( k \right)$ atau $S=k^{5}-17$.
$\begin{align}
F \left( x \right)\ & = x^{5} + x^{4} – 13x^{2} + 19 \\
F \left( k \right)\ & = k^{5} + k^{4} – 13k^{2} + 19 \\
k^{5}-17\ & = k^{5} + k^{4} – 13k^{2} + 19 \\
0\ & = k^{4} – 13k^{2} + 36 \\
0\ & = \left[ k^{2} \right]^{2} – 13\left[ k^{2} \right] + 36 \\
0\ & = \left( \left[ k^{2} \right] – 9 \right) \left( \left[ k^{2} \right] – 4 \right) \\
0\ & = \left( k^{2} – 9 \right) \left( k^{2} – 4 \right) \\
0\ & = \left( k+3 \right)\left( k - 3 \right) \left( k+2 \right) \left( k-2 \right) \\
& k=-3,\ k=3,\ k=-2,\ \text{atau}\ k=2
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(B)\ 2\ \text{atau}\ -3$
18. Soal Latihan Teorema Sisa Polinomial
Polinom $F(x) = x^{4} + m^{2}x^{3} – x^{2} + mx – 11$ dan $G(x) = x^{3} + 2x^{2} – 6x – m$ masing-masing dibagi $(x – 1)$ menghasilkan sisa yang sama. Nilai $m$ antara lain...
$\begin{align} (A)\ & -4 \\ (B)\ & -3 \\ (C)\ & -2 \\ (D)\ & 3 \\ (E)\ & 5 \end{align}$
Alternatif Pembahasan:
Dari teorema sisa jika polinomial $P(x)$ dibagi oleh $\left(x – a \right)$ maka untuk $x-a=0$ atau $x=a$ diperoleh sisanya adalah $S=P(a)$.
Polinomial $F(x) = x^{4} + m^{2}x^{3} – x^{2} + mx – 11$ dibagi oleh $(x – 1)$ maka untuk $x-1=0$ atau $x=1$ diperoleh sisanya adalah $S=F\left( 1 \right)$.
$\begin{align}
F \left( x \right)\ & = x^{4} + m^{2}x^{3} – x^{2} + mx – 11 \\
F \left( 1 \right)\ & = (1)^{4} + m^{2}(1)^{3} – (1)^{2} + m(1) – 11 \\
& = 1 + m^{2} – 1 + m – 11 \\
& = m^{2} + m – 11
\end{align}$
Polinomial $G(x) = x^{3} + 2x^{2} – 6x – m$ dibagi oleh $(x – 1)$ maka untuk $x-1=0$ atau $x=1$ diperoleh sisanya adalah $S=G\left( 1 \right)$.
$\begin{align}
G \left( x \right)\ & = (1)^{3} + 2(1)^{2} – 6(1) – m \\
G \left( 1 \right)\ & = 1 + 2 – 6 – m \\
& = -3 - m
\end{align}$
Sisa pembagian $F(x)$ dan $G(x)$ oleh $(x-1)$ adalah sama sehingga berlaku:
$\begin{align}
F \left( 1 \right)\ &= G \left( 1 \right) \\
m^{2} + m – 11 & = -3 – m \\
m^{2} + 2m – 8 & = 0 \\
\left( m+4 \right) \left( m-2 \right) & = 0 \\
m=-4\ \text{atau}\ m=2 &
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(A)\ -4$
19. Soal Latihan Teorema Sisa Polinomial
Jika $F(x) = x^{5} + ax^{3} + b$ dibagi $x^{2} – 1$ menghasilkan sisa $2x + 1$. Maka nilai $a^{2} + b^{2} =\cdots$
$\begin{align} (A)\ & -1 \\ (B)\ & 1 \\ (C)\ & 2 \\ (D)\ & 3 \\ (E)\ & 4 \end{align}$
Alternatif Pembahasan:
Berdasarkan teorema sisa polinomial $P(x)$ dibagi oleh $\left(x – x_{1} \right)\left(x – x_{2} \right)$ sisa pembagian adalah $S(x)=mx+n$ dan berlaku $P\left( x_{1} \right) = mx_{1}+n$ dan $P\left( x_{2} \right) = mx_{2}+n$ .
