Gk7qp1DNYQGDurixnE7FWT3LyBvSK3asrvqSm057
Bookmark

100+ Soal dan Pembahasan UTBK SBMPTN 2019 TKA SAINTEK Matematika (#Soal Latihan SNBT 2024)

Soal dan Pembahasan UTBK SBMPTN 2019 TKA SAINTEK Matematika (*Simulasi UTBK SBMPTN 2023)

Calon guru belajar matematika dasar SMA dari 100+ Soal dan Pembahasan UTBK Matematika Kelompok SAINTEK Tahun 2019. Soal TKA SAINTEK UTBK-SBMPTN Matematika IPA tahun 2019 ini masih sangat baik dan cocok digunakan sebagai bahan latihan dalam persiapan menghadapi SNBT penalaran matematika tahun ini.

Untuk masalah kebenaran atau keaslian soal ini, 'Apakah benar soal UTBK Matematika kelompok SAINTEK pada tahun 2019?', kita gunakan sedikit riset sederhana.

Dari beberapa grup WA (WhatsApp) yang dipantau, beberapa anggota grup belajar yang sudah selesai melaksanakan UTBK menanyakan atau menyampaikan pertanyaan yang sama (mirip). Berdasarkan komentar-komentar atau pertanyaan anggota grup, disimpulkan bahwa soal yang dibahas adalah soal UTBK yang sudah selesai dilaksanakan.

Soal TKA SAINTEK UTBK-SBMPTN Matematika IPA tahun 2019 ini masih sangat baik dan cocok digunakan sebagai bahan latihan dalam persiapan menghadapi Soal TKA SAINTEK UTBK-SBMPTN Matematika IPA tahun ini. Mari Belajar, Berlatih dan Berdoa sesuai dengan agama dan kepercayaan kita masing-masing.

Soal-soal UTBK SBMPTN tahun 2019 matematika ipa kelompok saintek ini juga didukung dari file kumpulan soal-soal UTBK Matematika kelompok SAINTEK tahun 2019 yang dibagikan oleh bapak Suherman,S.Si. M.Si. dan m4th-lab.net.

Pembahasan soal Tes Kompetensi Akademik (TKA) Kelompok ujian SAINTEK Tahun 2019 ini nantinya masih jauh dari sempurna, jadi jika punya alternatif pembahasan atau saran-kritik yang sifatnya membangun silahkan disampaikan;


SOAL DAN PEMBAHASAN TKA SAINTEK UTBK-SBMPTN MATEMATIKA

seperti yang disampaikan sebelumnya, soal TKA SAINTEK UTBK-SBMPTN Matematika IPA tahun 2019 ini masih sangat baik dan cocok digunakan sebagai bahan latihan dalam persiapan menghadapi Soal TKA SAINTEK UTBK-SBMPTN Matematika IPA tahun ini. Mari Belajar, Berlatih dan Berdoa sesuai dengan agama dan kepercayaan kita masing-masing.

1. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui matriks $B=\begin{pmatrix} 1 & -4\\ 5 & -2 \end{pmatrix}$
dan berlaku persamaan $A^{2}+B=\begin{pmatrix} 3 & -2\\ 4 & -1 \end{pmatrix}$.
Determinan matriks $A^{4}$ adalah...
$\begin{align} (A)\ & 1 \\ (B)\ & 2 \\ (C)\ & 4 \\ (D)\ & 16 \\ (E)\ & 81 \end{align}$
Alternatif Pembahasan:

Berdasarkan informasi pada penjumlahan matriks soal di atas, maka berlaku:

$\begin{align} A^{2}+B &=\begin{pmatrix} 3 & -2\\ 4 & -1 \end{pmatrix} \\ A^{2} &=\begin{pmatrix} 3 & -2\\ 4 & -1 \end{pmatrix}-B \\ A^{2} &=\begin{pmatrix} 3 & -2\\ 4 & -1 \end{pmatrix}-\begin{pmatrix} 1 & -4\\ 5 & -2 \end{pmatrix}\\ A^{2} &=\begin{pmatrix} 3-1 & -2+4\\ 4-5 & -1+2 \end{pmatrix} \\ A^{2} &=\begin{pmatrix} 2 & 2 \\ -1 & 1 \end{pmatrix} \\ \left| A^{2} \right| &=(2)(1)-(-1)(2)=4 \\ \end{align} $

Dengan menggunakan sifat determinan matriks $\left| A^{n} \right| = \left | A \right | ^{n}$ maka:

$\begin{align} \left| A^{4} \right| &= \left| A^{2} \right|^{2} \\ &= 4^{2} =16 \end{align} $

$\therefore$ Pilihan yang sesuai adalah $(D)\ 16$

2. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui matriks $A$ berukuran $2 \times 2$ dan $B=\begin{pmatrix} -1 & 3\\
0 & 2
\end{pmatrix}$.
Jika $B-A=\begin{pmatrix} 2 & -1\\ 1 & 0 \end{pmatrix}$ maka $det \left( 2A^{-1} \right)$ adalah...
$\begin{align} (A)\ & -4 \\ (B)\ & -2 \\ (C)\ & -1 \\ (D)\ & 1 \\ (E)\ & 2 \end{align}$
Alternatif Pembahasan:

Berdasarkan informasi pada pengurangan matriks soal di atas, maka berlaku:
$\begin{align}
B-A &=\begin{pmatrix}
2 & -1\\
1 & 0
\end{pmatrix} \\ B-\begin{pmatrix}
2 & -1\\
1 & 0
\end{pmatrix} &= A \\ \begin{pmatrix}
-1 & 3\\
0 & 2
\end{pmatrix}-\begin{pmatrix}
2 & -1\\
1 & 0
\end{pmatrix} &= A \\ \begin{pmatrix}
-1-2 & 3-(-1)\\
0-1 & 2-0
\end{pmatrix} &= A \\ \begin{pmatrix}
-3 & 4 \\
-1 & 2
\end{pmatrix} &= A \\ (-3)(2)-(-1)(4) &= \left| A \right| \\ -2 &= \left| A \right|
\end{align} $

Dengan mengunakan sifat determinan matriks $\left| A^{-1} \right| = \dfrac{1}{\left | A \right |}$ dan $ |k \times A_{m\times m}| = k^m \times |A| $maka:
$\begin{align}
\left| 2 A^{-1} \right| &= 2^{2} \cdot \left| A^{-1} \right| \\ &= 2^{2} \cdot \dfrac{1}{\left | A \right |} \\ &= 4 \cdot \dfrac{1}{-2} \\ &= -2
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(B)\ -2$

3. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui matriks $A$ berordo $2 \times 2$ dan matriks $B=\begin{pmatrix}
-3 & 5\\
-1 & 2
\end{pmatrix}$ dan $C=\begin{pmatrix}
4 & 5\\
2 & 3
\end{pmatrix}$. Jika $A$ memenuhi $B \cdot A=C$ maka determinan dari $\left( 2A^{-1} \right)$ adalah...
$\begin{align}
(A)\ & -2 \\ (B)\ & -1 \\ (C)\ & -\dfrac{1}{2} \\ (D)\ & \dfrac{1}{2} \\ (E)\ & 2
\end{align}$
Alternatif Pembahasan:

Berdasarkan informasi pada perkalian matriks soal di atas dan menggunakan sifat determinan matriks yaitu $ \left|A \cdot B \right| = \left|A \right| \cdot \left| B \right|$ dan $ |k \times A_{m\times m}| = k^m \times |A|$, maka berlaku:
$\begin{align}
\left|B \right| &= \begin{vmatrix}
-3 & 5\\
-1 & 2
\end{vmatrix} \\ &= (-3)(2)-(-1)(5)=-1 \\ \left|C \right| &= \begin{vmatrix}
4 & 5\\
2 & 3
\end{vmatrix} \\ &= (4)(3)-(5)(2)=2 \\ \hline
B \cdot A &=C \\ \left|B \cdot A \right| &= \left| C \right| \\ \left|B \right| \cdot \left| A \right| &= \left| C \right| \\ -1 \cdot \left| A \right| &= 2 \\ \left| A \right| &= -2 \\ \hline
\left| 2 A^{-1} \right| &= 2^{2} \cdot \left| A^{-1} \right| \\ &= 2^{2} \cdot \dfrac{1}{\left | A \right |} \\ &= 4 \cdot \dfrac{1}{-2} \\ &= -2
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(A)\ -2$

4. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui matriks $B=\begin{pmatrix}
2 & -1\\
-3 & 2
\end{pmatrix}$ dan $C=\begin{pmatrix}
-7 & 2\\
0 & 4
\end{pmatrix}$. Jika matriks $A$ berukuran $2 \times 2$ dan memenuhi persamaan $A^{3}+B=C$, maka determinan matriks $3 A^{-1}$ adalah...
$\begin{align}
(A)\ & -3 \\ (B)\ & -2 \\ (C)\ & -1 \\ (D)\ & 1 \\ (E)\ & 2
\end{align}$
Alternatif Pembahasan:

Berdasarkan informasi pada penjumlahan matriks soal di atas dan menggunakan sifat determinan matriks yaitu $ |k \times A_{m\times m}| = k^m \times |A|$, maka berlaku:
$\begin{align}
A^{3}+B &= C \\ A^{3} &= C-B \\ &= \begin{pmatrix}
-7 & 2\\
0 & 4
\end{pmatrix} - \begin{pmatrix}
2 & -1\\
-3 & 2
\end{pmatrix} \\ &= \begin{pmatrix}
-7-2 & 2-(-1)\\
0+3 & 4-2
\end{pmatrix} \\ &= \begin{pmatrix}
-9 & 3 \\
3 & 2
\end{pmatrix} \\ \hline
\left| A^{3} \right| &= (-9)(2)-(3)(3) \\ \left| A \right|^{3} &= -27 \\ \left| A \right| &= -3 \\ \hline
\left| 3 A^{-1} \right| &= 3^{2} \cdot \left| A^{-1} \right| \\ &= 9 \cdot \dfrac{1}{-3} \\ &= -3
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(A)\ -3$

5. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui matriks $A=\begin{pmatrix}
2 & 1\\
3 & 5
\end{pmatrix}$ mempunyai hubungan dengan matriks $B=\begin{pmatrix}
-5 & 3\\
1 & -2
\end{pmatrix}$. Matriks $C=\begin{pmatrix}
3 & 2\\
1 & -5
\end{pmatrix}$ dan matriks $D$ mempunyai hubungan yang serupa dengan $A$ dan $B$. Bentuk $C+D=\cdots$
$\begin{align}
(A)\ & \begin{pmatrix}
8 & 3\\
3 & -8
\end{pmatrix} \\ (B)\ & \begin{pmatrix}
8 & 3\\
3 & -2
\end{pmatrix} \\ (C)\ & \begin{pmatrix}
5 & 1\\
2 & -3
\end{pmatrix} \\ (D)\ & \begin{pmatrix}
3 & -2\\
-1 & -5
\end{pmatrix} \\ (E)\ & \begin{pmatrix}
-3 & 2\\
1 & 5
\end{pmatrix}
\end{align}$
Alternatif Pembahasan:

Hubungan matriks:
$\begin{align}
A & \Leftrightarrow B \\ \begin{pmatrix}
2 & 1\\
3 & 5
\end{pmatrix} & \Leftrightarrow \begin{pmatrix}
-5 & 3\\
1 & -2
\end{pmatrix}
\end{align} $
Jika kita perhatikan hubungan kedua matriks di atas adalah unsur-unsur pada diagonal utama bertukar tempat lalu dikalikan dengan $-1$ dan unsur-unsur pada diagonal samping bertukar tempat.
$\begin{align}
C & \Leftrightarrow D \\ \begin{pmatrix}
3 & 2\\
1 & -5
\end{pmatrix} & \Leftrightarrow \begin{pmatrix}
5 & 1\\
2 & -3
\end{pmatrix}\\ \hline
C + D &=
\begin{pmatrix}
3 & 2\\
1 & -5
\end{pmatrix}+\begin{pmatrix}
5 & 1\\
2 & -3
\end{pmatrix}\\ &=
\begin{pmatrix}
8 & 3\\
3 & -8
\end{pmatrix}
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(A)\ \begin{pmatrix}
8 & 3\\
3 & -8
\end{pmatrix}$

6. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui sistem persamaan:
$\left\{\begin{matrix}
sin\left ( x+y \right )=1+\dfrac{1}{5}cos\ y\\
sin\left ( x-y \right )=-1+cos\ y\\
\end{matrix}\right.$
dengan $0 \lt y \lt \dfrac{\pi}{2}$. maka $cos\ 2x=\cdots$
$\begin{align}
(A)\ & \dfrac{7}{25} \\ (B)\ & \dfrac{7}{24} \\ (C)\ & -\dfrac{7}{25} \\ (D)\ & -\dfrac{7}{24} \\ (E)\ & -\dfrac{17}{25}
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang trigonometri yang mungkin dibutuhkan adalah:

  • $sin\left ( A+B \right )=sin\ A\ cos\ B + sin\ B\ cos\ A$
  • $sin\left ( A-B \right )=sin\ A\ cos\ B - sin\ B\ cos\ A$
  • $cos\ 2A = 1 - 2\ sin^{2}A$
$\begin{align}
sin\left ( x+y \right ) &=1+\dfrac{1}{5}cos\ y\\
sin\left ( x-y \right ) &=-1+cos\ y\\
\hline
sin\ x\ cos\ y + sin\ y\ cos\ x &=1+\dfrac{1}{5}cos\ y\\
sin\ x\ cos\ y - sin\ y\ cos\ x &=-1+cos\ y\ [+] \\
\hline
2\ sin\ x\ cos\ y &= \dfrac{6}{5}\ cos\ y \\ 2\ sin\ x &= \dfrac{6}{5} \\ sin\ x &= \dfrac{3}{5} \\ \hline
cos\ 2x &= 1 - 2\ sin^{2}x \\ &= 1 - 2\ \left( \dfrac{3}{5} \right)^{2} \\ &= 1 - 2\ \cdot \dfrac{9}{25} \\ &= 1 - \dfrac{18}{25} \\ &= \dfrac{7}{25}
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(A)\ \dfrac{7}{25}$

7. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui sistem persamaan:
$\left\{\begin{matrix}
cos\ 2x+cos\ 2y= \dfrac{2}{5} \\
sin\ x=2\ sin\ y\\
\end{matrix}\right.$
Untuk $x \gt 0 $ dan $y \gt \pi$. Nilai $3\ sin\ x-5\ sin\ y=\cdots$
$\begin{align}
(A)\ & -\dfrac{3}{5} \\ (B)\ & -\dfrac{2}{5} \\ (C)\ & 0 \\ (D)\ & \dfrac{2}{5} \\ (E)\ & \dfrac{3}{5}
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang trigonometri yang mungkin dibutuhkan adalah:

  • $cos \left ( 2A \right )=cos^{2} A-sin^{2} A$
  • $sin^{2} A+cos^{2} A=1$
$\begin{align}
cos\ 2x+cos\ 2y &= \dfrac{2}{5} \\
cos^{2} x-sin^{2} x+cos^{2} y-sin^{2} y &= \dfrac{2}{5} \\
1-sin^{2} x-sin^{2} x+1-sin^{2} y-sin^{2} y &= \dfrac{2}{5} \\
2-2sin^{2} x-2sin^{2} y &= \dfrac{2}{5} \\
-2\left( 2\ sin\ y \right)^{2}-2sin^{2} y &= \dfrac{2}{5}-2 \\
-8\ sin^{2} y -2sin^{2} y &= -\dfrac{8}{5} \\
-10\ sin^{2} y &= -\dfrac{8}{5} \\
sin^{2} y &= \dfrac{4}{25} \\
sin\ y &= \pm \sqrt{\dfrac{4}{25}} \\
sin\ y &= \pm \dfrac{2}{5} \\
\hline
\text{karena}\ y \gt \pi\ & \text{maka}\ sin\ y = -\dfrac{2}{5} \\
\hline
3\ sin\ x-5\ sin\ y &= 3 \cdot 2\ sin\ y - 5 \cdot -\dfrac{2}{5} \\ &= 3 \cdot 2\ \cdot -\dfrac{2}{5} + 2 \\ &= \dfrac{-12}{5}+2 \\ &= -\dfrac{2}{5}
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(B)\ -\dfrac{2}{5}$

8. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui sistem persamaan:
$\left\{\begin{matrix}
cos\left ( a-b \right )=\dfrac{4}{5}sin\left ( a+b \right )\\
sin\ 2a+sin\ 2b=\dfrac{9}{10} \\
\end{matrix}\right.$
Nilai dari $sin\left ( a+b \right )=\cdots$
$\begin{align}
(A)\ & \dfrac{5}{7} \\ (B)\ & \dfrac{7}{10} \\ (C)\ & \dfrac{2}{5} \\ (D)\ & \dfrac{3}{4} \\ (E)\ & \dfrac{3}{5}
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang trigonometri yang mungkin dibutuhkan adalah:

  • $sin\ A+ sin\ B=2\ sin\ \left (\dfrac{A+B}{2}\right )\ cos\ \left (\dfrac{A-B}{2}\right ) $
  • $cos\left ( A-B \right )=cos\ A\ cos\ B + sin\ A\ sin\ B$
$\begin{align}
sin\ 2a+sin\ 2b &= \dfrac{9}{10} \\
2\ sin\ \left (\dfrac{2a+2b}{2}\right )\ cos\ \left (\dfrac{2a-2b}{2}\right ) &= \dfrac{9}{10} \\
2\ sin\ \left( a+b \right)\ cos\ \left( a-b \right) &= \dfrac{9}{10} \\
sin\ \left( a+b \right)\ cos\ \left( a-b \right) &= \dfrac{9}{20} \\
sin\ \left( a+b \right)\ \cdot \dfrac{4}{5}sin\left ( a+b \right ) &= \dfrac{9}{20} \\
sin^{2} \left( a+b \right) &= \dfrac{9}{20} \cdot \dfrac{5}{4}\\
sin \left( a+b \right) &= \pm \sqrt{ \dfrac{9}{16}} \\
&= \pm \dfrac{3}{4}
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(D)\ \dfrac{3}{4}$

9. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui:
$\left\{\begin{matrix}
x =cos\ A - 2 sin\ B\\
y =sin\ A + 2 cos\ B
\end{matrix}\right.$
Nilai minimum dari $x^{2}+y^{2}=\cdots$
$\begin{align}
(A)\ & 1 \\ (B)\ & 2 \\ (C)\ & 3 \\ (D)\ & 5 \\ (E)\ & 7
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang trigonometri yang mungkin dibutuhkan adalah:

  • $sin^{2} A+cos^{2} A=1$
  • $sin\left ( A-B \right )=sin\ A\ cos\ B - sin\ B\ cos\ A$
$\begin{align}
x &=cos\ A - 2 sin\ B \\
y &=sin\ A + 2 cos\ B \\ \hline
x^{2} &=cos^{2}\ A + 4 sin^{2} B-4\ cos\ A\ sin\ B \\
y^{2} &=sin^{2}\ A + 4 cos^{2} B+4\ sin\ A\ cos\ B \, \, [+]\\ \hline
x^{2}+y^{2} &=1 + 4 -4\ cos\ A\ sin\ B+4\ sin\ A\ cos\ B \\
&=5 +4 \left( sin\ A\ cos\ B - cos\ A\ sin\ B \right) \\
&=5 +4 sin\left ( A-B \right )
\end{align} $
Nilai minimum $x^{2}+y^{2}$ terjadi saat $sin\left ( A-B \right )=-1$ minimum, sehingga nilai minimum $x^{2}+y^{2}=5 +4 \left ( -1 \right )=5-4=1$

$\therefore$ Pilihan yang sesuai adalah $(A)\ 1$

10. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui:
$\left\{\begin{matrix}
x =sin\ \alpha + \sqrt{3}\ sin\ \beta \\
y =cos\ \alpha + \sqrt{3}\ cos\ \beta
\end{matrix}\right.$
Nilai maximum dari $x^{2}+y^{2}$ adalah $a+b\sqrt{3}$. Nilai $a+b=\cdots$
$\begin{align}
(A)\ & 4 \\ (B)\ & 5 \\ (C)\ & 6 \\ (D)\ & 7 \\ (E)\ & 8
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang trigonometri yang mungkin dibutuhkan adalah:

  • $sin^{2} A+cos^{2} A=1$
  • $cos\left ( A-B \right )=cos\ A\ cos\ B + sin\ A\ sin\ B$
$\begin{align}
x &= sin\ \alpha + \sqrt{3}\ sin\ \beta \\
y &= cos\ \alpha + \sqrt{3}\ cos\ \beta \\ \hline
x^{2} &= sin^{2} \alpha +3\ sin^{2} \beta+2\sqrt{3}\ sin\ \alpha\ sin\ \beta \\
y^{2} &= cos^{2} \alpha +3\ cos^{2} \beta+2\sqrt{3}\ cos\ \alpha\ cos\ \beta \, \, [+]\\
\hline
x^{2}+y^{2} &=1 + 3 +2\sqrt{3}\ sin\ \alpha\ sin\ \beta+2\sqrt{3}\ cos\ \alpha\ cos\ \beta \\
&=4 +2\sqrt{3} \left( sin\ \alpha\ sin\ \beta+cos\ \alpha\ cos\ \beta \right) \\
&=4 +2\sqrt{3}\ cos\left ( \alpha-\beta \right ) \\
\end{align} $
Nilai maximum $x^{2}+y^{2}$ terjadi saat $cos\left ( \alpha-\beta \right )=1$ maximum, sehingga nilai maximum $x^{2}+y^{2} =4 +2\sqrt{3}(1)$.

