Skip to main content

Bank Soal Matematika Dasar Suku Banyak Atau Polinomial (*Soal dan Pembahasan)

Matematika Dasar Suku Banyak Atau Polinomial (*Soal Dari Berbagai Sumber)Matematika Dasar yang akan kita diskusikan berikut adalah tentang Suku Banyak atau Polinomial. Sebelumnya kita sudah coba diskusikan tentang persamaan kuadrat, karena sedikit banyaknya Suku Banyak Atau Polinomial ini adalah pengembangan dari persamaan kuadrat atau fungsi kuadrat. Sehingga materi persamaan kuadrat atau fungsi kuadrat sebelumnya sangat dibutuhkan sebagai dasar dalam memahami suku banyak atau polinomial ini.

Dalam matematika, polinomial atau suku banyak (juga ditulis sukubanyak) adalah pernyataan matematika yang melibatkan jumlahan perkalian pangkat dalam satu atau lebih variabel dengan koefisien.

Suku banyak (polinomial) dalam $x$ berderajat $n$ adalah:
$f(x)=a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+\cdots+a_{n}x^{n}$
dimana:
  • $n$ adalah bilangan cacah dan $a\neq 0$
  • $a_{n},\ a_{n-1},\ a_{n-2},\ \cdots, a_{0}$ konstanta dan merupakan koefisien dari $x^{n}, x^{n-1}, \cdots, x^{0}$
  • Derajat suatu suku banyak dalam $x$ dinyatakan oleh pangkat tertinggi ($n$) dalam suku banyak tersebut.

Nilai Suku Banyak
Nilai suku banyak $f(x)$ berderajat $n$ pada saat $x=k$ adalah $f(k)$

Kesamaan Suku Banyak
Suku banyak $f(x)$ dan $g(x)$ dikatakan sama ketika derajat dan koefisian variabel-variabel yang berpangkat sama besarnya adalah sama.

Pembagian Suku Banyak
Pembagian suku banyak dapat dilakukan dengan dua cara yaitu dengan bersusun kebawah dan cara horner. Untuk cara pembagian suku banyak ini kita diksusikan pada diskusi tersendiri, jadi saat ini pembagian suku banyak sudah kita anggap bisa.

Teorema Sisa
  • Jika suatu fungsi suku banyak $f(x)$ dibagi oleh faktor linear berbentuk $(x-a)$, sisanya adalah $s=f(a)$.
  • Jika suatu fungsi suku banyak $f(x)$ dibagi oleh faktor linear berbentuk $(ax-b)$, sisanya adalah $s=f \left(\dfrac{b}{a} \right)$.

Teorema Faktor
  • Jika suatu fungsi suku banyak $f(x)$ memiliki faktor $(x-a)$, maka $f(a)=0$.
  • Jika suatu fungsi suku banyak $f(x)$ memiliki faktor $(ax-b)$, $f \left(\dfrac{b}{a} \right)=0$.

Secara umum bentuk suku banyak suatu $f(x)$ jika dibagi $P(x)$ dan hasil bagi $H(x)$ dan sisa $S(x)$ dapat dituliskan: $f(x)=P(x) \cdot H(x) + S(x)$
  • Jika $f(x)$ dibagi $(x-a)$ maka $f(x)=H(x) \cdot (x-a)+f(a)$
  • Jika $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+mx+n$