Polinomial $F(x) = x^{5} + ax^{3} + b$ dibagi $x^{2} – 1$ menghasilkan sisa $2x + 1$ sehingga dapat kita peroleh:
$\begin{align}
F\left( x \right) & = \left( x^{2} – 1 \right) \cdot H(x) + S(x) \\
x^{5} + ax^{3} + b & = \left( x+1 \right)\left( x-1 \right) \cdot H(x) + 2x+1 \\
\hline
&\text{untuk}\ x=1 \\
(1)^{5} + a(1)^{3} + b & = \left( 1+1 \right)\left( 1-1 \right) \cdot H(1) + 2(1)+1 \\
1 + a + b & = 3 \\
a + b & = 2 \\
\hline
&\text{untuk}\ x=-1 \\
(-1)^{5} + a(-1)^{3} + b & = \left( -1+1 \right)\left( -1-1 \right) \cdot H(-1) + 2(-1)+1 \\
-1 - a + b & = -1 \\
-a + b & = 0 \\
\end{align}$
Dari kedua persamaan di atas kita peroleh:
$\begin{align}
a+b & = 2 \\
-a+b & = 0\ \, (-) \\
\hline
2a & = 2\ \\
a & = 1\ \longrightarrow b=1 \\
a^{2}+b^{2} & = 1^{2}+1^{2}=2
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(C)\ 2$
20. Soal Latihan Teorema Sisa Polinomial
Jika $f(x)=3x^{4}-5x^{2}+kx+12$ habis dibagi $x+2$, maka nilai $k$ adalah...
$\begin{align} (A)\ & 10 \\ (B)\ & 20 \\ (C)\ & 30 \\ (D)\ & 40 \\ (E)\ & 50 \end{align}$
Alternatif Pembahasan:
Pada soal disampaikan bahwa $f(x)=3x^{4}-5x^{2}+kx+12$ habis dibagi $x+2$ sehingga berlaku:
$ \begin{align}
f(-2) &= 0 \\
3(-2)^{4}-5(-2)^{2}+k(-2)+12 &= 0 \\
3(16)-5(4)-2k+12 &= 0 \\
48-20-2k+12 &= 0 \\
-2k & = -40 \\
& = 20
\end{align} $
$ \therefore $ Pilihan yang sesuai adalah $(B)\ 20$
21. Soal Latihan Teorema Sisa Polinomial
Jika $f(x)$ dibagi dengan $(x-2)$ sisanya $24$, sedangkan jika dibagi dengan $(x+5)$ sisanya $10$. Jika $f(x)$ dibagi dengan $x^{2}+3x-10$, maka sisanya adalah...
$\begin{align} (A)\ & x+34 \\ (B)\ & x-34 \\ (C)\ & 2x-20 \\ (D)\ & 2x+20 \\ (E)\ & x+14 \end{align}$
Alternatif Pembahasan:
Pada soal disampaikan bahwa $f(x)$ dibagi $(x-2)$ sisanya $24$ dan $f(x)$ dibagi $(x+5)$ sisanya $10$, sehingga berdasarkan teorema sisa suku banyak $F(x)$ dibagi oleh $(x-a)$, maka sisa pembagiannya adalah $F(a)$ berlaku $f(2)=24$, dan $f(-5)=10$.
$f(x)$ dibagi dengan $x^{2}+3x-10$, sehingga berlaku
$\begin{align}
f(x) & \equiv H(x) \cdot \left( x^{2}-3x+2 \right) + mx+n \\
f(x) & \equiv H(x) \cdot \left( x+5 \right) \left( x-2 \right)+ mx+n\\
\hline
f(2) & = 2m+n\\
24 & = 2m+n\\
\hline
f(-5) & = -5m+n\\
10 & = -5m+n
\end{align}$
Dengan mengeliminasi atau substitusi, kita peroleh:
$\begin{array}{c|c|cc}
2m+n = 24 & \\
-5m+n = 10 & (-) \\
\hline
7m = 14 & \\
m = 2 & \\
n = 20 &
\end{array} $
Sisa pembagian $mx+n=2x+20$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 2x+20$
22. Soal Latihan Teorema Sisa Polinomial
Jika $f(x)$ dibagi dengan $(x+2)$ bersisa $14$, dan dibagi $(x-4)$ bersisa $-4$. Jika $f(x)$ dibagi $x^{2}-2x-8$, maka sisanya adalah...
$\begin{align} (A)\ & -3x-8 \\ (B)\ & 3x+8 \\ (C)\ & -3x+8 \\ (D)\ & 8x-3 \\ (E)\ & -8x+3 \end{align}$
Alternatif Pembahasan:
Pada soal disampaikan bahwa $f(x)$ dibagi $(x+2)$ sisanya $24$ dan $f(x)$ dibagi $(x-4)$ sisanya $-4$, sehingga berdasarkan teorema sisa suku banyak $F(x)$ dibagi oleh $(x-a)$, maka sisa pembagiannya adalah $F(a)$ berlaku $f(-2)=14$, dan $f(4)=-4$.