Nilai $a+b\sqrt{3}=4+2\sqrt{3}$, maka $a+b=4+2=6$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 6$

11. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui sistem persamaan:
$\left\{\begin{matrix}
a =sin\ x + cos\ y\\
b =cos\ x - sin\ y
\end{matrix}\right.$
Nilai miaximum dari $4a^{2}+4b^{2}+4$ adalah...
$\begin{align}
(A)\ & 16 \\ (B)\ & 20 \\ (C)\ & 24 \\ (D)\ & 28 \\ (E)\ & 32
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang trigonometri yang mungkin dibutuhkan adalah:

  • $sin^{2} A+cos^{2} A=1$
  • $sin\left ( A-B \right )=sin\ A\ cos\ B - sin\ B\ cos\ A$
$\begin{align}
a &=sin\ x + cos\ y\\
b &=cos\ x - sin\ y \\ \hline
a^{2} &=sin^{2}\ x + cos^{2} y+2\ sin\ x\ cos\ y \\
b^{2} &=cos^{2}\ x + sin^{2} y-2\ cos\ x\ sin\ y \, \, [+]\\ \hline
a^{2}+b^{2} &=1 + 1+2\ sin\ x\ cos\ y -2\ cos\ x\ sin\ y \\
&=2+2\ \left( sin\ x\ cos\ y - cos\ x\ sin\ y \right) \\
&=2 +2\ sin\left ( x-y \right ) \\
\end{align} $
Nilai maximum $a^{2}+b^{2}$ terjadi saat $sin\left ( x-y \right )=1$ maximum, sehingga nilai maximum $a^{2}+b^{2}=2 +2 \left ( 1 \right )=4$

Nilai maximum $4a^{2}+4b^{2}+4$ terjadi saat $a^{2}+b^{2}$ maximum, sehingga nilai maximum $4a^{2}+4b^{2}+4$ adalah:
$\begin{align}
4a^{2}+4b^{2}+4 &= 4 \left( a^{2}+ b^{2} \right)+4 \\
&= 4 \left( 4 \right)+4 \\
&= 20
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(B)\ 20$

12. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $(x,y)$ dengan $0 \lt x,\ y \lt \dfrac{\pi}{2}$, merupakan penyelesaian dari sistem persamaan:
$\left\{\begin{matrix}
cos\ 2x+cos\ 2y= -\dfrac{2}{5} \\
cos\ y=2\ cos\ x\\
\end{matrix}\right.$
maka $cos\ x+cos\ y=\cdots$
$\begin{align}
(A)\ & -\dfrac{6}{5} \\ (B)\ & -\dfrac{3}{5} \\ (C)\ & 0 \\ (D)\ & \dfrac{3}{5} \\ (E)\ & \dfrac{6}{5}
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang trigonometri yang mungkin dibutuhkan adalah:

  • $cos \left ( 2A \right )=cos^{2} A-sin^{2} A$
  • $cos \left ( 2A \right )=2cos^{2} A-1$
$\begin{align}
cos\ 2x+cos\ 2y &= -\dfrac{2}{5} \\
2cos^{2} x-1+2cos^{2} y-1 &= -\dfrac{2}{5} \\
2cos^{2} x +2cos^{2} y &= -\dfrac{2}{5}+2 \\
2cos^{2} x +2 \left(2 cos\ x \right)^{2} &= \dfrac{8}{5} \\
2cos^{2} x +8 cos^{2}x &= \dfrac{8}{5} \\
10 cos^{2}x &= \dfrac{8}{5} \\
cos^{2}x &= \dfrac{8}{5} \cdot \dfrac{1}{10} \\
cos\ x &= \pm \sqrt{ \dfrac{4}{25}} \\
cos\ x &= \pm \dfrac{2}{5} \\ \hline
\text{karena}\ 0 \lt x,\ y \lt \dfrac{\pi}{2}\ & \text{maka}\ cos\ x = \dfrac{2}{5} \\
\hline
cos\ x + cos\ y &= \dfrac{2}{5} + 2 \cdot \dfrac{2}{5} \\ &= \dfrac{2}{5} + \dfrac{4}{5} = \dfrac{6}{5}
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(E)\ \dfrac{6}{5}$

13. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui:
$\left\{\begin{matrix}
x =sin\ \alpha - sin\ \beta \\
y =cos\ \alpha + cos\ \beta
\end{matrix}\right.$
maka nilai terbesar dari $x^{2}+y^{2}$ adalah...
$\begin{align}
(A)\ & 4 \\ (B)\ & 5 \\ (C)\ & 6 \\ (D)\ & 7 \\ (E)\ & 8
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang trigonometri yang mungkin dibutuhkan adalah:

  • $sin^{2} A+cos^{2} A=1$
  • $cos\left ( A-B \right )=cos\ A\ cos\ B + sin\ A\ sin\ B$
$\begin{align}
x &= sin\ \alpha - sin\ \beta \\
y &= cos\ \alpha + cos\ \beta \\ \hline
x^{2} &= sin^{2} \alpha + sin^{2} \beta-2\ sin\ \alpha\ sin\ \beta \\
y^{2} &= cos^{2} \alpha + cos^{2} \beta-2\ cos\ \alpha\ cos\ \beta \, \, [+] \\
\hline
x^{2}+y^{2} &=1 + 1 +2\ sin\ \alpha\ sin\ \beta+2\ cos\ \alpha\ cos\ \beta \\
&=2 +2\ \left( sin\ \alpha\ sin\ \beta+ cos\ \alpha\ cos\ \beta \right) \\
&=2 +2\ cos\left ( \alpha-\beta \right ) \\
\end{align} $
Nilai terbesar $x^{2}+y^{2}$ terjadi saat $cos\left ( \alpha-\beta \right )=1$ terbesar, sehingga nilai terbesar $x^{2}+y^{2} =2 +2(1)=4$.

$\therefore$ Pilihan yang sesuai adalah $(D)\ 4$

14. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui $0 \lt x,y \lt \pi $, $\dfrac{\pi}{2} \lt x-y \lt \pi $, memenuhi:
$\left\{\begin{matrix}
2sin\ x+cos\ y =2\\
2cos\ x-sin\ y =\sqrt{3}\\
\end{matrix}\right.$
Nilai $cos \left( x-y \right)$ adalah...
$\begin{align}
(A)\ & \dfrac{1}{2}\sqrt{3} \\ (B)\ & \dfrac{1}{2} \\ (C)\ & 0 \\ (D)\ & -\dfrac{1}{2} \\
(E)\ & -\dfrac{1}{2}\sqrt{3}
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang trigonometri yang mungkin dibutuhkan adalah:

  • $sin^{2} A+cos^{2} A=1$
  • $sin\left ( A-B \right )=sin\ A\ cos\ B - sin\ B\ cos\ A$
$\begin{align}
2sin\ x+cos\ y &=2\\
2cos\ x-sin\ y &=\sqrt{3}\\
\hline
4sin^{2}\ x +cos^{2} y+4\ sin\ x\ cos\ y &=4\\
4cos^{2}\ x +sin^{2} y-4\ cos\ x\ sin\ y &=3\, \, [+]\\ \hline
4+1+4\ sin\ x\ cos\ y\ - 4\ cos\ x\ sin\ y &= 7 \\
4\left( sin\ x\ cos\ y\ - cos\ x\ sin\ y \right) &= 7-5 \\
4\ sin\ \left( x-y \right) &= 2 \\
sin\ \left( x-y \right) &= \dfrac{2}{4}=\dfrac{1}{2} \\
\end{align} $

$\begin{align}
sin^{2}A +cos^{2}A&=1\\
sin^{2}\left( x-y \right) +cos^{2}\left( x-y \right)&=1\\
\left( \dfrac{1}{2} \right)^{2} +cos^{2}\left( x-y \right)&=1\\
cos^{2}\left( x-y \right)&=1- \dfrac{1}{4} \\
cos \left( x-y \right) &=\pm \sqrt{\dfrac{3}{4}} \\
&=\pm \dfrac{1}{2}\sqrt{3}
\end{align} $
Karena $\dfrac{\pi}{2} \lt x-y \lt \pi $ maka $cos \left( x-y \right) = -\dfrac{1}{2}\sqrt{3}$

$\therefore$ Pilihan yang sesuai adalah $(E)\ -\dfrac{1}{2}\sqrt{3}$

15. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui $f(x)$ merupakan fungsi genap, Jika $\int \limits_{-4}^{4} f(x)\ dx = 16$, $\int \limits_{3}^{4} f(2x-2)\ dx = 11$ dan $\int \limits_{-5}^{-1} f(1-x)\ dx = 6$, maka $\int \limits_{0}^{2} f(x)\ dx = \cdots$
$ \begin{align}
(A)\ & 22 \\ (B)\ & 23 \\ (C)\ & 24 \\ (D)\ & 25 \\ (E)\ & 26
\end{align} $
Alternatif Pembahasan:

Catatan calon guru yang mungkin bermanfaat tentang fungsi genap;

  • Berlaku $f(-x)=f(x)$
  • Bentuk grafik fungsi, simetris dengan pusat sumbu $y$
  • Jika dipakai pada integral, ciri fungsi genap ini adalah $\int \limits_{-a}^{a} f(x)dx =2\int \limits_{0}^{a} f(x)dx $
$\begin{align}
\int \limits_{-4}^{4} f(x)\ dx = 16\ & \Rightarrow\ 2 \int \limits_{0}^{4} f(x)\ dx = 16 \\ \int \limits_{0}^{4} f(x)\ dx = 8\ & \Rightarrow\ \left | F(x) \right | _{0}^{4} = 8 \\ F(4)-F(0) &= 8 \\ \hline
\int \limits_{3}^{4} f(2x-2)\ dx = 11\ & \Rightarrow\ \left( \dfrac{1}{2} \right) \cdot \left | F(2x-2) \right | _{3}^{4} = 11 \\ F(2(4)-2)-F(2(3)-2) &= 22 \\ F(6)-F(4) & = 22 \\ \hline
\int \limits_{-5}^{-1} f(1-x)\ dx = 6\ & \Rightarrow\ \left( \dfrac{1}{-1} \right) \cdot \left | F(1-x) \right | _{-5}^{-1} = 6 \\ F(1-(-1))-F(1-(-5)) &= -6 \\ F(2)-F(6) & = -6
\end{align}$
Dari persamaan yang kita peroleh di atas dapat kita simpulkan:
$\begin{align}
F(6)-F(4) & = 22 \\ F(2)-F(6) & = -6\ \ (+) \\ \hline
-F(4)+F(2) &= 16 \\ F(4)-F(0) &= 8\ \ (+) \\ \hline
F(2)-F(0) &= 24
\end{align}$

$\begin{align}
\int \limits_{0}^{2} f(x)\ dx &= \left | F(x) \right | _{0}^{2} \\ &= F(2)-F(0) \\ &= 24
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C) \ 24$

16. Soal UTBK SBMPTN 2019 TKA SAINTEK

Fungsi $f(x)$ memenuhi $f(x)=f(-x)$. Jika nilai $\int \limits_{-3}^{3} f(x)\ dx = 6$, $\int \limits_{2}^{3} f(x)\ dx = 1$, maka nilai $\int \limits_{0}^{2} f(x)\ dx = \cdots$
$ \begin{align}
(A)\ & 1 \\ (B)\ & 2 \\ (C)\ & 3 \\ (D)\ & 4 \\ (E)\ & 6
\end{align} $
Alternatif Pembahasan:

Catatan calon guru yang mungkin bermanfaat tentang fungsi genap;

  • Berlaku $f(-x)=f(x)$
  • Bentuk grafik fungsi, simetris dengan pusat sumbu $y$
  • Jika dipakai pada integral, ciri fungsi genap ini adalah $\int \limits_{-a}^{a} f(x)dx =2\int \limits_{0}^{a} f(x)dx $

$\begin{align}
\int \limits_{-3}^{3} f(x)\ dx = 6\ &\Rightarrow \ 2 \int \limits_{0}^{3} f(x)\ dx = 6 \\ \int \limits_{0}^{3} f(x)\ dx = 3\ &\Rightarrow \ \left | F(x) \right | _{0}^{3} = 3 \\ F(3)-F(0) = 3 \ &\Rightarrow\ \int \limits_{0}^{3} f(x)\ dx = 3 \\ \hline
\int \limits_{2}^{3} f(x)\ dx &= 1
\end{align}$

Dari persamaan yang kita peroleh di atas dan sifat integral tentu, dapat kita simpulkan:
$\begin{align}
\int \limits_{0}^{2} f(x)\ dx + \int \limits_{2}^{3} f(x)\ dx &= \int \limits_{0}^{3} f(x)\ dx \\ \int \limits_{0}^{2} f(x)\ dx + 1 &= 3 \\ \int \limits_{0}^{2} f(x)\ dx &= 3-1 =2
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(B) \ 2$

17. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diberikan fungsi dengan sifat $f(-x)=3f(x)$ untuk setiap $x \geq 0$. Jika $\int \limits_{-4}^{4} f(x)\ dx = 12$ maka nilai $\int \limits_{0}^{4} f(x)\ dx = \cdots$
$ \begin{align}
(A)\ & 1 \\ (B)\ & 2 \\ (C)\ & 3 \\ (D)\ & 4 \\ (E)\ & 6
\end{align} $
Alternatif Pembahasan:

Catatan calon guru yang mungkin bermanfaat tentang integral tentu;

  • $\int \limits_{a}^{b} f(x)\ dx = -\int \limits_{-a}^{-b} f(-x)\ dx$
  • $\int \limits_{a}^{b} f(x)\ dx + \int \limits_{b}^{c} f(x)\ dx = \int \limits_{a}^{c} f(x)\ dx$
Diketahui $f(-x)=3f(x)$ dan $\int \limits_{-4}^{4} f(x)\ dx = 12$, sehingga berlaku:
$\begin{align}
\int \limits_{-4}^{4} f(x)\ dx &= \int \limits_{-4}^{0} f(x) + \int \limits_{0}^{4} f(x) dx \\ 12 &= - \int \limits_{ 4}^{0} f(-x) dx + \int \limits_{0}^{4} f(x) dx \\ 12 &= - \int \limits_{ 4}^{0} 3f(x) dx + \int \limits_{0}^{4} f(x) dx \\ 12 &= - \left(- \int \limits_{0}^{4} 3f(x) dx \right) + \int \limits_{0}^{4} f(x) dx \\ 12 &= \int \limits_{0}^{4} 3f(x) dx + \int \limits_{0}^{4} f(x) dx \\ 12 &= 3 \int \limits_{0}^{4} f(x) dx + \int \limits_{0}^{4} f(x) dx \\ 12 &= 4 \int \limits_{0}^{4} f(x) dx \\ \dfrac{12}{4} &= \int \limits_{0}^{4} f(x) dx \\ 3 &= \int \limits_{0}^{4} f(x) dx
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C) \ 3$

18. Soal UTBK SBMPTN 2019 TKA SAINTEK

Misalkan fungsi $f$ memenuhi $f(x+5)=f(x)$ untuk setiap $x \in R$. Jika $\int \limits_{1}^{5} f(x)\ dx = 3$ dan $\int \limits_{-5}^{-4} f(x)\ dx =-2$ maka nilai $\int \limits_{5}^{15} f(x)\ dx = \cdots$
$ \begin{align}
(A)\ & 10 \\ (B)\ & 6 \\ (C)\ & 5 \\ (D)\ & 2 \\ (E)\ & 1
\end{align} $
Alternatif Pembahasan:

Catatan calon guru yang mungkin bermanfaat tentang sifat integral tentu;

  • $\int \limits_{a}^{b} f(x)\ dx + \int \limits_{b}^{c} f(x)\ dx = \int \limits_{a}^{c} f(x)\ dx$
  • Jika $f$ periodik dengan periode $p$, maka $\int \limits_{a+p}^{b+p} f(x)dx =\int \limits_{a }^{b } f(x)dx$
    $'$Suatu fungsi $f$ adalah periodik jika terdapat suatu bilangan $p$ sedemikian sehingga $f(x+p)=f(x)$$'$
Karena $f(x+5)=f(x)$ maka $f(x)$ periodik dengan periode $5$, sehingga berlaku:
  • $\int \limits_{1}^{5} f(x)\ dx = \int \limits_{6}^{10} f(x)\ dx = \int \limits_{11}^{15} f(x)\ dx = 3$
  • $\int \limits_{-5}^{-4} f(x)\ dx=\int \limits_{0}^{1} f(x)\ dx = \int \limits_{5}^{6} f(x)\ dx =\int \limits_{10}^{11} f(x)\ dx =-2$;
Dengan menggunakan sifat integral di atas, maka berlaku
$\begin{align}
\int \limits_{5}^{15} f(x) dx &= \int \limits_{5}^{6} f(x) dx+\int \limits_{6}^{10} f(x) dx+\int \limits_{10}^{11} f(x) dx+\int \limits_{11}^{15} f(x) dx \\ &= -2+3+(-2)+3 \\ &= 2
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D) \ 2$

>

19. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui $f(-x)=f(x)-3$ dan $x \gt 0$. Jika $\int \limits_{1}^{5} f(x)\ dx = 2$ dan $\int \limits_{3}^{5} f(x)\ dx = -3$ maka $\int \limits_{-3}^{-1} f(x)\ dx = \cdots$
$ \begin{align}
(A)\ & -7 \\ (B)\ & -1 \\ (C)\ & 0 \\ (D)\ & 1 \\ (E)\ & 7
\end{align} $
Alternatif Pembahasan:

Catatan calon guru yang mungkin bermanfaat tentang integral tentu;