Hasil Jumlah dan Hasil Kali akar-akar Suku banyak $f(x)$
  • $f(x)=ax^{2}+bx+c$, akar-akarnya $x_{1}$ dan $x_{2}$
    • $x_{1}+x_{2}=-\dfrac{b}{a}$
    • $x_{1} \cdot x_{2}= \dfrac{c}{a}$
  • $f(x)=ax^{3}+bx^{2}+cx+d$, akar-akarnya $x_{1}$, $x_{2}$ dan $x_{3}$
    • $x_{1}+x_{2}+x_{3}=-\dfrac{b}{a}$
    • $x_{1} \cdot x_{2} + x_{1} \cdot x_{3}+ x_{2}\cdot x_{3} = \dfrac{c}{a}$
    • $x_{1} \cdot x_{2} \cdot x_{3} = -\dfrac{d}{a}$
  • $f(x)=ax^{4}+bx^{3}+cx^{2}+dx+e$, akar-akarnya $x_{1}$, $x_{2}$, $x_{3}$ dan $x_{4}$
    • $x_{1}+x_{2}+x_{3}+x_{4} =-\dfrac{b}{a}$
    • $x_{1} \cdot x_{2} + x_{1} \cdot x_{3}+\cdots+ x_{3}\cdot x_{4} = \dfrac{c}{a}$
    • $x_{1} \cdot x_{2} \cdot x_{3}+ x_{1} \cdot x_{2} \cdot x_{4}+\cdots+ x_{2} \cdot x_{3}\cdot x_{4} = -\dfrac{d}{a}$
    • $x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4} = \dfrac{e}{a}$
Beberapa sampel soal untuk kita diskusikan, yang kita pilih dari soal-soal SBMPTN (Seleksi Bersama Masuk Perguruan Tinggi Negeri) atau SMMPTN (Seleksi Mandiri Masuk Perguruan Tinggi Negeri) dan UN (Ujian Nasional). Mari berdiksusi;

1. Soal SBMPTN 2015 (*Soal Lengkap)

Sisa pembagian $x^{2014}-Ax^{2015}+Bx^{3}-1$ oleh $x^{2}-1$ adalah $–x+B$. Nilai $2A+B$ adalah...
$\begin{align}
(A)\ & 1 \\
(B)\ & 2 \\
(C)\ & 3 \\
(D)\ & 4 \\
(E)\ & 5
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan soal diatas, kita coba mengingatkan kembali tentang teorema sisa, yaitu:
Untuk
$F(x)=H(x)\cdot P(x)+Sisa$
$F(x)=H(x)\cdot (x-a)(x-b)+mx+n$
maka
$F(a)=am+n$
$F(b)=bm+n$

Pada soal disampaikan bahwa $x^{2014}-Ax^{2015}+Bx^{3}-1$ dibagi oleh $x^{2}-1$ sisanya $-x+B$.
$\begin{align}
& x^{2014}-Ax^{2015}+Bx^{3}-1 \\
& = \left (x^{2}-1 \right )\cdot H(x)+sisa \\
& = \left (x-1 \right )\left (x+1 \right )\cdot H(x)-x+B \\
& = \left (x-1 \right )\left (x+1 \right )\cdot H(x)-x+B
\end{align}$

Untuk $x=1$
$\begin{align}
1^{2014}-A(1)^{2015}+B(1)^{3}-1 & = -1+B \\
1-A+B-1 & = -1+B \\
-A+B & = -1+B \\
A & = 1
\end{align}$

Untuk $x=-1$
$\begin{align}
(-1)^{2014}-A(-1)^{2015}+B(-1)^{3}-1 & = -(-1)+B \\
-1+A-B-1 & = 1+B \\
A-B & = 1+B \\
1-B & = 1+B \\
B & = 0
\end{align}$

Nilai $2A+B=2(1)+0=2$

$\therefore$ Pilihan yang sesuai $(B)\ 2$

2. Soal UM UNDIP 2015 (*Soal Lengkap)

Jika suku banyak $f(x)$ dibagi dengan $(x-a)(x-b)$ dengan $a \neq b$, maka sisa pembagian ini adalah...
$(A)$ $\dfrac{x+a}{a-b}f\left ( a \right )+\dfrac{x+b}{b-a}f\left ( b \right )$
$(B)$ $\dfrac{x-a}{a-b}f\left ( b \right )+\dfrac{x-b}{b-a}f\left ( a \right )$
$(C)$ $\dfrac{x+a}{a-b}f\left ( b \right )+\dfrac{x+b}{b-a}f\left ( a \right )$
$(D)$ $\dfrac{x-b}{a-b}f\left ( a \right )+\dfrac{x-a}{b-a}f\left ( b \right )$
$(E)$ $\dfrac{x-b}{a-b}f\left ( b \right )+\dfrac{x-a}{b-a}f\left ( a \right )$
Alternatif Pembahasan:

Untuk menyelesaikan soal diatas, kita coba menggunakan teoerma sisa, yaitu:
Untuk
$f(x)=h(x)\cdot (x-a)(x-b)+mx+n$
maka
$f(a)=am+n$
$f(b)=bm+n$

Kita terapkan ke soal dengan mengeliminasi $n$ atau mengeliminasi $m$;
#mengeliminasi $n$
$f(a)-f(b)=am-bm$
$f(a)-f(b)=( a-b)m$
$m=\dfrac{f(a)-f(b)}{a-b}$

#mengeliminasi $m$
$b \cdot f(a)-a \cdot f(b)=bn-an$
$b \cdot f(a)-a \cdot f(b)=( b-a)n$
$n=\dfrac{b \cdot f(a)-a \cdot f(b)}{b-a}$

$\therefore $ Sisa Pembagian adalah $mx+n$
$mx+n=\dfrac{f(a)-f(b)}{a-b}x+\dfrac{b \cdot f(a)-a \cdot f(b)}{b-a}$
$mx+n=\dfrac{f(a)-f(b)}{a-b}x+\dfrac{a \cdot f(b)-b \cdot f(a)}{a-b}$
$mx+n=\dfrac{x \cdot f(a)-x \cdot f(b)+a \cdot f(b)-b \cdot f(a)}{a-b}$
$mx+n=\dfrac{x \cdot f(a)-b \cdot f(a)-x \cdot f(b)+a \cdot f(b)}{a-b}$
$mx+n=\dfrac{x-b}{a-b}f(a)+\dfrac{a-x}{a-b}f(b)$
$mx+n=\dfrac{x-b}{a-b}f(a)+\dfrac{x-a}{b-a}f(b)$

$\therefore$ Pilihan yang sesuai $(D)\ \dfrac{x-b}{a-b}f\left ( a \right )+\dfrac{x-a}{b-a}f\left ( b \right )$

3. Soal SBMPTN 2014 (*Soal Lengkap)

Diketahui $P(x)$ suatu polinomial. Jika $P(x+1)$ dan $P(x-1)$ masing-masing memberikan sisa $2$ apabila masing-masing dibagi $x-1$,
maka $P(x)$ dibagi $x^{2}-2x$ memberikan sisa...
$\begin{align}
(A)\ & x+2 \\
(B)\ & 2x \\
(C)\ & x \\
(D)\ & 1 \\
(E)\ & 2
\end{align}$
Alternatif Pembahasan:

$P(x)=H(x)\cdot (x-a)(x-b)+mx+n$

Untuk $x=0$
$P(x)=H(x)\cdot x(x-2)+mx+n$
maka $P(0)=n$

Untuk $x=2$
$P(x)=H(x)\cdot x(x-2)+mx+n$
$P(2)=2m+n$

Pada soal diketahui $P(x+1)=2$ dan $P(x-1)=2$ maka untuk $x=1$ diperoleh $P(2)=2$ dan $P(0)=2$.

$P(0)=2$ dan $P(0)=n$ maka $n=2$
$P(2)=2$ dan $P(2)=2m+n$ maka $2m+n=2$ sehingga $m=0$.

Sisa pembagian adalah $mx+n$ yaitu $0x+2=2$.

$\therefore$ Pilihan yang sesuai $(E)\ 2$

4. Soal SBMPTN 2016 (*Soal Lengkap)

Diketahui sisa pembagian suku banyak $f(x)-2g(x)$, oleh $x^{2}+x-2$ adalah $x+3$, sisa pembagian $2f(x)+g(x)$ oleh $x^{2}-3x+2$ adalah $x+1$, maka sisa pembagian $f(x)g(x)$ oleh $x-1$ adalah...
$\begin{align}
(A)\ & \dfrac{23}{24} \\
(B)\ & \dfrac{18}{24} \\
(C)\ & -\dfrac{21}{25} \\
(D)\ & -\dfrac{48}{25} \\
(E)\ & -\dfrac{50}{36}
\end{align}$
Alternatif Pembahasan:

Dari keterangan pada soal kita peroleh;
$f(x)-2g(x)=(x^{2}+x-2)H(x)+x+3$
$f(x)-2g(x)=(x+2)(x-1)H(x)+x+3$