$f(x)$ dibagi dengan $x^{2}-2x-8$, sehingga berlaku
$\begin{align}
f(x) & \equiv H(x) \cdot \left( x^{2}-2x-8 \right) + mx+n \\
f(x) & \equiv H(x) \cdot \left( x+2 \right) \left( x-4 \right)+ mx+n\\
\hline
f(-2) & = -2m+n\\
14 & = -2m+n\\
\hline
f(4) & = 4m+n\\
-4 & = 4m+n
\end{align}$
Dengan mengeliminasi atau substitusi, kita peroleh:
$\begin{array}{c|c|cc}
-2m+n = 14 & \\
4m+n = -4 & (-) \\
\hline
-6m = 18 & \\
m = -3 & \\
n = 8 &
\end{array} $
Sisa pembagian $mx+n=-3x+8$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 2x+20$
23. Soal Latihan Teorema Sisa Polinomial
Suatu suku banyak $f(x)$ jika dibagi dengan $(x-2)$ bersisa $5$, dan dibagi $(x+3)$ bersisa $-10$. Jika $f(x)$ dibagi $x^{2}+x-6$, maka sisanya adalah...
$\begin{align} (A)\ & 3x-1 \\ (B)\ & -3x+8 \\ (C)\ & -3x-8 \\ (D)\ & 3x-1 \\ (E)\ & -3x+1 \end{align}$
Alternatif Pembahasan:
Pada soal disampaikan bahwa $f(x)$ dibagi $(x-2)$ sisanya $5$ dan $f(x)$ dibagi $(x+3)$ sisanya $-10$, sehingga berdasarkan teorema sisa suku banyak $F(x)$ dibagi oleh $(x-a)$, maka sisa pembagiannya adalah $F(a)$ berlaku $f(2)=5$, dan $f(-3)=-10$.
$f(x)$ dibagi dengan $x^{2}+x-6$, sehingga berlaku
$\begin{align}
f(x) & \equiv H(x) \cdot \left( x^{2}+x-6 \right) + mx+n \\
f(x) & \equiv H(x) \cdot \left( x-2 \right) \left( x+3 \right)+ mx+n\\
\hline
f(2) & = 2m+n\\
5 & = 2m+n\\
\hline
f(-3) & = -3m+n\\
-10 & = -3m+n
\end{align}$
Dengan mengeliminasi atau substitusi, kita peroleh:
$\begin{array}{c|c|cc}
2m+n = 5 & \\
-3m+n = -10 & (-) \\
\hline
5m = 15 & \\
m = 3 & \\
n = -1 &
\end{array} $
Sisa pembagian $mx+n=3x-1$
$\therefore$ Pilihan yang sesuai adalah $(A)\ 3x-1$
24. Soal Latihan Teorema Sisa Polinomial
Diketahui $R(x)=g(x) \cdot h(x)$. Jika $g(x)$ dibagi dengan $(x-2)$ dan $(x+2)$ sisanya $6$ dan $10$. Jika $h(x)$ dibagi dengan $(x-2)$ dan $(x+2)$ sisanya $2$ dan $2$. Tentukan sisa pembagian $R(x)$ oleh $x^{2}-4$.
$\begin{align} (A)\ & -2x-16 \\ (B)\ & -2x+16 \\ (C)\ & 2x+16 \\ (D)\ & 16x-2 \\ (E)\ & 16x+2 \end{align}$
Alternatif Pembahasan:
Pada soal disampaikan bahwa $g(x)$ dibagi dengan $(x-2)$ dan $(x+2)$ sisanya $6$ dan $10$,
sehingga berdasarkan teorema sisa berlaku $g(2)=6$, dan $g(-2)=10$.
Lalu disampaikan bahwa $h(x)$ dibagi dengan $(x-2)$ dan $(x+2)$ sisanya $2$ dan $2$,
sehingga berdasarkan teorema sisa berlaku $h(2)=2$, dan $h(-2)=2$.