  • $\int \limits_{a}^{b} f(x)\ dx = -\int \limits_{b}^{a} f(x)\ dx$
  • $\int \limits_{a}^{b}f(-x)dx=-\int \limits_{-a}^{-b}f(x)dx$
  • $\int \limits_{a}^{b} f(x)\ dx + \int \limits_{b}^{c} f(x)\ dx = \int \limits_{a}^{c} f(x)\ dx$
Diketahui $f(-x)=f(x)-3$ maka $f(x)=f(-x)+3$, sehingga berlaku:
$\begin{align}
\int \limits_{1}^{5} f(x)\ dx &= \int \limits_{1}^{5} \left( f(-x)+3 \right) dx \\ 2 &= \int \limits_{1}^{5} f(-x) dx + \int \limits_{1}^{5} 3\ dx \\ 2 - \int \limits_{1}^{5} 3\ dx &= \int \limits_{1}^{5} f(-x) dx \\ 2 - \left | 3x \right | _{1}^{5} &= - \int \limits_{-1}^{-5} f(x)\ dx \\ 2 - (15 -3) &= - \int \limits_{-1}^{-5} f(x)\ dx \\ -10 &= \int \limits_{-5}^{-1} f(x)\ dx \\ \hline
\int \limits_{3}^{5} f(x)\ dx &= \int \limits_{3}^{5} \left( f(-x)+3 \right) dx \\ -3 &= \int \limits_{3}^{5} f(-x) dx + \int \limits_{3}^{5} 3\ dx \\ -3 - \int \limits_{3}^{5} 3\ dx &= \int \limits_{3}^{5} f(-x) dx \\ -3 - \left | 3x \right | _{3}^{5} &= - \int \limits_{-3}^{-5} f(x)\ dx \\ -3 - (15 -9) &= - \int \limits_{-3}^{-5} f(x)\ dx \\ -9 &= - \int \limits_{-3}^{-5} f(x)\ dx \\ 9 &= \int \limits_{-3}^{-5} f(x)\ dx \\ \end{align}$

Dari persamaan yang kita peroleh di atas dan sifat integral tentu, dapat kita simpulkan:
$\begin{align}
\int \limits_{-3}^{-1} f(x)\ dx &= \int \limits_{-3}^{-5} f(x)\ dx + \int \limits_{-5}^{-1} f(x)\ dx \\ &= 9 - 10 \\ &= -1
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(B) \ -1$

20. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui fungsi $f(x)$ adalah fungsi genap, Jika nilai $\int \limits_{-5}^{5} \left( f(x)+3x^{2} \right) dx = 260$ dan $\int \limits_{2}^{4} f(x) dx = 2$ maka nilai $\int \limits_{0}^{2} f(x)\ dx+\int \limits_{4}^{5} f(x)\ dx = \cdots$
$\begin{align}
(A)\ & -7 \\ (B)\ & -3 \\ (C)\ & 0 \\ (D)\ & 3 \\ (E)\ & 7
\end{align}$
Alternatif Pembahasan:

Catatan calon guru yang mungkin bermanfaat tentang sifat integral tentu;

  • Berlaku $f(-x)=f(x)$
  • Bentuk grafik fungsi, simetris dengan pusat sumbu $y$
  • Jika dipakai pada integral, ciri fungsi genap ini adalah $\int \limits_{-a}^{a} f(x)dx =2\int \limits_{0}^{a} f(x)dx $
Pada soal disampaikan bahwa $f(x)$ adalah fungsi genap dan $3x^{2}$ adalah fungsi genap karena $f(-x)=f(x)$ sehingga berlaku:
$\begin{align}
\int \limits_{-5}^{5} \left( f(x)+3x^{2} \right) dx &= 260 \\ 2 \cdot \int \limits_{0}^{5} \left( f(x)+3x^{2} \right) dx &= 260 \\ \int \limits_{0}^{5} \left( f(x)+3x^{2} \right) dx &= 130 \\ \int \limits_{0}^{5} f(x)\ dx + \int \limits_{0}^{5} 3x^{2}\ dx &= 130 \\ \int \limits_{0}^{5} f(x)\ dx + \left | x^{3} \right | _{0}^{5} &= 130 \\ \int \limits_{0}^{5} f(x)\ dx +125 &= 130 \\ \int \limits_{0}^{5} f(x) &= 5
\end{align}$

$\begin{align}
\int \limits_{0}^{5} f(x)\ dx &= \int \limits_{0}^{2} f(x)\ dx +\int \limits_{2}^{4} f(x)\ dx +\int \limits_{4}^{5} f(x)\ dx \\ 5 &= \int \limits_{0}^{2} f(x)\ dx + 2 +\int \limits_{4}^{5} f(x)\ dx \\ 5-2 &= \int \limits_{0}^{2} f(x)\ dx +\int \limits_{4}^{5} f(x)\ dx \\ 3 &= \int \limits_{0}^{2} f(x)\ dx +\int \limits_{4}^{5} f(x)\ dx
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D) \ 3$

21. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui sistem persamaan
$\left\{\begin{matrix}
y=-mx+c\\
y= \left ( x+4 \right )^{2}
\end{matrix}\right.$
Jika sistem persamaan tersebut memiliki tepat satu penyelesaian, maka jumlah semua nilai $m$ adalah...
$\begin{align}
(A)\ & -32 \\ (B)\ & -20 \\ (C)\ & -16 \\ (D)\ & -8 \\ (E)\ & -4
\end{align}$
Alternatif Pembahasan:

Karena sistem persamaan di atas memiliki tepat satu penyelesaian maka diskriminan $(D=b^{2}-4ac)$ dari persekutuan persamaan kuadrat adalah nol.
$\begin{align}
y & = y \\ \left ( x+4 \right )^{2} & = -mx+c \\ x^{2}+8x+16 +mx -c & = 0 \\ x^{2}+(8+m)x+16-c & = 0 \\ b^{2}-4ac & = 0 \\ (8+m)^{2} -4(1)(16-c) & = 0 \\ m^{2}+16m+64-64+4c & = 0 \\ m^{2}+16m+4c & = 0 \\ m_{1} + m_{2} & = -\dfrac{b}{a}\\ &=-\dfrac{16}{1}=-16
\end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(C)\ -16$

22. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $(a,b)$ solusi dari sistem persamaan kuadrat
$\left\{\begin{matrix}
x^{2}+y^{2}-2x=19\\
x+y^{2}=1
\end{matrix}\right.$
maka nilai $a+4b$ yang terbesar adalah...
$\begin{align}
(A)\ & 4 \\ (B)\ & 5 \\ (C)\ & 10 \\ (D)\ & 11 \\ (E)\ & 14
\end{align}$
Alternatif Pembahasan:

Dari sistem persamaan dapat kita peroleh nilai $a$ dan $b$, yaitu:
$\begin{align}
x^{2}+y^{2}-2x &=19 \\ x^{2}+(1-x)-2x &=19 \\ x^{2}-3x+-18 &= 0 \\ (x-6)(x+3) & = 0 \\ x=6\ \text{atau}\ x=-3 & \\ \hline
y^{2}=1-x & \\ \hline
x=6\ \Rightarrow\ & y^{2}=-5\ (imajiner) \\ x=-3\ \Rightarrow\ & y^{2}=4 \\ & y=2\ \text{atau}\ y=-2 \\ \hline
(-3,2)\ \Rightarrow\ & a+4b=5 \\ (-3,-2)\ \Rightarrow\ & a+4b=-11
\end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(B)\ 5$

23. Soal UTBK SBMPTN 2019 TKA SAINTEK

Himpunan $(x,y)$ adalah penyelesaian dari sistem persamaan
$\left\{\begin{matrix}
x^{2}+y^{2}=6\\
\dfrac{x^{2}}{2}+\dfrac{y^{2}}{8}=3
\end{matrix}\right.$
Jumlah dari semua nilai $x$ yang memenuhi adalah...
$\begin{align}
(A)\ & -2 \\ (B)\ & -1 \\ (C)\ & 0 \\ (D)\ & 1 \\ (E)\ & 2
\end{align}$
Alternatif Pembahasan:

Dari sistem persamaan dapat kita peroleh nilai $a$ dan $b$, yaitu:
$\begin{align}
\dfrac{x^{2}}{2}+\dfrac{y^{2}}{8} &=3 \\ 8x^{2} + 2y^{2} &=48 \\ 8x^{2} + 2 \left( 6-x^{2} \right) &=48 \\ 8x^{2} + 12-2x^{2}-48&=0 \\ 6x^{2}- 36 &=0 \\ x^{2}- 6 &=0 \\ (x-\sqrt{6})(x+\sqrt{6}) &=0 \\ x=\sqrt{6}\ \text{atau}\ x=-\sqrt{6} & \\ \hline
y^{2}=6-x^{2} & \\ \hline
x=\sqrt{6}\ \Rightarrow\ & y^{2}=0 \\ x=-\sqrt{6}\ \Rightarrow\ & y^{2}=0 \\ \end{align}$
Jumlah semua nilai $x$ dan $y$ yang memenuhi adalah $0$

$ \therefore $ Pilihan yang sesuai adalah $(C)\ 0$

24. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui sistem persamaan
$\left\{\begin{matrix}
x^{2}+y^{2}+2y=8\\
x^{2}-y^{2}-2y+4x+8=0
\end{matrix}\right.$
Mempunyai solusi $(x,y)$ dengan $x$ dan $y$ bilangan real. Jumlah semua ordinatnya adalah...
$\begin{align}
(A)\ & 4 \\ (B)\ & 2 \\ (C)\ & 0 \\ (D)\ & -2 \\ (E)\ & -4
\end{align}$
Alternatif Pembahasan:

Dari sistem persamaan dapat kita peroleh nilai $a$ dan $b$, yaitu:
$\begin{align}
x^{2}+y^{2}+2y-8 &= 0 \\
x^{2}-y^{2}-2y+4x+8 & = 0 \ \ (+) \\
\hline
2x^{2}+4x &=0 \\ x^{2}+2x &=0 \\ x(x+2) &=0 \\ x=0\ \text{atau}\ x=-2 & \\ \hline
x=0\ & \Rightarrow\ -y^{2}-2y+8=0 \\ & \Rightarrow\ y^{2}+2y-8=0 \\ & \Rightarrow\ y_{1}+y_{2} =-2 \\ \hline
x=-2\ & \Rightarrow\ -y^{2}-2y+8=4 \\ & \Rightarrow\ y^{2}+2y-4=0 \\ & \Rightarrow\ y_{1}+y_{2} =-2
\end{align}$
Jumlah semua ordinatnya adalah $(-2)+(-2)=-4$

$ \therefore $ Pilihan yang sesuai adalah $(E)\ -4$

25. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui
$\left\{\begin{matrix}
x^{2}+y^{2}-2y=13\\
x^{2}-y=1
\end{matrix}\right.$
maka nilai $x^{2}+2y$ adalah...
$\begin{align}
(A)\ & 10 \\ (B)\ & 11 \\ (C)\ & 12 \\ (D)\ & 13 \\ (E)\ & 14
\end{align}$
Alternatif Pembahasan:

Dari sistem persamaan dapat kita peroleh nilai $a$ dan $b$, yaitu:
$\begin{align}
x^{2}+y^{2}-2y &=13 \\ y+1+y^{2}-2y &=13 \\ y^{2}-y -12&= 0 \\ (y-4)(y+3) & = 0 \\ y=4\ \text{atau}\ y=-3 & \\ \hline
x^{2}=y+1 & \\ \hline
y=4\ & \Rightarrow\ x^{2}=5 \\ & \rightarrow\ x^{2}+2y=13 \\ y=-3\ & \Rightarrow\ x^{2}=-2\ (imajiner) \\ & \rightarrow\ x^{2}+2y=-8
\end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(D)\ 13$

26. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika penyelesaian sistem persamaan
$\left\{\begin{matrix}
\left ( a+2 \right )x+y=0\\
x+\left ( a+2 \right )y=0
\end{matrix}\right.$
tidak hanya $(x,y)=(0,0)$ saja, maka nilai terbesar $a^{2}+3a+9=\cdots$
$\begin{align}
(A)\ & 7 \\ (B)\ & 9 \\ (C)\ & 11 \\ (D)\ & 13 \\ (E)\ & 27
\end{align}$
Alternatif Pembahasan:

Dari sistem persamaan yang disampaiakn di atas yaitu penyelesaian sistem persamaan di atas lebih dari satu maka perbandingan koefisien variabel nilainya adalah sama.

sehingga dapat kita tuliskan:
$\begin{align}
\dfrac{a+2}{1} & = \dfrac{1}{a+2} \\ (a+2)(a+2) & = (1)(1) \\ a^{2}+4a +4 & = 1 \\ a^{2}+4a +3 & = 0 \\ (a+1)(a+3) & = 0 \\ a=-1\ & \text{atau}\ a=-3 \\ \hline
a=-1\ \rightarrow\ a^{2}+3a+9 & =1-3+9=7 \\ a=-3\ \rightarrow\ a^{2}+3a+9 & =9-9+9=9 \\ \end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(B)\ 9$

27. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jumlah semua ordinat penyelesaian sistem persamaan
$\left\{\begin{matrix}
x^{2}-y^{2}=2y+8\\
x^{2}+y^{2}-4x+2y-8=0
\end{matrix}\right.$
adalah...
$\begin{align}
(A)\ & -2 \\ (B)\ & 0 \\ (C)\ & 1 \\ (D)\ & 2 \\ (E)\ & 4
\end{align}$
Alternatif Pembahasan:

Dari sistem persamaan dapat kita peroleh:
$\begin{align}
x^{2}-y^{2}-2y-8 &= 0 \\
x^{2}+y^{2}-4x+2y-8 & = 0 \ \ (+) \\
\hline
2x^{2}-4x-16 &=0 \\ x^{2}-2x-8 &=0 \\ (x-4)(x+2) &=0 \\ x=4\ \text{atau}\ x=-2 & \\ \hline
x=4\ & \Rightarrow\ 4^{2}-y^{2}=2y+8 \\ & \Rightarrow\ y^{2}+2y-8=0 \\ & \Rightarrow\ y_{1}+y_{2} =-2 \\ \hline
x=-2\ & \Rightarrow\ -y^{2}-2y+8=4 \\ & \Rightarrow\ y^{2}+2y-4=0 \\ & \Rightarrow\ y_{1}+y_{2} =-2
\end{align}$
Jumlah semua ordinatnya adalah $-2$

$ \therefore $ Pilihan yang sesuai adalah $(A)\ -2$

28. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $(a,b)$ solusi dari sistem persamaan
$\left\{\begin{matrix}
x^{2}+y^{2}=5 \\
x-y^{2}=1
\end{matrix}\right.$
maka nilai $a-3b$ yang terkecil adalah...
$\begin{align}
(A)\ & 5 \\ (B)\ & 1 \\ (C)\ & 0 \\ (D)\ & -1 \\ (E)\ & -5
\end{align}$
Alternatif Pembahasan:

Dari sistem persamaan dapat kita peroleh nilai $a$ dan $b$, yaitu:
$\begin{align}
x^{2}+y^{2} &= 5 \\ x^{2}+(x-1) &= 5 \\ x^{2}+x-6 &= 0 \\ (x+3)(x-2) & = 0 \\ x=-3\ \text{atau}\ x=2 & \\ \hline
y^{2}=x-1 & \\ \hline
x=-3\ \Rightarrow\ & y^{2}=-4\ (imajiner) \\ x=2\ \Rightarrow\ & y^{2}=1 \\ & y=1\ \text{atau}\ y=-1 \\ \hline
(2,1)\ \Rightarrow\ & a-3b=-1 \\ (2,-1)\ \Rightarrow\ & a-3b=5
\end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(D)\ -1$

29. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui sistem persamaan
$\left\{\begin{matrix}
x^{2}+y=16\\
x^{2}+y^{2}-11y=-19
\end{matrix}\right.$
Mempunyai solusi $(x,y)$ dengan $x$ dan $y$ bilangan real. Jumlah semua ordinatnya adalah...
$\begin{align}
(A)\ & 12 \\ (B)\ & 10 \\ (C)\ & 35 \\ (D)\ & -10 \\ (E)\ & -12
\end{align}$
Alternatif Pembahasan:

Dari sistem persamaan dapat kita peroleh:
$\begin{align}
x^{2}+y^{2}-11y &=-19 \\
16-y+y^{2}-11y &=-19 \\ y^{2}-12y+35 &=0 \\ \hline
y_{1}+y_{2} &= -\dfrac{b}{a} \\ &= -\dfrac{-12}{1}=12
\end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(A)\ 12$

30. Soal UTBK SBMPTN 2019 TKA SAINTEK

Penyelesaian dari pertidaksamaan $\left| 2x+1 \right| \lt 2 + \left| x+1 \right|$ adalah berbentuk interval $(a,b)$. Nilai $a+b+2=\cdots$
$\begin{align}
(A)\ & -3 \\ (B)\ & -2 \\ (C)\ & 0 \\ (D)\ & 2 \\ (E)\ & 3
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba mulai dari mencari batasan (pembuat nol) untuk setiap nilai mutlak. Pembuat nol ini untuk melihat batasan nilai $x$ karena nilai mutlak nilainya selalu lebih dari atau sama dengan nol.
$|x|=\left\{\begin{matrix}
x,\ \text{untuk}\ x\geq 0 \\
x,\ \text{untuk}\ x \lt 0
\end{matrix}\right.$

Batasan nilai $x$ yang kita peroleh dari $\left| x+1 \right|$ adalah $x=-1$ dan dari $\left| 2x+1 \right|$ adalah $x=-\dfrac{1}{2}$.

  • Untuk $x \lt -1$, maka
    $\begin{align}
    \left| 2x+1 \right| - \left| x+1 \right| & \lt 2 \\ -\left( 2x+1 \right)-\left(- (x+1) \right) & \lt 2 \\
    - 2x-1+x+1 & \lt 2 \\
    - x & \lt 2 \\
    x & \gt -2
    \end{align}$
    Irisan $x \lt -1$ dan $x \gt -2$ adalah $-2 \lt x \lt -1$
    Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
  • Untuk $-1 \leq x \lt -\dfrac{1}{2}$, maka
    $\begin{align}
    \left| 2x+1 \right| - \left| x+1 \right| & \lt 2 \\ -\left( 2x+1 \right)-\left( x+1 \right) & \lt 2 \\
    - 2x-1-x-1 & \lt 2 \\
    - 3x-2 & \lt 2 \\
    - 3x & \lt 4 \\
    x & \gt -\dfrac{4}{3}
    \end{align}$
    Irisan $-1 \leq x \lt -\dfrac{1}{2}$ dan $x \gt -\dfrac{4}{3}$ adalah $-1 \leq x \lt -\dfrac{1}{2}$
    Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
  • Untuk $x \leq -\dfrac{1}{2}$, maka
    $\begin{align}
    \left| 2x+1 \right| - \left| x+1 \right| & \lt 2 \\ \left( 2x+1 \right)-\left( x+1 \right) & \lt 2 \\
    2x+1-x-1 & \lt 2 \\
    x & \lt 2
    \end{align}$
    Irisan $x \leq -\dfrac{1}{2}$ dan $x \lt -2$ adalah $-\dfrac{1}{2} \leq x \lt 2$
    Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
Himpunan penyelesaian pada soal adalah gabungan dari ketiga pertidaksamaan dari apa yang kita peroleh di atas yaitu:
Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
Himpunan penyelesaian adalah $-2 \lt x \lt 2$ jika ditulis dalam bentuk interval yaitu $(-2,2)$ sehingga nilai $a+b+2=-2+2+2=2$

$ \therefore $ Pilihan yang sesuai adalah $(D)\ 2$

31. Soal UTBK SBMPTN 2019 TKA SAINTEK

Himpunan penyelesaian dari $\left| x-1 \right| \lt 3 - \left| x \right|$ adalah interval $(a,b)$. Nilai $2a+b$ adalah...
$\begin{align}
(A)\ & -3 \\ (B)\ & -2 \\ (C)\ & 0 \\ (D)\ & 2 \\ (E)\ & 3
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba mulai dari mencari batasan (pembuat nol) untuk setiap nilai mutlak. Pembuat nol ini untuk melihat batasan nilai $x$ karena nilai mutlak nilainya selalu lebih dari atau sama dengan nol.
$|x|=\left\{\begin{matrix}
x,\ \text{untuk}\ x\geq 0 \\
x,\ \text{untuk}\ x \lt 0
\end{matrix}\right.$

Batasan nilai $x$ pembuat nol yang kita peroleh dari $\left| x-1 \right|$ adalah $x=1$ dan dari $\left| x \right|$ adalah $x=0$.