$2f(x)+g(x)=(x^{2}-3x+2)H(x)+x+1$
$2f(x)+g(x)=(x-2)(x-1)H(x)+x+1$

Untuk $x=1$ atau $x=2$, kita peroleh;
$\begin{array}{c|c|cc}
f(1)-2g(1) = 4 & \times 1\\
2f(1)+g(1) = 2 & \times 2\\
\hline
f(1)-2g(1) = 4 & \\
4f(1)+2g(1) = 4 & (+)\\
\hline
5f(1) = 8 &\\
f(1) = \dfrac{8}{5} & \\
g(1) = -\dfrac{6}{5}
\end{array} $

Nilai $f(1)g(1)=\dfrac{8}{5}\dfrac{-6}{5}=-\dfrac{48}{25}$

$\therefore$ Pilihan yang sesuai $(D)\ -\dfrac{48}{25}$

5. Soal UN 2011 (*Soal Lengkap)

Diketahui suku banyak $P(x)=2x^{4}+ax^{3}-3x^{2}+5x+b$. Jika $P(x)$ dibagi $(x-1)$ sisa $11$ dan dibagi $(x+1)$ sisa $-1$, maka nilai $(2a+b)$ adalah...
$\begin{align}
(A)\ & 13 \\
(B)\ & 10 \\
(C)\ & 8 \\
(D)\ & 7 \\
(E)\ & 6
\end{align}$
Alternatif Pembahasan:

Dari soal kita peroleh beberapa data, antara lain;
Jika $P(x)$ dibagi $(x-1)$ sisa $11$ maka $P(1)=11$
Jika $P(x)$ dibagi $(x+1)$ sisa $-1$ maka $P(-1)=-1$

Karena $P(1)=11$ maka
$P(x)=2x^{4}+ax^{3}-3x^{2}+5x+b$
$P(1)=2+a-3+5+b$
$11=a+b+4$
$a+b=7 \cdots (1)$

Karena $P(-1)=-1$ maka
$P(x)=2x^{4}+ax^{3}-3x^{2}+5x+b$
$P(-1)=2-a-3-5+b$
$-1=-a+b-64$
$-a+b=5 \cdots (2)$

$\begin{array}{c|c|cc}
a+b = 7 & \\
-a+b = 5 & (+)\\
\hline
2b = 12 & \\
b = 6 & \\
a = 1 &
\end{array} $

Nilai $2a+b=2+6=8$

$\therefore$ Pilihan yang sesuai $(C)\ 8$

6. Soal UN 2007 (*Soal Lengkap)

Suku banyak $f(x)$ dibagi $(x+1)$ sisanya $10$ dan jika dibagi $(2x-3)$ sisanya $5$. Jika suku banyak $f(x)$ dibagi $(2x^{2}-x-3)$, sisanya adalah...
$\begin{align}
(A)\ & -2x+8 \\
(B)\ & -2x+12 \\
(C)\ & -x+4 \\
(D)\ & -5x+5 \\
(E)\ & -5x+15
\end{align}$
Alternatif Pembahasan:

Dari apa yang disampaikan pada soal, ada beberapa hal yang dapat kita simpulkan yaitu;
$f(-1)=10$ dan $f(\dfrac{3}{2})=5$

Dari bentuk suku banyak;
$f(x)=h(x)\cdot p(x)+sisa$
$f(x)=h(x)\cdot 2x^{2}-x-3+mx+n$
$f(x)=h(x)\cdot (x+1)(2x-3)+mx+n$

$f(-1)=-m+n$ maka $-m+n=10$ $\cdots (1)$
$f(\dfrac{3}{2})=\dfrac{3}{2}m+n$ maka $\dfrac{3}{2}m+n=5$ $\cdots (2)$

Dengan mengeliminasi atau substitusi pers. $(1)$ dan $(2)$ kita peroleh nilai $m=-2$ atau $n=8$