$R(x)$ dibagi dengan $x^{2}-4$, sehingga berlaku
$\begin{align}
R(x) & \equiv H(x)\left( x^{2}-4 \right) + mx+n \\
g(x) \cdot h(x) & \equiv H(x) \left( x-2 \right) \left( x+2 \right) + mx+n \\
g(2) \cdot h(2) & \equiv H(2) \left( 2-2 \right) \left( 2+2 \right) + m(2)+n \\
6 \cdot 2 & \equiv 2m +n \\
12 & \equiv 2m +n \\
\hline
g(-2) \cdot h(-2) & \equiv H(-2) \left( -2-2 \right) \left( -2+2 \right) + m(-2)+n \\
10 \cdot 2 & \equiv -2m +n \\
20 & \equiv -2m +n
\end{align}$
Dengan mengeliminasi atau substitusi, kita peroleh:
$\begin{array}{c|c|cc}
2m+n = 12 & \\
-2m+n = 20 & (-) \\
\hline
4m = -8 & \\
m = -2 & \\
n = 16 &
\end{array} $
Sisa pembagian $mx+n=-2x+16$
$\therefore$ Pilihan yang sesuai adalah $(B)\ -2x+16$
25. Soal Latihan Teorema Sisa Polinomial
Misalkan suku banyak $f(x)$ dibagi $(x -9)$ bersisa $2$ dan jika $f(x)$ habis dibagi oleh $(x - 16)$.
Jika sisa pembagian $f\left(x^{2} \right)$ oleh $\left(x^{2} + x – 12 \right)$ adalah $S\left(x \right)$, maka $S\left( -1 \right)=\cdots$ ...
$\begin{align} (A)\ & -\dfrac{6}{7} \\ (B)\ & -\dfrac{3}{7} \\ (C)\ & 0 \\ (D)\ & \dfrac{3}{7} \\ (E)\ & \dfrac{6}{7} \end{align}$
Alternatif Pembahasan:
Berdasarkan teorema sisa jika polinomial $P(x)$ dibagi oleh $\left(x – a \right)$ maka sisanya adalah $S=P(a)$.
Sehingga jika polinom $f(x)$ dibagi $(x -9)$ sisanya $2$ maka $f(9)=2$,
dan jika polinom $f(x)$ dibagi $(x -16)$ sisanya $0$ maka $f(16)=0$.
Polinomial $f\left(x^{2} \right)$ dibagi oleh $\left( x^{2} + x – 12 \right)$ sehingga dapat kita peroleh:
$\begin{align}
f\left(x^{2} \right) & = \left( x^{2} + x – 12 \right) \cdot H(x) + S(x) \\
f\left( x^{2} \right) & = \left( x+4 \right) \left( x-3 \right) \cdot H(x) + mx+n \\
\end{align}$
Dari nilai $f(9)=2$ dapat juga kita peroleh $f\left( (3)^{2} \right)=9$ dan dari nilai $f(16)=0$ dapat juga kita peroleh $f\left( (-4)^{2} \right)=0$, sehingga berlaku:
$\begin{align}
f\left( x^{2} \right) & = \left( x+4 \right) \left( x-3 \right) \cdot H(x) + mx+n \\
f\left( 3^{2} \right) & = \left( 3+4 \right) \left( 3-3 \right) \cdot H(3) + m(3)+n \\
2 & =3m+n \\
\hline
f\left( (-4)^{2} \right) & = \left( -4+4 \right) \left( -4-3 \right) \cdot H(-4) + m(-4)+n \\
0 & =-4m+n \\
\end{align}$
Dari kedua persamaan di atas kita peroleh:
$\begin{align}
3m+n & = 2 \\
-4m+n & = 0 \ \, (-) \\
\hline
7m & = 2\ \\
m & = \dfrac{2}{7}\ \longrightarrow n=\dfrac{8}{7}
\end{align}$
Sisa pembagian $S(x)=mx+n$ adalah $S(x)=\dfrac{2}{7}x+\dfrac{8}{7}$.
Nilai $S(-1)=\dfrac{2}{7}(-1)+\dfrac{8}{7}=\dfrac{6}{7}$
$ \therefore $ Pilihan yang sesuai adalah $(E)\ \dfrac{6}{7}$
Beberapa pembahasan Soal Matematika Dasar Teorema Sisa Pada Suku Banyak (Polinomial) di atas adalah coretan kreatif siswa pada:
- lembar jawaban penilaian harian matematika,
- lembar jawaban penilaian akhir semester matematika,
- presentasi hasil diskusi matematika atau
- pembahasan quiz matematika di kelas.
Catatan tentang Belajar Teorema Sisa Pada Suku Banyak (Polinomial) Dilengkapi Soal Latihan dan Pembahasan di atas agar lebih baik lagi perlu catatan tambahan dari Anda. Untuk catatan tambahan atau hal lain yang perlu diketahui admin, silahkan disampaikan dan contact admin 🙏 CMIIW.
Ayo Share (Berbagi) Satu Hal Baik.
Jangan jadikan sekolah hanya untuk mencari nilai, tetapi bagaimana sekolah itu menjadikanmu bernilai.