  • Untuk $x \lt 0$, maka
    $\begin{align}
    \left| x-1 \right|+ \left| x \right| & \lt 3 \\ -\left( x-1 \right)+\left(- x \right) & \lt 3 \\
    -x+1 -x & \lt 3 \\
    - 2x & \lt 2 \\
    x & \gt -1
    \end{align}$
    Irisan $x \lt 0$ dan $x \gt -1$ adalah $-1 \lt x \lt 0$
    Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
  • Untuk $0 \leq x \lt 1$, maka
    $\begin{align}
    \left| x-1 \right|+ \left| x \right| & \lt 3 \\ -\left( x-1 \right)+ x & \lt 3 \\ - x+1 + x & \lt 3 \\ 1 & \lt 3 \\ \text{selalu benar untuk}\ & x \in R
    \end{align}$
    Irisan $0 \leq x \lt 1$ dan $x \in R$ adalah $0 \leq x \lt 1$
    Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
  • Untuk $x \geq 1$, maka
    $\begin{align}
    \left| x-1 \right|+ \left| x \right| & \lt 3 \\ x-1 + x & \lt 3 \\ 2x-1 & \lt 3 \\
    2x & \lt 4 \\ x & \lt 2
    \end{align}$
    Irisan $x \geq 1$ dan $x \lt 2$ adalah $1 \leq x \lt 2$
    Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
Himpunan penyelesaian pada soal adalah gabungan dari ketiga pertidaksamaan dari apa yang kita peroleh di atas yaitu:
Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
Himpunan penyelesaian adalah $-1 \lt x \lt 2$ jika ditulis dalam bentuk interval yaitu $(-1,2)$ sehingga nilai $2a+b=-2+2=0$

$ \therefore $ Pilihan yang sesuai adalah $(C)\ 0$

32. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $(a,b)$ adalah interval dari penyelesaian pertidaksamaan $\left| x+2 \right|+ \left| x+4 \right| \lt 4$ maka nilai $a-b=\cdots$
$\begin{align}
(A)\ & -4 \\ (B)\ & -2 \\ (C)\ & 0 \\ (D)\ & 2 \\ (E)\ & 4
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba mulai dari mencari batasan (pembuat nol) untuk setiap nilai mutlak. Pembuat nol ini untuk melihat batasan nilai $x$ karena nilai mutlak nilainya selalu lebih dari atau sama dengan nol.
$|x|=\left\{\begin{matrix}
x,\ \text{untuk}\ x\geq 0 \\
x,\ \text{untuk}\ x \lt 0
\end{matrix}\right.$

Batasan nilai $x$ yang kita peroleh dari $\left| x+2 \right|$ adalah $x=-2$ dan dari $\left| x+4 \right|$ adalah $x=-4$.

  • Untuk $x \lt -4$, maka
    $\begin{align}
    \left| x+2 \right|+ \left| x+4 \right| & \lt 4 \\ -\left( x+2 \right)+\left(- (x+4) \right) & \lt 4 \\
    -x-2-x-4 & \lt 4 \\
    -2x & \lt 4+6 \\
    x & \gt -5
    \end{align}$
    Irisan $x \lt -4$ dan $x \gt -5$ adalah $-5 \lt x \lt -4$
    Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
  • Untuk $-4 \leq x \lt -2$, maka
    $\begin{align}
    \left| x+2 \right|+ \left| x+4 \right| & \lt 4 \\ -\left( x+2 \right)+ \left( x+4 \right) & \lt 4 \\ - x-2 + x+4 & \lt 4 \\ 2 & \lt 4 \\ \text{selalu benar untuk}\ & x \in R
    \end{align}$
    Irisan $-4 \leq x \lt -2$ dan $x \in R$ adalah $-4 \leq x \lt -2$
    Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
  • Untuk $x \geq -2$, maka
    $\begin{align}
    \left| x+2 \right|+ \left| x+4 \right| & \lt 4 \\ \left( x+2 \right)+ \left( x+4 \right) & \lt 4 \\ 2x+6 & \lt 4 \\ 2x & \lt -2 \\ x & \lt -1
    \end{align}$
    Irisan $x \geq -2$ dan $x \lt -1$ adalah $-2 \leq x \lt -1$
    Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
Himpunan penyelesaian pada soal adalah gabungan dari ketiga pertidaksamaan dari apa yang kita peroleh di atas yaitu:
Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
Himpunan penyelesaian adalah $-5 \lt x \lt -1$ jika ditulis dalam bentuk interval yaitu $(-5,-1)$ sehingga nilai $a-b=-5+1=-4$

$ \therefore $ Pilihan yang sesuai adalah $(A)\ -4$

33. Soal UTBK SBMPTN 2019 TKA SAINTEK

Himpunan penyelesaian dari pertidaksamaan $\left| 3 - |x+1| \right| \lt 2$ adalah
$(A)\ -5 \lt x \lt -2\ \text{atau}\ -1 \lt x \lt 4$
$(B)\ -6 \lt x \lt -2\ \text{atau}\ -1 \lt x \lt 4$
$(C)\ -5 \lt x \lt -2\ \text{atau}\ 0 \lt x \lt 5$
$(D)\ -6 \lt x \lt -2\ \text{atau}\ 0 \lt x \lt 4$
$(E)\ -5 \lt x \lt -2\ \text{atau}\ -1 \lt x \lt 5$
Alternatif Pembahasan:

Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba dengan menggunakan sifat pertidaksamaan nilai mutlak yaitu:

  • Jika $|f(x)| \lt a$ maka HP adalah $\left \{ x|-a\ \lt f(x) \lt a \right \}$
  • Jika $|f(x)| \gt a$ maka HP adalah $\left \{ x|f(x) \lt -a\ \text{atau}\ f(x) \gt a \right \}$
\begin{array} \\ \left| 3- |x+1| \right | \leq 2 &\\ -2 \leq 3- |x+1| \leq 2 & \\ -2-3 \leq -|x+1| \leq 2-3 &\\ -5 \leq |x+1| \leq -1 & \\ 1 \leq |x+1| \leq 5 & \\ \end{array}
Pertidaksamaan di atas kita kerjakan dalam dua tahap, yaitu:
\begin{array} \\ 1 \lt |x+1| & \\ x+1 \lt -1\ \text{atau}\ x+1 \gt 1 & \\ x \lt -2\ \text{atau}\ x \gt 0 & \\ \hline
|x+1| \lt 5 & \\ -5 \lt x+1 \lt 5 & \\ -5-1 \lt x \lt 5-1 & \\ -6 \lt x \lt 4 &
\end{array}
Himpunan penyelesaian soal adalah irisan dari pertidaksamaan $x \lt -2\ \text{atau}\ x \gt 0$ dan $-6 \lt x \lt 4$ , jika kita gambarkan ilustrasinya seperti berikut ini:
Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
Dari gambar di atas himpunan penyelesaian adalah $-6 \lt x \lt -2\ \text{atau}\ 0 \lt x \lt 4$

$ \therefore $ Pilihan yang sesuai adalah $(D)\ -6 \lt x \lt -2\ \text{atau}\ 0 \lt x \lt 4$

34. Soal UTBK SBMPTN 2019 TKA SAINTEK

Himpunan penyelesaian dari pertidaksamaan $\left| |x|+x \right| \leq 2$ adalah
$(A)\ 0 \leq x \lt 1$
$(B)\ x \leq 1$
$(C)\ x \leq 2$
$(D)\ x \leq 0$
$(E)\ x \geq 0$
Alternatif Pembahasan:

Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba dengan menggunakan $\sqrt{x^{2}}=\left| x \right|$ dan defenisi nilai mutlak $|x|=\left\{\begin{matrix}
x,\ \text{untuk}\ x\geq 0 \\
x,\ \text{untuk}\ x \lt 0
\end{matrix}\right.$

$\begin{align}
\left| |x|+x \right| & \leq 2 \\ \sqrt{\left( |x|+x \right)^{2}} & \leq \sqrt{2^{2}} \\ \left( |x|+x \right)^{2} & \leq 4
\end{align}$

  • Untuk $x \leq 0$, maka
    $\begin{align}
    \left( |x|+x \right)^{2} & \leq 4 \\ \left( x+x \right)^{2} & \leq 4 \\ 4x^{2} & \leq 4 \\ x^{2}-1 & \leq 0 \\ (x+1)(x-1) & \leq 0 \\ -1 \leq x \leq 1 & \\ \end{align}$
    Irisan $x \leq 0$ dan $-1 \leq x \leq 1$ adalah $0 \leq x \leq 1$
    Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
  • Untuk $ x \lt 0$, maka
    $\begin{align}
    \left( |x|+x \right)^{2} & \leq 4 \\ \left( -x+x \right)^{2} & \leq 4 \\ 0 & \leq 4 \\ \text{selalu benar untuk}\ & x \in R
    \end{align}$
    Irisan $ x \lt 0$ dan $x \in R$ adalah $x \lt 0$
    Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
Himpunan penyelesaian pada soal adalah gabungan dari kedua pertidaksamaan dari apa yang kita peroleh di atas yaitu:
Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
Himpunan penyelesaian adalah $x \leq 1$

$ \therefore $ Pilihan yang sesuai adalah $(B)\ x \leq 1$

35. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika semua nilai $x$ dengan $-1 \leq x \leq 3$ yang memenuhi $\left| x+2 \right|-\sqrt{4x+8} \leq 0$ adalah $a \leq x \leq b$, maka nilai $2a+b$ adalah...
$ \begin{align}
(A)\ & -2 \\ (B)\ & -1 \\ (C)\ & 0 \\ (D)\ & 1 \\ (E)\ & 2
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba dengan menggunakan $\sqrt{x^{2}}=\left| x \right|$ dan defenisi nilai mutlak $|x|=\left\{\begin{matrix}
x,\ \text{untuk}\ x\geq 0 \\
x,\ \text{untuk}\ x \lt 0
\end{matrix}\right.$
Pertama kita mulai dari syarat fungsi $\sqrt{4x+8}$, agar bernilai real, maka $4x+8 \geq 0$ atau $x \geq -2$.
$\begin{align}
\left| x+2 \right|-\sqrt{4x+8} & \leq 0 \\ \sqrt{\left( x+2 \right)^{2}} & \leq \left(\sqrt{4x+8}\right)^{2} \\ x^{2}+4x+4 & \leq 4x+8 \\ x^{2}+4x+4-4x-8 & \leq 0 \\ x^{2}-4 & \leq 0 \\ (x-2)(x+2) & \leq 0 \\ -2 \leq x \leq 2 &
\end{align}$
Irisan $x \geq -2$ dan $-2 \leq x \leq 2$ adalah $-2 \leq x \leq 2$.

Karena nilai $x$ yang diminta adalah semua nilai $x$ pada $-1 \leq x \leq 3$ sehingga himpunan penyelesaian yang diminta adalah irisan dari $-1 \leq x \leq 3$ dan $-2 \leq x \leq 2$, yaitu:

Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
Dari ilustrasi pada gambar di atas kita peroleh irisannya adalah $-1 \leq x \leq 2$ sehingga nilai $2a+b=-2+2=0$

$ \therefore $ Pilihan yang sesuai adalah $(C)\ 0$

36. Soal UTBK SBMPTN 2019 TKA SAINTEK

Himpunan penyelesaian dari $\left| x-1 \right| \lt \dfrac{6}{x}$ adalah interval $(a,b)$. Nilai $3a+2b$ adalah...
$\begin{align}
(A)\ & 0 \\ (B)\ & 2 \\ (C)\ & 4 \\ (D)\ & 6 \\ (E)\ & 12
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba mulai dari mencari batasan (pembuat nol) untuk setiap nilai mutlak. Pembuat nol ini untuk melihat batasan nilai $x$ karena nilai mutlak nilainya selalu lebih dari atau sama dengan nol.
$|x|=\left\{\begin{matrix}
x,\ \text{untuk}\ x\geq 0 \\
x,\ \text{untuk}\ x \lt 0
\end{matrix}\right.$

Bentuk soal coba kita ubah menjadi:
$\begin{align}
\left| x-1 \right| & \lt \dfrac{6}{x} \\ \left| x-1 \right| - \dfrac{6}{x} & \lt 0 \\ \dfrac{x \left| x-1 \right|-6}{x} & \lt 0
\end{align}$
Batasan nilai $x$ yang kita peroleh dari $\left| x-1 \right|$ adalah $x=1$.

  • Untuk $x \geq 1$, maka
    $\begin{align}
    \dfrac{x \left| x-1 \right|-6}{x} & \lt 0 \\ \dfrac{x \left( x-1 \right)-6}{x} & \lt 0 \\ \dfrac{x^{2}-x-6}{x} & \lt 0 \\ \dfrac{(x-3)(x+2)}{x} & \lt 0
    \end{align}$
    Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
    Dari gambar dapat kita ambil kesimpulan, daerah $x \lt -2$ atau $0 \lt x \lt 3$ merupakan Himpunan Penyelesaian, karena pada daerah ini $\dfrac{(x-3)(x+2)}{x} \lt 0$.

    Irisan $x \geq 1$ dan $x \lt -2$ atau $0 \lt x \lt 3$ adalah $1 \leq x \lt 3$, ilustrasinya seperti gambar dibawah ini:
    Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
  • Untuk $ x \lt 1$, maka
    $\begin{align}
    \dfrac{x \left| x-1 \right|-6}{x} & \lt 0 \\ \dfrac{x \left(-( x-1) \right)-6}{x} & \lt 0 \\ \dfrac{x \left(-x+1 \right)-6}{x} & \lt 0 \\ \dfrac{-x^{2}+x-6}{x} & \lt 0 \\ \dfrac{ x^{2}-x+6}{x} & \gt 0
    \end{align}$
    Karena $x^{2}-x+6$ adalah definit positif (Selalu bernilai positif untuk setiap $x$ bilangan real) maka nilai $x$ yang mengakibatkan $\dfrac{(+)}{x} \gt 0$ adalah $x \gt 0$

    Irisan $x \gt 0$ dan $x \lt 1$ adalah $0 \lt x \lt 1$

Himpunan penyelesaian soal adalah gabungan dari $1 \leq x \lt 3$ dan $0 \lt x \lt 1$ yaitu $0 \lt x \lt 3$.
Interval nilai $0 \lt x \lt 3$ dapat juga dituliskan dalam bentuk interval $(a,b)$ yaitu $(0,3)$ sehingga nilai $3a+2b=3(0)+2(3)=6$

$ \therefore $ Pilihan yang sesuai adalah $(D)\ 6$

37. Soal UTBK SBMPTN 2019 TKA SAINTEK

Himpunan penyelesaian dari $\left| x+1 \right| \lt \dfrac{2}{x}$ adalah interval $(a,b)$. Nilai $2a+5b$ adalah...
$\begin{align}
(A)\ & -5 \\ (B)\ & -2 \\ (C)\ & 0 \\ (D)\ & 2 \\ (E)\ & 5
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba mulai dari mencari batasan (pembuat nol) untuk setiap nilai mutlak. Pembuat nol ini untuk melihat batasan nilai $x$ karena nilai mutlak nilainya selalu lebih dari atau sama dengan nol.
$|x|=\left\{\begin{matrix}
x,\ \text{untuk}\ x\geq 0 \\
x,\ \text{untuk}\ x \lt 0
\end{matrix}\right.$

Bentuk soal coba kita ubah menjadi:
$\begin{align}
\left| x+1 \right| & \lt \dfrac{2}{x} \\ \left| x+1 \right| - \dfrac{2}{x} & \lt 0 \\ \dfrac{x \left| x+1 \right|-2}{x} & \lt 0
\end{align}$
Batasan nilai $x$ yang kita peroleh dari $\left| x+1 \right|$ adalah $x=-1$.

  • Untuk $x \geq -1$, maka
    $\begin{align}
    \dfrac{x \left| x+1 \right|-2}{x} & \lt 0 \\ \dfrac{x \left( x+1 \right)-2}{x} & \lt 0 \\ \dfrac{x^{2}+x-2}{x} & \lt 0 \\ \dfrac{(x+2)(x-1)}{x} & \lt 0
    \end{align}$
    Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
    Dari gambar dapat kita ambil kesimpulan, daerah $x \lt -2$ atau $0 \lt x \lt 1$ merupakan Himpunan Penyelesaian, karena pada daerah ini $\dfrac{(x+2)(x-1)}{x} \lt 0$.

    Irisan $x \geq -1$ dan $x \lt -2$ atau $0 \lt x \lt 1$ adalah $0 \lt x \lt 1$
    Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
  • Untuk $ x \lt -1$, maka
    $\begin{align}
    \dfrac{x \left| x+1 \right|-2}{x} & \lt 0 \\ \dfrac{x \left(-( x+1) \right)-2}{x} & \lt 0 \\ \dfrac{x \left(- x-1 \right)-2}{x} & \lt 0 \\ \dfrac{-x^{2}-x-2}{x} & \lt 0 \\ \dfrac{ x^{2}+x+2}{x} & \gt 0
    \end{align}$
    Karena $x^{2}+x+2$ definit positif maka himpunan penyelesaian adalah $x \gt 0$

    Irisan $ x \lt -1$ dan $x \gt 0$ adalah himpunan kosong sehingga tidak ada nilai $x$ yang memenuhi.
Himpunan penyelesaian pada soal adalah gabungan dari kedua pertidaksamaan dari apa yang kita peroleh di atas.

Karena pada syarat kedua hasilnya himpunan kosong maka himpunan penyelesaian hanya pada syarat yang pertama yaitu $0 \lt x \lt 1$ jika ditulis dalam bentuk interval adalah $(0,1)$ sehingga nilai $2a+5b=0+5=5$

$ \therefore $ Pilihan yang sesuai adalah $(A)\ 5$

38. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $1 \lt p \left| p-1 \right| $, maka...
$ \begin{align}
(A)\ & p \lt 0 \\ (B)\ & p \gt \dfrac{1-\sqrt{5}}{2} \\ (C)\ & p \gt \dfrac{\sqrt{5}-1}{2} \\ (D)\ & p \gt 0 \\ (E)\ & p \gt \dfrac{1+\sqrt{5}}{2}
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba dengan menggunakan $\sqrt{x^{2}}=\left| x \right|$ dan defenisi nilai mutlak $|x|=\left\{\begin{matrix}
x,\ \text{untuk}\ x\geq 0 \\
x,\ \text{untuk}\ x \lt 0
\end{matrix}\right.$

Batasan nilai $p$ yang kita peroleh dari $\left| p-1 \right|$ adalah $p=1$.

  • Untuk $p \geq 1$, maka
    $\begin{align}
    p \left| p-1 \right| & \gt 1 \\ p \left( p-1 \right) & \gt 1 \\ p^{2}-p & \gt 1 \\ p^{2}-p-1 & \gt 0 \\ \end{align}$
    Untuk menentukan pembuat nol dari $p$, kita coba gunakan rumus abc,
    $\begin{align}
    p_{1,2} &= \dfrac{-b \pm \sqrt{b^{2}-4ac}}{2a} \\ &= \dfrac{1 \pm \sqrt{1-4(1)(-1)}}{2(1)} \\ &= \dfrac{1 \pm \sqrt{5}}{2}
    \end{align}$
    Dengan menggunakan cara alternatif pertidaksamaan kuadrat, himpunan penyelesaian dari $p^{2}-p-1 \gt 0$ adalah $p \lt \dfrac{1 - \sqrt{5}}{2} $ atau $p \gt \dfrac{1 + \sqrt{5}}{2} $.