$mx+n \equiv -2x+8$

$\therefore$ Pilihan yang sesuai $(A)\ -2x+8$

7. Soal SIMAK UI 2018 Kode 416 (*Soal Lengkap)

Diketahui suku banyak $f(x)$ dibagi $x^{2}+x-2$ bersisa $ax+b$ dan dibagi $x^{2}-4x+3$ bersisa $2bx+a-1$. Jika $f(-2)=7$, maka $a^{2}+b^{2}=\cdots$
$\begin{align}
(A)\ & 12 \\
(B)\ & 10 \\
(C)\ & 9 \\
(D)\ & 8 \\
(E)\ & 5
\end{align}$
Alternatif Pembahasan:

Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+sisa$
ketika $f(x)$ dibagi $(x+2)(x-1)$ maka $f(x)=H(x) \cdot (x+2)(x-1)+ax+b$
ketika $f(x)$ dibagi $(x-1)(x-3)$ maka $f(x)=H(x) \cdot (x-3)(x-1)+2bx+a-1$

Dari persamaan di atas kita peroleh:
$f(-2)=7$ maka $-2a+b=7$
$ \begin{align}
f(1) & = f(1) \\
a+b & = 2b+a-1 \\
b & = 1 \\
-2a+b & = 7 \\
-2a+1 & = 7 \\
-2a & = 6 \\
a & = -3 \\
a^{2}+b^{2} & = (-3)^{2}+(1)^{2} \\
& = 10
\end{align} $

$ \therefore $ Pilihan yang sesuai adalah $(B)\ 10$

8. Soal SIMAK UI 2018 Kode 421 (*Soal Lengkap)

Diketahui suku banyak $f(x)$ dibagi $x^{2}+3x+2$ bersisa $3bx+a-2$ dan dibagi $x^{2}-2x-3$ bersisa $ax-2b$. Jika $f(3)+f(-2)=6$, maka $a+b=\cdots$
$\begin{align}
(A)\ & -1 \\
(B)\ & 0 \\
(C)\ & 1 \\
(D)\ & 2 \\
(E)\ & 3
\end{align}$
Alternatif Pembahasan:

Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+sisa$
ketika $f(x)$ dibagi $(x+2)(x+1)$ maka $f(x)=H(x) \cdot (x+2)(x+1)+3bx+a-2$
ketika $f(x)$ dibagi $(x+1)(x-3)$ maka $f(x)=H(x) \cdot (x+1)(x-3)+ax-2b$

Dari persamaan di atas kita peroleh:
$ \begin{align}
f(3)+f(-2) & = 6 \\
3a-2b-6b+a-2 & = 6 \\
4a-8b & = 8 \\
a-2b & = 2 \cdots (1)\\
f(-1) & = f(-1) \\
-3b+a-2 & = -a-2b \\
-b+2a & = 2 \cdots (2)\\
\end{align} $

$\begin{array}{c|c|cc}
a-2b = 2 & \\
-b+2a = 2 & (-)\\
\hline
-a-b = 0 & \\
a+b = 0
\end{array} $

$ \therefore $ Pilihan yang sesuai adalah $(B)\ 0$

Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras
Beberapa pembahasan soal Matematika Dasar Suku Banyak atau Polinomial (*Soal Dari Berbagai Sumber) di atas adalah coretan kreatif siswa pada
  • lembar jawaban penilaian harian matematika,
  • lembar jawaban penilaian akhir semester matematika,
  • presentasi hasil diskusi matematika atau
  • pembahasan quiz matematika di kelas.
Jadi saran, kritik atau masukan yang sifatnya membangun terkait masalah alternatif penyelesaian soal Suku Banyak atau Polinomial ini sangat diharapkan๐Ÿ˜ŠCMIIW

Jangan Lupa Untuk Berbagi ๐Ÿ™Share is Caring ๐Ÿ‘€ dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE๐Ÿ˜Š

Video pilihan khusus untuk Anda ๐Ÿ˜‚ mari kita lihat kreativitas siswa ini lewat matematika;
youtube image

Comment Policy: Silahkan tuliskan komentar atau pertanyaan yang berhubungan dengan "Bank Soal Matematika Dasar Suku Banyak Atau Polinomial (*Soal dan Pembahasan)" ๐Ÿ˜Š and thank you for your concern in support of blog
Buka Komentar
Tutup Komentar