    Irisan $p \geq 1$ dan $p \lt \dfrac{1 - \sqrt{5}}{2} $ atau $p \gt \dfrac{1 + \sqrt{5}}{2} $ adalah $p \gt \dfrac{1 + \sqrt{5}}{2} $
    Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
  • Untuk $ p \lt 1$, maka
    $\begin{align}
    p \left| p-1 \right| & \gt 1 \\ p \left( -(p-1) \right) & \gt 1 \\ -p^{2}+p & \gt 1 \\ -p^{2}+p-1 & \gt 0 \\ p^{2}-p+1 & \lt 0
    \end{align}$
    Karena $p^{2}-p+1$ definit positif 'selalu bernilai positif untuk setiap $p$' maka tidak ada nilai $p$ yang mengakibatkan $p^{2}-p+1 \lt 0$ sehingga pada syarat ini himpunan penyelesaian adalah himpunan kosong.

    Irisan $ p \lt 1$ dan himpunan kosong adalah himpunan kosong.
Himpunan penyelesaian pada soal adalah gabungan dari kedua pertidaksamaan dari apa yang kita peroleh di atas yaitu $p \gt \dfrac{1 + \sqrt{5}}{2} $

$ \therefore $ Pilihan yang sesuai adalah $(E)\ p \gt \dfrac{1+\sqrt{5}}{2}$

39. Soal UTBK SBMPTN 2019 TKA SAINTEK

Nilai $x$ bilangan real yang memenuhi pertidaksamaan $\dfrac{8}{a^{x}+2} \gt a^{x}$ dengan $a \gt 1$ adalah...
$\begin{align}
(A)\ & x \lt {}^\!\log_{2}a \\ (B)\ & x \lt {}^\!\log_{a}2 \\ (C)\ & x \gt {}^\!\log_{-2}a \\ (D)\ & x \gt {}^\!\log_{2}a \\ (E)\ & x \gt {}^\!\log_{a}2
\end{align}$
Alternatif Pembahasan:

Untuk menyederhanakan penulisan pertidaksamaan kita coba dengan memisalkan $a^{x}=m$ dimana $m \gt 0$ menjadi;
$\begin{align}
\dfrac{8}{a^{x}+2} & \gt a^{x} \\ \dfrac{8}{m+2} & \gt m \\ \hline
\text{sama-sama dikali}\ & (m+2) \\ \hline
8 & \gt m(m+2) \\ 8 & \gt m^{2}+2m \\ m^{2}+2m-8 & \lt 0 \\ (m+4)(m-2) & \lt 0 \\ -4 \lt m \lt 2 &
\end{align}$

Kita kembalikan nilai $m=a^{x}$ maka $-4 \lt a^{x} \lt 2$.
$\begin{align}
a^{x} & \lt 2 \\ {}^a\!\log a^{x} & \lt {}^a\!\log 2 \\ x & \lt {}^a\!\log 2 \\ x & \lt {}^\!\log_{a}2
\end{align}$
Karena $a^{x} \gt 1$ maka $-4 \lt a^{x}$ berlaku untuk $x \in R$.

Irisan dari $x \lt {}^\!\log_{a}2$ dan $x \in R$ adalah $x \lt {}^\!\log_{a}2$.

$\therefore$ Pilihan yang sesuai adalah $(B)\ x \lt {}^\!\log_{a}2$

40. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $0 \lt a \lt 1$ maka $\dfrac{3+3a^{x}}{a^{x}+1} \lt a^{x}$ mempunyai penyelesaian...
$\begin{align}
(A)\ & x \gt {}^\!\log_{a}3 \\ (B)\ & x \lt -2{}^\!\log_{a}3 \\ (C)\ & x \lt {}^\!\log_{a}3 \\ (D)\ & x \gt -10{}^\!\log_{a}3 \\ (E)\ & x \lt 2{}^\!\log_{a}3
\end{align}$
Alternatif Pembahasan:

Untuk menyederhanakan penulisan pertidaksamaan sementara kita coba dengan memisalkan $a^{x}=m$ dimana $m \gt 0$ menjadi;
$\begin{align}
\dfrac{3+3a^{x}}{a^{x}+1} & \lt a^{x} \\ \dfrac{3+3m}{m+1} & \lt m \\ \hline
\text{sama-sama dikali}\ & (m+1) \\ \hline
3+3m & \lt m(m+1) \\ 3+3m & \lt m^{2}+m \\ m^{2}-2m-3 & \gt 0 \\ (m-3)(m+1) & \gt 0 \\ m \lt -1\ \text{atau}\ & m \gt 3
\end{align}$

Kita kembalikan nilai $m=a^{x}$ maka $a^{x} \lt -1$ atau $a^{x} \gt 3$.

  • Untuk $a^{x} \lt -1$ dan $0 \lt a \lt 1$ sehingga tidak ada nilai $x$ yang memenuhi.
  • Untuk $a^{x} \gt 3$ dan $0 \lt a \lt 1$, maka berlaku:
    $\begin{align}
    a^{x} & \gt 3 \\ {}^a\!\log a^{x} & \lt {}^a\!\log 3 \\ x & \lt {}^a\!\log 3 \\ x & \lt {}^ \!\log_{a} 3
    \end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ x \lt {}^\!\log_{a}3$

41. Soal UTBK SBMPTN 2019 TKA SAINTEK

Himpunan penyelesaian dari pertidaksamaan $\left( {}^\!\log_{a}x \right)^{2}-{}^\!\log_{a}x-2 \gt 0 $ dengan $0 \lt a \lt 1$ adalah...
$ \begin{align}
(A)\ & x \lt a^{2}\ \text{atau}\ x \gt a^{-1} \\ (B)\ & x \lt a^{2}\ \text{atau}\ x \gt a^{-2} \\ (C)\ & a^{2}\ \lt x \lt a^{-1} \\ (D)\ & a^{2}\ \lt x \lt a^{-2} \\ (E)\ & a^{-2}\ \lt x \lt a^{2}
\end{align}$
Alternatif Pembahasan:

Catatan calon guru yang mungkin kita butuhkan tentang pertidaksamaan logaritma yaitu:
Jika ${}^{a}\!\log f(x) \gt {}^{a}\!\log g(x)$, maka:

  • Untuk $a \gt 1$ berlaku: $ f(x) \gt g(x)$
  • Untuk $0 \lt a \lt 1$ berlaku: $ f(x) \lt g(x)$
Untuk menyederhanakan penulisan pertidaksamaan logaritma di atas, kita coba misalkan ${}^\!\log_{a}x=m$.
$\begin{align}
\left( {}^\!\log_{a}x \right)^{2}-{}^\!\log_{a}x-2 & \gt 0 \\ m^{2}-m-2 & \gt 0 \\ (m-2)(m+1) & \gt 0
\end{align}$
Dengan menggunakan cara alternatif pertidaksamaan kuadrat kita peroleh $m \lt -1$ atau $m \gt 2$.

Kita kembalikan nilai $m={}^\!\log_{a}x$ maka:
  • Untuk ${}^\!\log_{a}x \lt -1$ dan $0 \lt a \lt 1$
    $\begin{align}
    {}^\!\log_{a}x & \lt -1 \\ {}^\!\log_{a}x & \lt {}^\!\log_{a} a^{-1} \\ x & \gt a^{-1}
    \end{align}$
  • Untuk ${}^\!\log_{a}x \gt 2$ dan $0 \lt a \lt 1$
    $\begin{align}
    {}^\!\log_{a}x & \gt 2 \\ {}^\!\log_{a} x & \gt {}^\!\log_{a}a^{2} \\ x & \lt a^{2}
    \end{align}$

$\therefore$ Pilihan yang sesuai adalah $(A)\ x \lt a^{2}\ \text{atau}\ x \gt a^{-1}$

42. Soal UTBK SBMPTN 2019 TKA SAINTEK

Himpunan penyelesaian dari pertidaksamaan $\left( {}^\!\log_{a}x \right)^{2}+4{}^\!\log_{a}x+3 \lt 0 $ dengan $ a \gt 1$ adalah...
$ \begin{align}
(A)\ & a^{-3}\ \lt x \lt a^{-1} \\ (B)\ & a^{-1}\ \lt x \lt a^{3} \\ (C)\ & a^{-1}\ \lt x \lt a^{-3} \\ (D)\ & a^{-3}\ \lt x \lt a \\ (E)\ & 1 \lt x \lt a^{-3}
\end{align}$
Alternatif Pembahasan:

Catatan calon guru yang mungkin kita butuhkan tentang pertidaksamaan logaritma yaitu:
Jika ${}^{a}\!\log f(x) \gt {}^{a}\!\log g(x)$, maka:

  • Untuk $a \gt 1$ berlaku: $ f(x) \gt g(x)$
  • Untuk $0 \lt a \lt 1$ berlaku: $ f(x) \lt g(x)$
Untuk menyederhanakan penulisan pertidaksamaan logaritma di atas, kita coba misalkan ${}^\!\log_{a}x=m$.
$\begin{align}
\left( {}^\!\log_{a}x \right)^{2}+4{}^\!\log_{a}x+3 & \lt 0 0 \\ m^{2}+4m+3 & \lt 0 \\ (m+1)(m+3) & \lt 0
\end{align}$
Dengan menggunakan cara alternatif pertidaksamaan kuadrat kita peroleh $ -3 \lt m \lt -1$.

Kita kembalikan nilai $m={}^\!\log_{a}x$ maka $ -3 \lt {}^\!\log_{a}x \lt -1$
  • Untuk ${}^\!\log_{a}x \gt -3$ dan $ a \gt 1$
    $\begin{align}
    {}^\!\log_{a}x & \gt -3 \\ {}^\!\log_{a}x & \gt {}^\!\log_{a} a^{-3} \\ x & \gt a^{-3}
    \end{align}$
  • Untuk ${}^\!\log_{a}x \lt -1$ dan $ a \gt 1$
    $\begin{align}
    {}^\!\log_{a}x & \lt -1 \\ {}^\!\log_{a} x & \lt {}^\!\log_{a}a^{-1} \\ x & \lt a^{-1}
    \end{align}$

$\therefore$ Pilihan yang sesuai adalah $(A)\ a^{-3}\ \lt x \lt a^{-1}$

43. Soal UTBK SBMPTN 2019 TKA SAINTEK

Untuk $0 \lt a \lt 1$, himpunan penyelesaian dari $\left( {}^\!\log_{a}x \right)^{2}-2\ {}^\!\log_{a}x-8 \gt 0 $ dengan adalah...
$ \begin{align}
(A)\ & x \lt a^{4}\ \text{atau}\ x \gt a^{-1} \\ (B)\ & x \lt a^{4}\ \text{atau}\ x \gt a^{-2} \\ (C)\ & a^{4}\ \lt x \lt a^{-1} \\ (D)\ & a^{4}\ \lt x \lt a^{-2} \\ (E)\ & a^{-4}\ \lt x \lt a^{4}
\end{align}$
Alternatif Pembahasan:

Catatan calon guru yang mungkin kita butuhkan tentang pertidaksamaan logaritma yaitu:
Jika ${}^{a}\!\log f(x) \gt {}^{a}\!\log g(x)$, maka:

  • Untuk $a \gt 1$ berlaku: $ f(x) \gt g(x)$
  • Untuk $0 \lt a \lt 1$ berlaku: $ f(x) \lt g(x)$
Untuk menyederhanakan penulisan pertidaksamaan logaritma di atas, kita coba misalkan ${}^\!\log_{a}x=m$.
$\begin{align}
\left( {}^\!\log_{a}x \right)^{2}-2\ {}^\!\log_{a}x-8 & \gt 0 \\ m^{2}-2m-8 & \gt 0 \\ (m-4)(m+2) & \gt 0
\end{align}$
Dengan menggunakan cara alternatif pertidaksamaan kuadrat kita peroleh $m \lt -2$ atau $m \gt 4$.

Kita kembalikan nilai $m={}^\!\log_{a}x$ maka ${}^\!\log_{a}x \lt -2$ atau ${}^\!\log_{a}x \gt 4$.
  • Untuk ${}^\!\log_{a}x \lt -2$ dan $0 \lt a \lt 1$
    $\begin{align}
    {}^\!\log_{a}x & \lt -2 \\ {}^\!\log_{a}x & \lt {}^\!\log_{a} a^{-2} \\ x & \gt a^{-2}
    \end{align}$
  • Untuk ${}^\!\log_{a}x \gt 4$ dan $0 \lt a \lt 1$
    $\begin{align}
    {}^\!\log_{a}x & \gt 4 \\ {}^\!\log_{a} x & \gt {}^\!\log_{a}a^{4} \\ x & \lt a^{4}
    \end{align}$

$\therefore$ Pilihan yang sesuai adalah $(B)\ x \lt a^{4}\ \text{atau}\ x \gt a^{-2}$

44. Soal UTBK SBMPTN 2019 TKA SAINTEK

Misalkan $(u_{n})$ adalah barisan aritmatika dengan suku pertama $a$ dan beda $2a$. Jika $u_{1}+u_{2}+u_{3}+u_{4}+u_{5}=100$, maka $u_{2}+u_{4}+u_{6}+\cdots+u_{20}=\cdots$
$\begin{align}
(A)\ & 720 \\ (B)\ & 840 \\ (C)\ & 960 \\ (D)\ & 1080 \\ (E)\ & 1200
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang deret artimatika yang mungkin kita butuhkan adalah suku ke-$n$ yaitu $U_{n}=a+(n-1)b$ dan jumlah $n$ suku pertama yaitu $S_{n}=\dfrac{n}{2} \left(2a+(n-1)b \right)=\dfrac{n}{2} \left(a+U_{n} \right)$.

$\begin{align}
100 & = u_{1}+u_{2}+u_{3}+u_{4}+u_{5} \\ & = a+a+b+a+2b+a+3b+a+4b \\ & = 5a +10b \\ & = 5a +10(2a) \\ 100 &= 25a \\ a &= 4 \\ b &= 8
\end{align}$

$\begin{align}
& u_{2}+u_{4}+\cdots+u_{18}+u_{20} \\ & = (a+b)+(a+3b)+\cdots+(a+17b)+(a+19b) \\ & = 10a +b(1+3+5+\cdots+19) \\ & = 10a +b(100) \\ & = 10(4) +8(100) \\ &= 840
\end{align}$

$\therefore$ Pilihan yang sesuai $(B)\ 840$

45. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui deret aritmatika:
$u_{1}+u_{3}+u_{5}+\cdots+u_{2n-1}=\dfrac{n(n+1)}{2}$, untuk setiap $n \geq 1$. Beda deret tersebut adalah...
$\begin{align}
(A)\ & \dfrac{1}{2} \\ (B)\ & 1 \\ (C)\ & \dfrac{3}{2} \\ (D)\ & 2 \\ (E)\ & \dfrac{5}{2}
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang barisan dan deret artimatika yang mungkin kita butuhkan adalah:

  • Beda $b=u_{5}-u_{4}=\dfrac{u_{6}-u_{3}}{6-3}=\dfrac{u_{p}-u_{q}}{p-q}$
  • Suku ke-$n$ yaitu $U_{n}=a+(n-1)b$
  • Jumlah $n$ suku pertama yaitu $S_{n}=\dfrac{n}{2} \left(2a+(n-1)b \right)=\dfrac{n}{2} \left(a+U_{n} \right)$

Dari $u_{1}+u_{3}+u_{5}+\cdots+u_{2n-1} = \dfrac{n(n+1)}{2}$ kita peroleh:
$\begin{align}
u_{1} &=\dfrac{1(1+1)}{2}=1 \\ u_{1}+u_{3} &= \dfrac{2(2+1)}{2}=3 \\ u_{3} &=2 \\ u_{1}+u_{3}+u_{5} &= \dfrac{3(3+1)}{2}=6 \\ u_{5} &=3 \\ \hline
b &= \dfrac{u_{p}-u_{q}}{p-q} \\ &= \dfrac{u_{5}-u_{3}}{5-3} \\ &= \dfrac{3-2}{5-3}=\dfrac{1}{2}
\end{align}$

$\therefore$ Pilihan yang sesuai $(A)\ \dfrac{1}{2}$

46. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika perbandingan suku pertama dan suku ketiga suatu barisan aritmetika adalah $2:3$, maka perbandingan suku kedua dan suku keempat adalah...
$\begin{align}
(A)\ & 1:3 \\ (B)\ & 3:4 \\ (C)\ & 4:5 \\ (D)\ & 5:6 \\ (E)\ & 5:7
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang barisan dan deret artimatika yang mungkin kita butuhkan adalah:

  • Beda $b=u_{5}-u_{4}=\dfrac{u_{6}-u_{3}}{6-3}=\dfrac{u_{p}-u_{q}}{p-q}$
  • Suku ke-$n$ yaitu $U_{n}=a+(n-1)b$
  • Jumlah $n$ suku pertama yaitu $S_{n}=\dfrac{n}{2} \left(2a+(n-1)b \right)=\dfrac{n}{2} \left(a+U_{n} \right)$

$\begin{align}
\dfrac{u_{1}}{u_{3}} &= \dfrac{2}{3} \\ \dfrac{a}{a+2b} &= \dfrac{2}{3} \\ 3a &= 2a+4b \\ a &= 4b \\ \hline
\dfrac{u_{2}}{u_{4}} &= \dfrac{a+b}{a+3b} \\ &= \dfrac{4b+b}{4b+3b} \\ &= \dfrac{5b}{7b}=\dfrac{5 }{7 }
\end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ 5:7$

47. Soal UTBK SBMPTN 2019 TKA SAINTEK

Seseorang berjalan dengan kecepatan $60\ km/jam$ selama satu jam pertama, Pada jam kedua, kecepatan berkurang menjadi seperempatnya demikian juga pada jam berikutnya. Jarak terjauh yang dapat ditempuh orang tersebut adalah...km.
$\begin{align}
(A)\ & 160 \\ (B)\ & 120 \\ (C)\ & 100 \\ (D)\ & 80 \\ (E)\ & 60
\end{align}$
Alternatif Pembahasan:

Untuk menghitung jarak terjauh yang dapat ditempuh dapat digunakan konsep deret geometri tak hingga dengan suku pertama $a=60$ dan rasio $r=\dfrac{1}{4}$. Catatan calon guru tentang deret geometri tak hingga yang mungkin kita butuhkan yaitu jumlah deret geometri tak hingga $S_{\infty}=\dfrac{a}{1-r}$.

Jika kita tuliskan lintasan yang di tempuh dari jam pertama, jam kedua dan seterusnya adalah:
$\begin{align}
& 60+\dfrac{60}{4}+\dfrac{60}{16}+\dfrac{60}{64}+\cdots \\ \hline
S_{\infty} &=\dfrac{a}{1-r} \\ \hline
&= \dfrac{60}{1-\dfrac{1}{4}} \\ &= \dfrac{60}{\dfrac{3}{4}} \\ &= 60 \times \dfrac{4}{3} \\ &= 80
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D)\ 80$

48. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui deret aritmatika dengan suku pertama $a$ dan beda $b$. Jika $b=2a$ dan $u_{1}+u_{3}+u_{5}+u_{7 }+u_{9}=90$, maka nilai dari $u_{8}+u_{10}+u_{12}+u_{14}+u_{16}=\cdots$
$\begin{align}
(A)\ & 210 \\ (B)\ & 220 \\ (C)\ & 230 \\ (D)\ & 240 \\ (E)\ & 250
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang barisan dan deret artimatika yang mungkin kita butuhkan adalah:

  • Beda $b=u_{5}-u_{4}=\dfrac{u_{6}-u_{3}}{6-3}=\dfrac{u_{p}-u_{q}}{p-q}$
  • Suku ke-$n$ yaitu $U_{n}=a+(n-1)b$
  • Jumlah $n$ suku pertama yaitu $S_{n}=\dfrac{n}{2} \left(2a+(n-1)b \right)=\dfrac{n}{2} \left(a+U_{n} \right)$
$\begin{align}
90 & = u_{1}+u_{3}+u_{5}+u_{7 }+u_{9} \\ & = a+a+2b+a+4b+a+6b+a+8b \\ & = 5a +20b \\ & = 5a +20(2a) \\ 90 &= 45a \\ a &= 2 \\ b &= 4
\end{align}$

$\begin{align}
& u_{8}+u_{10}+u_{12}+u_{14}+u_{16} \\ & = (a+7b)+(a+9b)+(a+11b)+(a+13b)+(a+15b) \\ & = 5a + b(7+9+11+13+15) \\ & = 5(2) + 4(55) \\ & = 10 + 220 \\ &= 230
\end{align}$

$\therefore$ Pilihan yang sesuai $(C)\ 230$

49. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika diketahui suku barisan aritmatika bersifat $x_{k+2}=x_{k}+p$ dengan $p \neq 0$ untuk sembarang bilangan asli postif $k$, maka $x_{3}+x_{5}+x_{7}+\cdots+x_{2n+1}=\cdots$
$\begin{align}
(A)\ & \dfrac{pn^{2}+2nx_{2}}{2} \\ (B)\ & \dfrac{2pn^{2}+2nx_{2}}{2} \\ (C)\ & \dfrac{pn^{2}+2x_{2}}{2} \\ (D)\ & \dfrac{pn^{2}+ nx_{2}}{2} \\ (E)\ & \dfrac{pn^{2}+2pnx_{2}}{2}
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang barisan dan deret artimatika yang mungkin kita butuhkan adalah:

  • Beda $b=u_{5}-u_{4}=\dfrac{u_{6}-u_{3}}{6-3}=\dfrac{u_{p}-u_{q}}{p-q}$
  • Suku ke-$n$ yaitu $U_{n}=a+(n-1)b$
  • Jumlah $n$ suku pertama yaitu $S_{n}=\dfrac{n}{2} \left(2a+(n-1)b \right)=\dfrac{n}{2} \left(a+U_{n} \right)$

Dari deret aritmatika $x_{3}+x_{5}+x_{7}+\cdots+x_{2n+1}$
Deret aritmatika secara umum adalah
$S_{n}=u_{1}+u_{2}+u_{3}+u_{4}+u_{5}+u_{6}+u_{7}+\cdots$
$S_{n}=(a)+(a+b)+(a+2b)+(a+3b)+(a+4b)+(a+5b)+(a+6b)+\cdots$
Deret di atas sku pertama adalah $a$ dan beda $b$.

Jika kita pisah menjadi dua bagian suku-suku genap dan susku ganjil menjadi
$S_{genap}=u_{2}+ u_{4}+ u_{6}+ u_{8}+\cdots$
$S_{genap}= (a+b)+ (a+3b)+ (a+5b)+ \cdots$
Deret di atas dapat kita anggap deret aritmatika dengan suku pertama adalah $a+b$ dan beda $2b$

$S_{ganjil}=u_{1}+ u_{3}+ u_{5}+ u_{7}+\cdots$
$S_{ganjil}=(a)+ (a+2b)+ (a+4b)+ (a+6b)+\cdots$
Deret di atas dapat kita anggap deret aritmatika dengan suku pertama adalah $a$ dan beda $2b$

Jika kita terapkan pada soal, yang diminta adalah jumlah suku-suku ganjil dimana suku pertama adalah $x_{3}$ dan beda $2b$
$\begin{align}
x_{k+2} & = x_{k}+p \\ x_{k+2}-x_{k} & = p \\ x_{k+2}-x_{k} & = 2b \\ \hline
p & = 2b \\ \hline
\end{align}$

$\begin{align}
S_{n} & = x_{3}+x_{5}+x_{7}+\cdots+x_{2n+1} \\ S_{n} & = \dfrac{n}{2} \left(2a+(n-1)b \right) \\ & = \dfrac{n}{2} \left(2x_{3}+(n-1)p \right) \\ & = \dfrac{n}{2} \left(2 \left(x_{2}+b \right)+(n-1)p \right) \\ & = \dfrac{n}{2} \left(2 x_{2}+2b +pn-p \right) \\ & = \dfrac{n}{2} \left(2 x_{2}+p +pn-p \right) \\ & = \dfrac{n}{2} \left(2 x_{2} +pn \right) \\ & = \dfrac{2nx_{2}+pn^{2}}{2}
\end{align}$

$\therefore$ Pilihan yang sesuai $(A)\ \dfrac{2nx_{2}+pn^{2}}{2}$

50. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui barisan aritmatika dengan $U_{k}$ menyatakan suku ke $k$. Jika $U_{k+2}=U_{2}+kU_{16}-2$, maka nilai $U_{6}+U_{12}+U_{18}+U_{24}=\cdots$
$\begin{align}
(A)\ & \dfrac{2}{k} \\ (B)\ & \dfrac{3}{k} \\ (C)\ & \dfrac{4}{k} \\ (D)\ & \dfrac{6}{k} \\ (E)\ & \dfrac{8}{k} \\ \end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang barisan dan deret artimatika yang mungkin kita butuhkan adalah:

  • Beda $b=u_{5}-u_{4}=\dfrac{u_{6}-u_{3}}{6-3}=\dfrac{u_{p}-u_{q}}{p-q}$
  • Suku ke-$n$ yaitu $U_{n}=a+(n-1)b$
Karena $U_{k}$ menyatakan suku ke $k$ pada deret aritmatika sehingga berlaku:
$\begin{align}
x_{k} & = a+(k-1)b \\ x_{k+2} & = a+(k+2-1)b \\ U_{2}+kU_{16}-2 & = a+(k+1)b \\ a+b+k(a+15b)-2 & = a+bk+b \\ ak+15bk -2 & = bk \\ ak+15bk - bk & = 2 \\ ak+14bk & = 2 \\ k \left(a +14b \right) & = 2 \\ a +14b & = \dfrac{2}{k} \\ \hline
U_{6}+U_{12}+U_{18}+U_{24} & = a+5b+a+11b+a+17b+a+23b \\ & = 4a+56b \\ & = 4 \left( a+14b \right) \\ & = 4 \left( \dfrac{2}{k} \right) =\dfrac{8}{k}
\end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ \dfrac{8}{k}$

51. Soal UTBK SBMPTN 2019 TKA SAINTEK

Persamaan lingkaran yang pusatnya terletak pada garis $2x+3y-5=0$ serta menyinggung sumbu $X$ negatif dan sumbu $Y$ positif adalah...
$\begin{align}
(A)\ & x^{2}+y^{2}+10x-10y+25=0 \\ (B)\ & x^{2}+y^{2}-10x+10y+25=0 \\ (C)\ & x^{2}+y^{2}-10x+10y-15=0 \\ (D)\ & x^{2}+y^{2}+5x+10y+15=0 \\ (E)\ & x^{2}+y^{2}+5x-10y+15=0
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang Lingkaran yang mungkin kita butuhkan adalah:

  • Pusat $(a,b)$ dengan jari-jari $r$
    $\Leftrightarrow $ Persamaan Lingkaran $(x-a)^{2}+(y-b)^{2}=r^{2}$
  • Persamaan Umum Lingkaran $x^{2}+y^{2}+Ax+By+C=0$
    $\Leftrightarrow $ Pusat $\left (-\frac{1}{2}A,-\frac{1}{2}B \right )$ dengan jari-jari $r=\sqrt{\frac{1}{4}A^{2}+\frac{1}{4}B^{2}-C}$
Lingkaran pada soal dideskripsikan menyinggung sumbu $X$ negatif dan sumbu $X$ positif, sehingga jika kita gambarkan kurang lebih seperti berikut ini:
Soal dan pembahasan lingkaran UTBK SAINTEK 2019
Dari gambar di atas, dapat kita misalkan pusat lingkaran adalah $(-a,a)$ dan jari-jari $a$. Karena garis $2x+3y-5=0$ melalui pusat lingkaran $(-a,a)$ sehingga berlaku:
$\begin{align}
2x+3y-5 &= 0 \\ 2(-a)+3(a)-5 &= 0 \\ a &= 5 \\ \hline
(x-a)^{2}+(y-b)^{2} &=r^{2} \\ (x+a)^{2}+(y-a)^{2} &=5^{2} \\ (x+5)^{2}+(y-5)^{2} &=5^{2} \\ x^{2}+10x+25+y^{2}-10y+25 &=25 \\ x^{2}+y^{2}+10x-10y+25 &=0
\end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(A)\ x^{2}+y^{2}+10x-10y+25=0$

52. Soal UTBK SBMPTN 2019 TKA SAINTEK

Sebuah lingkaran memiliki pusat $(a,b)$ dengan jari-jari $12$ dan menyinggung garis $3x+4y=5$. Nilai $3a+4b$ yang mungkin adalah...
$\begin{align}
(A)\ & -65\ \text{dan}\ 75 \\ (B)\ & -60\ \text{dan}\ 70 \\ (C)\ & -55\ \text{dan}\ 65 \\ (D)\ & -50\ \text{dan}\ 60 \\ (E)\ & -45\ \text{dan}\ 55
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang Lingkaran yang mungkin kita butuhkan adalah:

  • Pusat $(a,b)$ dengan jari-jari $r$
    $\Leftrightarrow $ Persamaan Lingkaran $(x-a)^{2}+(y-b)^{2}=r^{2}$
  • Jarak titik $(x_{1},y_{1})$ ke garis $ax+by+c=0$ adalah:
    $d=\left| \dfrac{ax_{1}+by_{1}+c}{\sqrt{a^{2}+b^{2}}} \right|$
Lingkaran dengan pusat $(a,b)$ dengan jari-jari $12$ menyinggung garis $3x+4y-5=0$, sehingga jarak titik pusat $(a,b)$ ke garis $3x+4y-5=0$ adalah jari-jari lingkaran $r=12$, sehingga berlaku:
$\begin{align}
d &=\left| \dfrac{ax_{1}+by_{1}+c}{\sqrt{a^{2}+b^{2}}} \right| \\ 12 &=\left| \dfrac{3a+4b-5}{\sqrt{3^{2}+4^{2}}} \right| \\ 12 &=\left| \dfrac{3a+4b-5}{5} \right| \\ \hline
12 &= \dfrac{3a+4b-5}{5} \\ 60 &= 3a+4b-5 \\ 65 &= 3a+4b \\ \hline
-12 &= \dfrac{3a+4b-5}{5} \\ -60 &= 3a+4b-5 \\ -55 &= 3a+4b \\ \end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(C)\ -55\ \text{dan}\ 65$

53. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui titk $P(4,a)$ dan lingkaran $L:x^{2}+y^{2}-8x-2y+1=0$. Jika titik $P$ berada dalam lingkaran $L$, maka nilai $a$ yang mungkin adalah...
$\begin{align}
(A)\ & 1 \lt a \lt 3 \\ (B)\ & -3 \lt a \lt 5 \\ (C)\ & -5 \lt a \lt -3 \\ (D)\ & 3 \lt a \lt 5 \\ (E)\ & -5 \lt a \lt 3
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang Lingkaran yang mungkin kita butuhkan adalah:

Hubungan Titik $A(p,q)$ Pada lingkaran $L:x^{2}+y^{2}+Ax+By+C=0$
  • Jika nilai $K=p^{2}+q^{2}+Ap+Bq+C$ dan $K \gt 0$ maka titik $A$ di luar $L$;
  • Jika nilai $K=p^{2}+q^{2}+Ap+Bq+C$ dan $K = 0$ maka titik $A$ tepat pada $L$;
  • Jika nilai $K=p^{2}+q^{2}+Ap+Bq+C$ dan $K \lt 0$ maka titik $A$ di dalam $L$;

Karena titik $P(4,a)$ dalam lingkaran $L:x^{2}+y^{2}-8x-2y+1=0$, maka berlaku:
$\begin{align}
4^{2}+a^{2}-8(4)-2(a)+1 & \lt 0 \\ 16+a^{2}-32-2a+1 & \lt 0 \\ a^{2} -2a-15 & \lt 0 \\ (a+3)(a-5) & \lt 0
\end{align}$
Dengan menggunakan cara alternatif pertidaksamaan kuadrat, nilai $a$ yang memenuhi adalah $-3 \lt a \lt 5$.

$ \therefore $ Pilihan yang sesuai adalah $(B)\ -3 \lt a \lt 5$

54. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika garis $y=mx+b$ menyinggung lingkaran $x^{2}+y^{2}=1$, maka nilai $b^{2}-m^{2}+1=\cdots$
$\begin{align}
(A)\ & -3 \\ (B)\ & -2 \\ (C)\ & 0 \\ (D)\ & 2 \\ (E)\ & 3
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang Lingkaran yang mungkin kita butuhkan adalah:

  • Jika nilai $D \gt 0$ maka garis memotong lingkaran;
  • Jika nilai $D = 0$ maka garis menyinggung lingkaran;
  • Jika nilai $D \lt 0$ maka garis tidak memotong dan tidak menyinggung lingkaran;
Karena garis $y=mx+b$ menyinggung lingkaran $x^{2}+y^{2}=1$, maka berlaku:
$\begin{align}
x^{2}+y^{2} & = 1 \\ x^{2}+(mx+b)^{2} & = 1 \\ x^{2}+ m^{2}x^{2}+2bmx+b^{2} & = 1 \\ \left(1+ m^{2} \right) x^{2}+2bmx+b^{2}-1 & = 0 \\ \hline
b^{2}-4ac & = 0 \\ \left( 2bm \right)^{2}-4\left(m^{2}+1 \right)\left(b^{2}-1 \right) & = 0 \\ 4b^{2}m^{2}-4 m^{2} b^{2}-4b^{2}+4m^{2}+4 & = 0 \\ -4\left( b^{2}-m^{2}-1 \right)& = 0 \\ b^{2}-m^{2}-1 & = 0 \\ b^{2}-m^{2}-1+2 & = 0+2 \\ b^{2}-m^{2}+1 & = 2 \\ \end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(D)\ 2$

55. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika lingkaran $x^{2}+y^{2}=1$ menyinggung garis $ax+by=2b$, maka $\dfrac{a^{2}}{a^{2}+b^{2}}=\cdots$
$\begin{align}
(A)\ & \dfrac{1}{4} \\ (B)\ & \dfrac{1}{2} \\ (C)\ & \dfrac{3}{4} \\ (D)\ & 1 \\ (E)\ & 2
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang Lingkaran yang mungkin kita butuhkan adalah:

  • Jika nilai $D \gt 0$ maka garis memotong lingkaran;
  • Jika nilai $D = 0$ maka garis menyinggung lingkaran;
  • Jika nilai $D \lt 0$ maka garis tidak memotong dan tidak menyinggung lingkaran;
Karena garis $y=2-\dfrac{ax}{b}$ menyinggung lingkaran $x^{2}+y^{2}=1$, maka berlaku:
$\begin{align}
x^{2}+y^{2} & = 1 \\ x^{2}+\left( 2-\dfrac{ax}{b} \right)^{2} & = 1 \\ x^{2}+4+ \dfrac{a^{2}x^{2}}{b^{2}} - \dfrac{4ax}{b} & = 1 \\ \left( \dfrac{a^{2}}{b^{2}}+1 \right) x^{2} - \dfrac{4a}{b}x + 3 & = 0 \\ \hline
D & = 0 \\ b^{2}-4ac & = 0 \\ \left( \dfrac{4a}{b} \right)^{2}-4\left( \dfrac{a^{2}}{b^{2}}+1 \right)\left( 3 \right) & = 0 \\ \dfrac{16a^{2}}{b^{2}} -12 \left( \dfrac{a^{2}+b^{2}}{b^{2}} \right) & = 0 \\ \dfrac{16a^{2}-12b^{2}-12a^{2}}{b^{2}} & = 0 \\ 4a^{2}-12b^{2} & = 0 \\ a^{2} & = 3b^{2}\\ \hline
\dfrac{a^{2}}{a^{2}+b^{2}} & = \dfrac{3b^{2}}{3b^{2}+b^{2}} \\ & = \dfrac{3b^{2}}{4b^{2}} = \dfrac{3 }{4}
\end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(C)\ \dfrac{3 }{4}$

56. Soal UTBK SBMPTN 2019 TKA SAINTEK

Salah satu persamaan garis singgung lingkaran $x^{2}+y^{2}-4x+2y=0 $ yang tegak lurus dengan garis $x+2y=5$ adalah...
$\begin{align}
(A)\ & y=2x-2 \\ (B)\ & y=2x-6 \\ (C)\ & y=2x-8 \\ (D)\ & y=2x-10 \\ (E)\ & y=2x-12 \\
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang Lingkaran yang mungkin kita butuhkan adalah:
Jika diketahui gradien garis singgung lingkaran $(m)$

  • Persamaan Lingkaran $x^{2}+y^{2}=r^{2}$
    $\Leftrightarrow $ PGS: $y=mx\pm r\sqrt{m^{2}+1}$
  • Persamaan Lingkaran $(x-a)^{2}+(y-b)^{2}=r^{2}$
    $\Leftrightarrow $ PGS: $y-b=m(x-a)\pm r\sqrt{m^{2}+1}$
Karena garis singgung lingkaran $x^{2}+y^{2}-4x+2y=0 $ tegak lurus dengan garis $x+2y=5$ ($m=-\dfrac{1}{2}$), maka gradien garis singgung lingkaran adalah $m_{1} \cdot \left( -\dfrac{1}{2} \right) =-1\ \Leftrightarrow m_{1}=2$.
$\begin{align}
x^{2}+y^{2}-4x+2y &= 0 \\ x^{2}-4x+y^{2}+2y &= 0 \\ (x-2)^{2}-4+(y+1)^{2}-1 &= 0 \\ (x-2)^{2} +(y+1)^{2} &= 5
\end{align}$

Persamaan garis singgung lingkaran dengan $m=2$ adalah:
$\begin{align}
y-b & = m(x-a)\pm r\sqrt{m^{2}+1} \\ y+1 & = 2(x-2)\pm \sqrt{5} \sqrt{2^{2}+1} \\ y+1 & = 2 x-4 \pm 5 \\ y & = 2 x-5 \pm 5 \\ \hline
y & = 2 x-5 - 5 \\ y & = 2 x-5 + 5 \\ \end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(D)\ y=2x-10$

57. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika suku banyak $P(x)=ax^{3}+x^{2}+bx+1$ habis dibagi $x^{2}+1$ dan $x+a$, maka $ab=\cdots$
$\begin{align}
(A)\ & \dfrac{1}{4} \\ (B)\ & \dfrac{1}{2} \\ (C)\ & 1 \\ (D)\ & 2 \\ (E)\ & 4
\end{align}$
Alternatif Pembahasan:

Jika sebuah bilangan $a$ habis dibagi $x$ dan $y$, maka berlaku $a \equiv k \cdot x \cdot y$
contoh:
$140$ habis dibagi $5$ dan $2$
sehingga berlaku $140 \equiv k \cdot 5 \cdot 2$, dan nilai $k$ yang memenuhi adalah $k=14$

Sukubanyak $P(x)= ax^{3}+x^{2}+bx+1$ habis dibagi oleh $x^{2}+1$ dan $x+a$.
$\begin{align}
& ax^{3}+x^{2}+bx+1 \\
& \equiv k \cdot \left( x^{2}+1 \right) \left( x+a \right) \\
0 & \equiv k \cdot \left( x^{3}+ax^{2}+ x + a \right) \\
0 & \equiv kx^{3}+ akx^{2}+ kx +ak
\end{align}$
Berdasarkan kesamaan sukubanyak, sehingga:

  • dari koefisien $x^{3}$ kita peroleh $a=k$
  • dari koefisien $x^{2}$ kita peroleh $ak=1$, maka $a^{2}=1$ atau $a= \pm 1$
  • dari koefisien $x $ kita peroleh $ b=k$
Untuk $a=1$ dan $b=1$, nilai $ab=1$
Untuk $a=-1$ dan $b=-1$, nilai $ab=1$

$ \therefore $ Pilihan yang sesuai adalah $(C)\ 1$

58. Soal UTBK SBMPTN 2019 TKA SAINTEK

Suku banyak $f(x)=ax^{3}-ax^{2}+bx-a$ habis dibagi $x^{2}+1$ dan dibagi $x-4$ bersisa $51$ Nilai $a+b=\cdots$
$\begin{align}
(A)\ & -2 \\ (B)\ & -1 \\ (C)\ & 0 \\ (D)\ & 1 \\ (E)\ & 2
\end{align}$
Alternatif Pembahasan:

Untuk suku banyak $F(x)$ yang dibagi $P(x)$, hasil bagi $H(x)$ dan sisa $S(x)$ berlaku:
$F(x) \equiv H(x) \cdot P(x) + S(x) $

Jika suku banyak $f(x)= ax^{3}-ax^{2}+bx-a$ dibagi $x^{2}+1$ maka hasil bagi sukubanyak adalah berderajat satu, kita misalkan $\left( mx+n \right)$.

Dari apa yang kita peroleh di atas, sehingga:
$\begin{align}
& ax^{3}-ax^{2}+bx-a \\ & \equiv \left( mx+n \right) \left( x^{2}+1 \right) + 0 \\ & \equiv mx^{3}+nx^{2}+ mx+ n
\end{align}$

Berdasarkan kesamaan sukubanyak, sehingga:

  • dari koefisien $x^{3}$ kita peroleh $a=m$
  • dari koefisien $x$ kita peroleh $b=m$
Sukubanyak $f(x)= ax^{3}-ax^{2}+bx-a$ dibagi $x-4$ bersisa $51$
$\begin{align}
f(4) & = a(4)^{3}-a(4)^{2}+b(4)-a \\ 51 & = 64a -16a +4b -a \\ 51 & = 47a +4b \\ 51 & = 47a +4a \\ 51 & = 51a \rightarrow a=1
\end{align}$
Untuk $a=1$ dan $a=b$ maka $b=$, nilai $a+b=2$

$ \therefore $ Pilihan yang sesuai adalah $(E)\ 2$

59. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $P(x)= x^{3}+ax^{2}+2x+b$ dengan $a \neq 0$ habis dibagi $x^{2}+2$, maka nilai $\dfrac{b}{2a}$ adalah...
$\begin{align}
(A)\ & \dfrac{1}{4} \\ (B)\ & \dfrac{1}{2} \\ (C)\ & 1 \\ (D)\ & 2 \\ (E)\ & 4
\end{align}$
Alternatif Pembahasan:

Untuk suku banyak $F(x)$ yang dibagi $P(x)$, hasil bagi $H(x)$ dan sisa $S(x)$ berlaku:
$F(x) \equiv H(x) \cdot P(x) + S(x) $

Jika sukubanyak $P(x)= x^{3}+ax^{2}+2x+b$ dibagi $x^{2}+2$ maka hasil bagi sukubanyak adalah berderajat satu, kita misalkan $\left( mx+n \right)$.

Dari apa yang kita peroleh di atas, sehingga:
$\begin{align}
& x^{3}+ax^{2}+2x+b \\ & \equiv \left( mx+n \right) \left( x^{2}+2 \right) + 0 \\ & \equiv mx^{3}+nx^{2}+2mx+2n
\end{align}$

Berdasarkan kesamaan sukubanyak, sehingga:

  • dari koefisien $x^{3}$ kita peroleh $m=1$
  • dari koefisien $x^{2}$ kita peroleh $a=n$
  • dari konstanta kita peroleh $ b=2n$
Untuk $a=n$ dan $b=2n$, maka $\dfrac{b}{2a}=\dfrac{2n}{2n}=1$

$ \therefore $ Pilihan yang sesuai adalah $(C)\ 1$

60. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $P(x)= ax^{3}+bx^{2}+(a-2b)x-a$ habis dibagi oleh $x^{2}+2$ dan $x+b$, maka nilai $ab$ adalah...
$\begin{align}
(A)\ & -\dfrac{1}{4} \\ (B)\ & -\dfrac{1}{2} \\ (C)\ & -1 \\ (D)\ & -2 \\ (E)\ & -4
\end{align}$
Alternatif Pembahasan:

Jika sebuah bilangan $a$ habis dibagi $x$ dan $y$, maka berlaku $a \equiv k \cdot x \cdot y$
contoh:
$140$ habis dibagi $5$ dan $2$
sehingga berlaku $140 \equiv k \cdot 5 \cdot 2$, dan nilai $k$ yang memenuhi adalah $k=14$

Sukubanyak $P(x)= ax^{3}+bx^{2}+(a-2b)x-a$ habis dibagi oleh $x^{2}+2$ dan $x+b$, sehingga berlaku:
$\begin{align}
& ax^{3}+bx^{2}+(a-2b)x-a \\
& \equiv k \cdot \left( x^{2}+2 \right) \left( x+b \right) \\
& \equiv k \cdot \left( x^{3}+bx^{2}+2x +2b \right) \\
& \equiv kx^{3}+ kbx^{2}+2kx +2bk
\end{align}$
Berdasarkan kesamaan sukubanyak, sehingga:

  • dari koefisien $x^{2}$ kita peroleh $kb=b$, maka $k=1$
  • dari koefisien $x^{3}$ kita peroleh $a=k$, maka $a=1$
  • dari konstanta kita peroleh $2bk=-a$, maka $2b=-1$
  • Untuk $a=1$ dan $b=-\dfrac{1}{2}$, nilai $ab=-\dfrac{1}{2}$

$ \therefore $ Pilihan yang sesuai adalah $(B)\ -\dfrac{1}{2}$

61. Soal UTBK SBMPTN 2019 TKA SAINTEK

Suku banyak $P(x)= x^{3}+bx^{2}-2x-6$ dibagi $(x-2)^{2}$ bersisa $-2x+a$. Nilai $a+b=\cdots$
$\begin{align}
(A)\ & 15 \\ (B)\ & 13 \\ (C)\ & 0 \\ (D)\ & -13 \\ (E)\ & -15
\end{align}$
Alternatif Pembahasan:

Untuk suku banyak $F(x)$ yang dibagi $P(x)$, hasil bagi $H(x)$ dan sisa $S(x)$ berlaku:
$F(x) \equiv H(x) \cdot P(x) + S(x) $

Jika suku banyak $P(x)= x^{3}+bx^{2}-2x-6$ dibagi $\left(x-2 \right)^{2}=x^{2}-4x+4$ maka hasil bagi sukubanyak adalah berderajat satu, kita misalkan $\left( mx+n \right)$.

Dari apa yang kita peroleh di atas, sehingga:
$\begin{align}
& x^{3}+bx^{2}-2x-6 \\ & \equiv \left( mx+n \right) \left( x^{2}-4x+4 \right) -2x+a \\ & \equiv mx^{3}+nx^{2}-4mx^{2}-4nx+4mx+4n -2x+a \\ & \equiv mx^{3}+ \left(n -4m \right) x^{2}+ \left(4m-4n-2 \right)x+4n+a \\ \end{align}$

Berdasarkan kesamaan sukubanyak, sehingga:

  • dari koefisien $x^{3}$ kita peroleh $1=m$
  • dari koefisien $x$ kita peroleh $4m-4n-2=-2$, maka $n=1$
  • dari koefisien $x^{2}$ kita peroleh $b=n-4m $, maka $b=-3$
  • dari konstanta kita peroleh $-6=4n+a$, maka $a=-10$
  • Untuk $a=-10$ dan $b=-3$, maka $a+b=-13$

$ \therefore $ Pilihan yang sesuai adalah $(D)\ -13$

62. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui suku banyak $f(x)= ax^{3}+(a+b)x^{2}-bx+a+b$. Jika $x^{2}+1$ adalah faktor dari $f(x)$ dan $f(a)=2$, maka nilai $ab=\cdots$
$\begin{align}
(A)\ & -2 \\ (B)\ & -1 \\ (C)\ & 0 \\ (D)\ & 1 \\ (E)\ & 2
\end{align}$
Alternatif Pembahasan:

Untuk suku banyak $F(x)$ yang dibagi $P(x)$, hasil bagi $H(x)$ dan sisa $S(x)$ berlaku:
$F(x) \equiv H(x) \cdot P(x) + S(x) $

Jika suku banyak $f(x)= ax^{3}+(a+b)x^{2}-bx+a+b$ dibagi $x^{2}+1$ maka hasil bagi sukubanyak adalah berderajat satu, kita misalkan $\left( mx+n \right)$.

Dari apa yang kita peroleh di atas, sehingga:
$\begin{align}
& ax^{3}+(a+b)x^{2}-bx+a+b \\ & \equiv \left( mx+n \right) \left( x^{2}+1 \right) + 0 \\ & \equiv mx^{3}+nx^{2}+mx+n
\end{align}$

Berdasarkan kesamaan sukubanyak, sehingga:

  • dari konstanta kita peroleh $n=a+b $
  • dari koefisien $x$ kita peroleh $-b=m $
  • dari koefisien $x^{2}$ kita peroleh $n=a+b $
  • dari koefisien $x^{3}$ kita peroleh $a=m$
karena nilai $m=a$ dan $m=-b$, maka $a=-b$

Diketahui $f(a)=2$, sehingga:
$\begin{align}
f(a) & = ax^{3}+(a+b)x^{2}-bx+a+b \\ 2 & = a \cdot a^{3}+(a+b) \cdot a^{2}-b \cdot a +a+b \\ 2 & = a^{4}+(a+b)a^{2}-ab +a+b \\ 2 & = a^{4}+(a-a)a^{2}-a(-a) +a-a \\ 2 & = a^{4}+ a^{2} \\ 0 & = a^{4}+ a^{2} -2 \\ 0 & = \left( a^{2}+2 \right)\left( a^{2}-1 \right) \\ 0 & = \left( a^{2}+2 \right)\left( a-1 \right)\left( a+1 \right) \\ \end{align}$
Untuk $a=1$ nilai $b=-1$ sehingga $ab=-1$
Untuk $a=-1$ nilai $b=1$ sehingga $ab=-1$

$ \therefore $ Pilihan yang sesuai adalah $(B)\ -1$

63. Soal UTBK SBMPTN 2019 TKA SAINTE

Jika suku banyak $f(x)= ax^{3}+3x^{2}+(b-2)x+b$ habis dibagi $x^{2}+1$, maka nilai $a+b=\cdots$
$\begin{align}
(A)\ & 1 \\ (B)\ & 2 \\ (C)\ & 4 \\ (D)\ & 5 \\ (E)\ & 6
\end{align}$
Alternatif Pembahasan:

Untuk suku banyak $F(x)$ yang dibagi $P(x)$, hasil bagi $H(x)$ dan sisa $S(x)$ berlaku:
$F(x) \equiv H(x) \cdot P(x) + S(x) $

Jika suku banyak $f(x)= ax^{3}+3x^{2}+(b-2)x+b$ dibagi $x^{2}+1$ maka hasil bagi sukubanyak adalah berderajat satu, kita misalkan $\left( mx+n \right)$.

Dari apa yang kita peroleh di atas, sehingga:
$\begin{align}
& ax^{3}+3x^{2}+(b-2)x+b \\ & \equiv \left( mx+n \right) \left( x^{2}+1 \right) + 0 \\ & \equiv mx^{3}+nx^{2}+mx+n
\end{align}$

Berdasarkan kesamaan sukubanyak, sehingga:

  • dari koefisien $x^{2}$ kita peroleh $n=3 $
  • dari konstanta kita peroleh $n=b $ maka $b=3$
  • dari koefisien $x$ kita peroleh $b-2=m $ maka $m=1$
  • dari koefisien $x^{3}$ kita peroleh $a=m $ maka $a=1$
  • Nilai $a+b=4$

$ \therefore $ Pilihan yang sesuai adalah $(C)\ 4$

64. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika Diketahui $P(x)= \left( x-1 \right)\left( x^{2}-x-2 \right) \cdot Q(x)+\left( ax+b \right)$. Dengan $Q(x)$ adalah suatu suku banyak. Jika $P(x)$ dibagi dengan $(x+1)$ bersisa $10$ dan jika dibagi $(x-1)$ bersisa $20$. Maka apabila $P(x)$ dibagi dengan $(x-2)$ akan bersisa...
$\begin{align}
(A)\ & 10 \\ (B)\ & 20 \\ (C)\ & 25 \\ (D)\ & 35 \\ (E)\ & 45
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang Suku Banyak (Polinomial) yang mungkin kita butuhkan adalah:

  • Suku banyak $f(x)$ dibagi $(x-a)$ maka $f(a)=sisa$
  • Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+(mx+n)$
$ \begin{align}
P(x) &= \left( x-1 \right)\left( x^{2}-x-2 \right) \cdot Q(x)+\left( ax+b \right) \\ P(x) &= \left( x-1 \right)\left( x-1 \right)\left( x-2 \right) \cdot Q(x)+\left( ax+b \right) \\ P(-1) & =10 \rightarrow -a +b= 10 \\ P( 1) &=20 \rightarrow a +b= 20 \\ \end{align} $

$\begin{array}{c|c|cc}
-a+b = 10 & \\ a+b = 20 & (+) \\ \hline
2b = 30 & \\ b = 15 & \\ a = 5
\end{array} $
Jika $P(x)$ dibagi oleh $(x-2)$, maka sisa pembagian adalah:
$ \begin{align}
P(x) &= \left( x-1 \right)\left( x^{2}-x-2 \right) \cdot Q(x)+\left( ax+b \right) \\ P(x) &= \left( x-1 \right)\left( x-1 \right)\left( x-2 \right) \cdot Q(x)+\left( ax+b \right) \\ P(2) &= 2a+ b \\ P(2) &= 2(5)+ (15)=25
\end{align} $

$ \therefore $ Pilihan yang sesuai adalah $(C)\ 25$

65. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $p(x)=ax^{3}+bx^{2}+2x-3$ habis dibagi $x^{2}+1$, maka nilai $3a - b$ adalah...
$\begin{align}
(A)\ & -9 \\
(B)\ & -3 \\
(C)\ & 3 \\
(D)\ & 9 \\
(E)\ & 12
\end{align}$
Alternatif Pembahasan:

Soal ini kita coba selesaikan dengan Cara Manipulasi Faktor, dengan manipulasi faktor ini, kita anggap faktornya adalah sama dengan nol.

Dengan menganggap faktor (pembagi) $x^{2}+1=0$ sehingga diperoleh $x^{2}=-1$.

Dengan $x^{2}=-1$ dan $p(x)=ax^{3}+bx^{2}+2x-3$ habis dibagi $x^{2}+1$ maka berlaku:
$\begin{align}
p(x) & \equiv ax^{3}+bx^{2}+2x-3 \\
p(x) & \equiv ax \cdot x^{2}+bx^{2}+2x-3 \\
0 & \equiv ax (-1) +b (-1) +2x-3 \\
0 & \equiv -ax -b +2x-3 \\
0 & \equiv (2-a)x -b-3 \\
\hline
2-a\ & = 0 \\
a & = 2 \\ \hline
-b-3\ & = 0 \\ b\ & = -3 \\ \hline
\text{nilai}\ 3a-b &= 3(2)-(-3) =9
\end{align}$

$\therefore$ Pilihan yang sesuai $(D)\ 9$

66. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $\lim\limits_{t \to 2} \left (\sqrt[3]{a+\dfrac{b}{t^{3}}}-2 \right )=A$, maka nilai $\lim\limits_{t \to 2} \left (\sqrt[3]{\dfrac{a}{8}+\dfrac{b}{8t^{3}}}-t+1 \right )=\cdots$
$\begin{align}
(A)\ & \dfrac{A}{2} \\ (B)\ & \dfrac{A}{3} \\ (C)\ & 0 \\ (D)\ & \dfrac{A+2}{2} \\ (E)\ & \dfrac{A+3}{3} \\ \end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang limit fungsi yang mungkin kita butuhkan adalah:

  • $\lim\limits_{x \to c} k=k$
  • $\lim\limits_{x \to c} \left( f(x)\pm g(x) \right) = \lim\limits_{x \to c} f(x)\pm\lim\limits_{x \to c} g(x)$
  • $\lim\limits_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{ \lim\limits_{x \to c} f(x)}$ dimana $\lim\limits_{x \to c} f(x) \gt 0$ bilamana $n$ genap
$ \begin{align}
\lim\limits_{t \to 2} \left (\sqrt[3]{a+\dfrac{b}{t^{3}}}-2 \right ) &= A \\ \lim\limits_{t \to 2} \left (\sqrt[3]{a+\dfrac{b}{t^{3}}} \right )-\lim\limits_{t \to 2} \left (2 \right ) &= A \\ \lim\limits_{t \to 2} \left (\sqrt[3]{a+\dfrac{b}{t^{3}}} \right )- 2 &= A \\ \lim\limits_{t \to 2} \left (\sqrt[3]{a+\dfrac{b}{t^{3}}} \right ) &= A+2
\end{align} $

$ \begin{align}
& \lim\limits_{t \to 2} \left (\sqrt[3]{\dfrac{a}{8}+\dfrac{b}{t^{3}}}-t+1 \right ) \\ &= \dfrac{1}{2} \cdot \lim\limits_{t \to 2} \left (\sqrt[3]{a+\dfrac{b}{t^{3}}} \right )-\lim\limits_{t \to 2} \left (t \right )+\lim\limits_{t \to 2} \left (1 \right ) \\ &= \dfrac{1}{2} \cdot \left (A+2 \right )-2+1 \\ &= \dfrac{A}{2}+1-1 = \dfrac{A}{2}
\end{align} $

$ \therefore $ Pilihan yang sesuai adalah $(A)\ \dfrac{A}{2}$

67. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $\lim\limits_{x \to 1} \left (\dfrac{\sqrt{ax^{4}+b}-2 }{x-1} \right )=A$, maka nilai $\lim\limits_{x \to 1} \left (\dfrac{\sqrt{ax^{4}+b}-2x }{x^{2}+2x-3} \right )=\cdots$
$\begin{align}
(A)\ & \dfrac{2-A}{2} \\ (B)\ & -\dfrac{A}{2} \\ (C)\ & \dfrac{A-2}{4} \\ (D)\ & \dfrac{A}{4} \\ (E)\ & \dfrac{A+2}{4} \\ \end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang limit fungsi yang mungkin kita butuhkan adalah:

  • $\lim\limits_{x \to c} k=k$
  • $\lim\limits_{x \to c} \left( f(x)\pm g(x) \right) = \lim\limits_{x \to c} f(x)\pm\lim\limits_{x \to c} g(x)$
  • $\lim\limits_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{ \lim\limits_{x \to c} f(x)}$ dimana $\lim\limits_{x \to c} f(x) \gt 0$ bilamana $n$ genap
$ \begin{align}
& \lim\limits_{x \to 1} \left (\dfrac{\sqrt{ax^{4}+b}-2x }{x^{2}+2x-3} \right) \\ & = \lim\limits_{x \to 1} \left (\dfrac{\sqrt{ax^{4}+b}-2x }{(x-1)(x+3)} \right) \\ & = \lim\limits_{x \to 1} \left (\dfrac{\sqrt{ax^{4}+b}-2+2-2x }{(x-1)(x+3)} \right) \\ & = \lim\limits_{x \to 1} \left (\dfrac{\sqrt{ax^{4}+b}-2 }{(x-1)(x+3)}+\dfrac{2-2x }{(x-1)(x+3)} \right) \\
& = \lim\limits_{x \to 1} \left (\dfrac{\sqrt{ax^{4}+b}-2 }{(x-1)} \cdot \dfrac{1}{(x+3)}+\dfrac{2-2x }{(x-1)} \cdot \dfrac{1}{(x+3)} \right) \\
& = \lim\limits_{x \to 1} \dfrac{\sqrt{ax^{4}+b}-2}{(x-1)} \cdot \lim\limits_{x \to 1} \dfrac{1} {(x+3)}+\lim\limits_{x \to 1} \dfrac{2-2x }{(x-1)} \cdot \lim\limits_{x \to 1} \dfrac{1}{(x+3)} \\ & = A \cdot \dfrac{1} {4}+ \lim\limits_{x \to 1} \dfrac{-2(x-1) }{(x-1)} \cdot \dfrac{1}{4} \\ & = A \cdot \dfrac{1} {4}+ (-2) \cdot \dfrac{1}{4} \\ & = \dfrac{A}{4}- \dfrac{2}{4} = \dfrac{A-2}{4}
\end{align} $

$ \therefore $ Pilihan yang sesuai adalah $(C)\ \dfrac{A-2}{4}$

68. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $\lim\limits_{x \to 2} \left (\dfrac{\sqrt[3]{ax+b}}{x+1} \right )=2$, maka nilai $\lim\limits_{x \to 2} \left (\dfrac{\sqrt[3]{\dfrac{ax}{8}+\dfrac{b}{8}}-2x+1}{x^{2}+4x+3} \right )=\cdots$
$\begin{align}
(A)\ & -\dfrac{2}{15} \\ (B)\ & -\dfrac{1}{15} \\ (C)\ & 0 \\ (D)\ & \dfrac{1}{15} \\ (E)\ & \dfrac{2}{15} \\ \end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang limit fungsi yang mungkin kita butuhkan adalah:

  • $\lim\limits_{x \to c} k=k$
  • $\lim\limits_{x \to c} \left( f(x)\pm g(x) \right) = \lim\limits_{x \to c} f(x)\pm\lim\limits_{x \to c} g(x)$
  • $\lim\limits_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{ \lim\limits_{x \to c} f(x)}$ dimana $\lim\limits_{x \to c} f(x) \gt 0$ bilamana $n$ genap
$ \begin{align}
\lim\limits_{x \to 2} \left (\dfrac{\sqrt[3]{ax+b}}{x+1} \right ) &= 2 \\ \dfrac{\sqrt[3]{2a+b}}{2+1} &= 2 \\ \sqrt[3]{2a+b} &= 6
\end{align} $

$ \begin{align}
& \lim\limits_{x \to 2} \left (\dfrac{\sqrt[3]{\dfrac{ax}{8}+\dfrac{b}{8}}-2x+1}{x^{2}+4x+3} \right ) \\ &= \lim\limits_{x \to 2} \left (\dfrac{\dfrac{1}{2} \cdot \sqrt[3]{ ax + b }-2x+1}{(x+1)(x+3)} \right ) \\ &= \dfrac{\dfrac{1}{2} \cdot \sqrt[3]{ 2a + b }-2(2) +1}{(2+1)(2+3)} \\ &= \dfrac{\dfrac{1}{2} \cdot 6-3}{15} \\ &= \dfrac{0}{15}=0
\end{align} $

$ \therefore $ Pilihan yang sesuai adalah $(C)\ 0$

69. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $\lim\limits_{x \to 2} \left (\dfrac{\sqrt[3]{ax^{3}+b}}{x-1} \right )=A$, maka nilai $\lim\limits_{x \to 2} \left (\dfrac{\sqrt[3]{\dfrac{ax^{3}}{8}+\dfrac{b}{8}}-2x}{x^{2}+2x-2} \right )=\cdots $
$\begin{align}
(A)\ & \dfrac{1}{12}A \\ (B)\ & \dfrac{1}{12}(A-2) \\ (C)\ & \dfrac{1}{12}(A-1) \\ (D)\ & \dfrac{1}{12}(A-6) \\ (E)\ & \dfrac{1}{12}(A-8)
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang limit fungsi yang mungkin kita butuhkan adalah:

  • $\lim\limits_{x \to c} k=k$
  • $\lim\limits_{x \to c} \left( f(x)\pm g(x) \right) = \lim\limits_{x \to c} f(x)\pm\lim\limits_{x \to c} g(x)$
  • $\lim\limits_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{ \lim\limits_{x \to c} f(x)}$ dimana $\lim\limits_{x \to c} f(x) \gt 0$ bilamana $n$ genap
$ \begin{align}
\lim\limits_{x \to 2} \left (\dfrac{\sqrt[3]{ax^{3}+b}}{x-1} \right ) &= A \\ \dfrac{\sqrt[3]{a(2)^{3}+b}}{2-1} &= A \\ \sqrt[3]{8a +b} &= A
\end{align} $

$ \begin{align}
& \lim\limits_{x \to 2} \left (\dfrac{\sqrt[3]{\dfrac{ax^{3}}{8}+\dfrac{b}{8}}-2x}{x^{2}+2x-2} \right ) \\ &= \lim\limits_{x \to 2} \left (\dfrac{\frac{1}{2} \cdot \sqrt[3]{ax^{3}+b}-2x}{x^{2}+2x-2} \right ) \\ &= \dfrac{\frac{1}{2} \cdot \sqrt[3]{8a +b}-2(2)}{(2)^{2}+2(2)-2} \\ &= \dfrac{\frac{1}{2} \cdot A-4}{6} \\ &= \dfrac{A-8}{12}
\end{align} $

$ \therefore $ Pilihan yang sesuai adalah $(E)\ \dfrac{1}{12}(A-8)$

70. Soal UTBK SBMPTN 2019 TKA SAINTEK

Nilai $\lim\limits_{x \to 0} \dfrac{cot\ 2x - csc\ 2x}{cos\ 3x\ tan\ \frac{1}{3}x } =\cdots$
$\begin{align}
(A)\ & 3 \\ (B)\ & 2 \\ (C)\ & 0 \\ (D)\ & -2 \\ (E)\ & -3
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang limit fungsi trigonometri yang mungkin kita butuhkan adalah:

  • $\lim\limits_{x \to 0} \dfrac{tan\ ax }{bx} = \dfrac{a}{b}$
  • $\lim\limits_{x \to 0} \dfrac{sin\ ax }{sin\ bx} = \dfrac{a}{b}$
  • $\lim\limits_{x \to 0} \dfrac{tan\ ax }{sin\ bx} = \dfrac{a}{b}$
$ \begin{align}
& \lim\limits_{x \to 0} \dfrac{cot\ 2x - csc\ 2x}{cos\ 3x\ tan\ \frac{1}{3}x } \\ & = \lim\limits_{x \to 0} \dfrac{\dfrac{cos\ 2x}{sin\ 2x} - \frac{1}{sin\ 2x}}{cos\ 3x\ tan\ \frac{1}{3}x } \\ & = \lim\limits_{x \to 0} \dfrac{\dfrac{cos\ 2x-1}{sin\ 2x}}{cos\ 3x\ tan\ \frac{1}{3}x } \\ & = \lim\limits_{x \to 0} \dfrac{ cos\ 2x-1}{cos\ 3x\ tan\ \frac{1}{3}x\ sin\ 2x } \\ & = \lim\limits_{x \to 0} \dfrac{ 1-sin^{2} x-1}{cos\ 3x\ tan\ \frac{1}{3}x\ sin\ 2x } \\ & = \lim\limits_{x \to 0} \dfrac{ -2sin^{2} x }{cos\ 3x\ tan\ \frac{1}{3}x\ sin\ 2x } \\ & = \lim\limits_{x \to 0} \dfrac{ -2\ sin\ x\ sin\ x }{cos\ 3x\ tan\ \frac{1}{3}x\ sin\ 2x } \\ & = \dfrac{ -2\ \cdot 1 \cdot 1 }{cos\ 0\ \cdot \frac{1}{3}\ \cdot 2 } \\ & = \dfrac{ -2 }{ \frac{2}{3} } =-3
\end{align} $

$ \therefore $ Pilihan yang sesuai adalah $(E)\ -3$

71. Soal UTBK SBMPTN 2019 TKA SAINTEK

Nilai $ \lim\limits_{x \to \infty} \left ( \sqrt{9x^2+18x-2017}+\sqrt{4x^2-20x+2018}-5x-2019 \right )= \cdots$
$\begin{align}
(A)\ & -2011 \\ (B)\ & -2017 \\ (C)\ & -2019 \\ (D)\ & -2021 \\ (E)\ & -2027 \\
\end{align}$
Alternatif Pembahasan:

Penyelesaian soal limit takhingga di atas kita coba selesaikan dengan cara alternatif (pintar bernalar) Bapak Husein Tampomas, yaitu;
$\begin{align}
& \lim\limits_{x \to \infty} \left ( \sqrt{9x^2+18x-2017}+\sqrt{4x^2-20x+2018}-5x-2019 \right ) \\ & = \lim\limits_{x \to \infty} \left ( \sqrt{\left( 3x+\frac{18}{6} \right)^{2} }+\sqrt{\left( 2x-\frac{20}{4} \right)^{2} }-5x-2019 \right ) \\ & = \lim\limits_{x \to \infty} \left ( \left( 3x+3 \right) + \left( 2x-5 \right)-5x-2019 \right ) \\ & = \lim\limits_{x \to \infty} \left ( 3x+3 + 2x-5 -5x-2019 \right ) \\ & = \lim\limits_{x \to \infty} \left ( -2 -2019 \right ) \\ & = -2021
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D)\ -2021$

72. Soal UTBK SBMPTN 2019 TKA SAINTEK

Nilai $ \lim\limits_{x \to \infty} 2x \left ( \sqrt{9+\frac{10}{x}}-3 \right )= \cdots$
$\begin{align}
(A)\ & \dfrac{20}{3} \\ (B)\ & \dfrac{10}{3} \\ (C)\ & -\dfrac{10}{3} \\ (D)\ & -\dfrac{20}{3} \\ (E)\ & \infty
\end{align}$
Alternatif Pembahasan:

Penyelesaian soal limit takhingga di atas kita coba dengan sedikit manipulasi aljabar, yaitu:
$\begin{align}
& \lim\limits_{x \to \infty} 2x \left ( \sqrt{9+\frac{10}{x}}-3 \right ) \\ & = \lim\limits_{x \to \infty} \left ( 2x \sqrt{9+\frac{10}{x}}-2x \cdot 3 \right ) \\ & = \lim\limits_{x \to \infty} \left ( \sqrt{9 \cdot 4x^{2}+\frac{10}{x} \cdot 4x^{2}} - 6x \right ) \\ & = \lim\limits_{x \to \infty} \left ( \sqrt{36x^{2}+40x} - 6x \right ) \\ & = \lim\limits_{x \to \infty} \left ( \sqrt{ \left( 6x +\frac{40}{12} \right)^{2} } - 6x \right ) \\ & = \lim\limits_{x \to \infty} \left ( 6x +\frac{40}{12} - 6x \right ) \\ & = \dfrac{40}{12}=\dfrac{10}{3}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(B)\ \dfrac{10}{3}$

73. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $\lim\limits_{x \to \frac{1}{2}} \left (\dfrac{\sqrt[3]{ax^{3}+b}-2}{x-\frac{1}{2}} \right )=A$, maka nilai $\lim\limits_{x \to \frac{1}{2}} \left (\dfrac{\sqrt[3]{\dfrac{ax^{3}}{8}+\dfrac{b}{8}}-2x}{4x^{2}-1} \right )=\cdots $
$\begin{align}
(A)\ & \dfrac{1}{8}A-2 \\ (B)\ & \dfrac{1}{8}A-1 \\ (C)\ & \dfrac{1}{8}A-\dfrac{1}{2} \\ (D)\ & \dfrac{1}{8}A-\dfrac{1}{4} \\ (E)\ & \dfrac{1}{8}A-\dfrac{1}{8}
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang limit fungsi yang mungkin kita butuhkan adalah:

  • $\lim\limits_{x \to c} k=k$
  • $\lim\limits_{x \to c} \left( f(x)\pm g(x) \right) = \lim\limits_{x \to c} f(x)\pm\lim\limits_{x \to c} g(x)$
  • $\lim\limits_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{ \lim\limits_{x \to c} f(x)}$ dimana $\lim\limits_{x \to c} f(x) \gt 0$ bilamana $n$ genap
$ \begin{align}
\lim\limits_{x \to \frac{1}{2}} \left (\dfrac{\sqrt[3]{ax^{3}+b}-2}{x-\frac{1}{2}} \right ) &= A \\ \dfrac{1}{2} \cdot \lim\limits_{x \to \frac{1}{2}} \left (\dfrac{\sqrt[3]{ax^{3}+b}-2}{x-\frac{1}{2}} \right ) &= \dfrac{1}{2} A \\ \lim\limits_{x \to \frac{1}{2}} \left (\dfrac{\sqrt[3]{ax^{3}+b}-2}{2 \left( x-\frac{1}{2} \right)} \right ) &= \dfrac{A}{2} \\ \lim\limits_{x \to \frac{1}{2}} \left (\dfrac{\sqrt[3]{ax^{3}+b}-2}{ \left( 2x- 1 \right)} \right ) &= \dfrac{A}{2} \\ \end{align} $

Dengan beberapa manipulasi aljabar, penjabaran soal menjadi seperti berikut ini:
$ \begin{align}
& \lim\limits_{x \to \frac{1}{2}} \left (\dfrac{\sqrt[3]{\dfrac{ax^{3}}{8}+\dfrac{b}{8}}-2x}{4x^{2}-1} \right ) \\
&= \lim\limits_{x \to \frac{1}{2}} \left (\dfrac{\frac{1}{2} \sqrt[3]{ ax^{3} + b }-2x}{ \left( 2x-1 \right)\left( 2x+1 \right)} \right ) \\
&= \lim\limits_{x \to \frac{1}{2}} \left (\dfrac{\frac{1}{2} \left( \sqrt[3]{ ax^{3} + b }- 4x \right)}{ \left( 2x-1 \right)\left( 2x+1 \right)} \right ) \\
&= \lim\limits_{x \to \frac{1}{2}} \left (\dfrac{ \sqrt[3]{ ax^{3} + b }- 4x }{2 \left( 2x-1 \right) \left( 2x+1 \right)} \right ) \\
&= \lim\limits_{x \to \frac{1}{2}} \left (\dfrac{ \sqrt[3]{ ax^{3} + b }- 4x }{ \left( 2x-1 \right)} \right ) \cdot \lim\limits_{x \to \frac{1}{2}} \left (\dfrac{ 1 }{2 \left( 2x+1 \right)} \right )\\
&= \lim\limits_{x \to \frac{1}{2}} \left (\dfrac{ \sqrt[3]{ ax^{3} + b }- 2 + 2 - 4x }{ \left( 2x-1 \right)} \right ) \cdot \left( \dfrac{ 1 }{2 \left( 2 \cdot \frac{1}{2} +1 \right)} \right) \\

&= \lim\limits_{x \to \frac{1}{2}} \left (\dfrac{ \sqrt[3]{ ax^{3} + b }- 2 - 2 \left(2x -1 \right) }{ \left( 2x-1 \right)} \right ) \cdot \left( \dfrac{ 1 }{4} \right) \\

&= \lim\limits_{x \to \frac{1}{2}} \left (\dfrac{ \sqrt[3]{ ax^{3} + b }- 2}{ \left( 2x-1 \right)} - \dfrac{ 2 \left(2x -1 \right) }{ \left( 2x-1 \right)} \right ) \cdot \left( \dfrac{ 1 }{4} \right) \\

&= \lim\limits_{x \to \frac{1}{2}} \left (\dfrac{ \sqrt[3]{ ax^{3} + b }- 2}{ \left( 2x-1 \right)} - 2 \right ) \cdot \left( \dfrac{ 1 }{4} \right) \\

&= \left (\lim\limits_{x \to \frac{1}{2}} \dfrac{ \sqrt[3]{ ax^{3} + b }- 2}{ \left( 2x-1 \right)} - \lim\limits_{x \to \frac{1}{2}} 2 \right ) \cdot \left( \dfrac{ 1 }{4} \right) \\

&= \left ( \dfrac{A}{2} - 2 \right ) \cdot \left( \dfrac{ 1 }{4} \right) \\

&= \dfrac{A}{8} - \dfrac{ 1 }{2}
\end{align} $

$ \therefore $ Pilihan yang sesuai adalah $(C)\ \dfrac{1}{8}A-\dfrac{1}{2}$

74. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $\lim\limits_{t \to a} \left (\dfrac{\left (\left | t \right |-1 \right )^{2}-\left (\left | a \right |-1 \right )^{2}}{t^{2}-a^{2}} \right )=K$, maka nilai $\lim\limits_{t \to a} \left (\dfrac{\left (\left | t \right |-1 \right )^{4}-\left (\left | a \right |-1 \right )^{4}}{t-a} \right )=\cdots$
$\begin{align}
(A)\ & 2K \left( \left | a \right |-1 \right )^{2} \\ (B)\ & K \left( \left | a \right |-1 \right )^{2} \\ (C)\ & 4aK \left( \left | a \right |-1 \right )^{2} \\ (D)\ & aK \left( \left | a \right |-1 \right )^{2} \\ (E)\ & K^{2} \left( \left | a+K \right |-1 \right )^{2}
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang limit fungsi yang mungkin kita butuhkan adalah:

  • $\lim\limits_{x \to c} k=k$
  • $\lim\limits_{x \to c} \left( f(x)\pm g(x) \right) = \lim\limits_{x \to c} f(x)\pm\lim\limits_{x \to c} g(x)$
Dengan beberapa manipulasi aljabar, penjabaran soal menjadi seperti berikut ini:
$ \begin{align}
& \lim\limits_{t \to a} \left (\dfrac{\left (\left | t \right |-1 \right )^{4}-\left (\left | a \right |-1 \right )^{4}}{t-a} \right ) \\
& = \lim\limits_{t \to a} \left (\dfrac{\left [\left (\left | t \right |-1 \right )^{2}-\left (\left | a \right |-1 \right )^{2} \right ]\left [\left (\left | t \right |-1 \right )^{2}+\left (\left | a \right |-1 \right )^{2} \right ]}{t-a} \right ) \\
& = \lim\limits_{t \to a} \left (\dfrac{\left [\left (\left | t \right |-1 \right )^{2}-\left (\left | a \right |-1 \right )^{2} \right ]\left [\left (\left | t \right |-1 \right )^{2}+\left (\left | a \right |-1 \right )^{2} \right ]}{t-a} \cdot \dfrac{\left (t+a \right )}{\left (t+a \right )} \right ) \\
&= \lim\limits_{t \to a} \left (\dfrac{\left [\left (\left | t \right |-1 \right )^{2}-\left (\left | a \right |-1 \right )^{2} \right ]\left [\left (\left | t \right |-1 \right )^{2}+\left (\left | a \right |-1 \right )^{2} \right ] \cdot \left (t+a \right ) }{t^{2}-a^{2}} \right ) \\
&= \lim\limits_{t \to a} \left (\dfrac{\left [\left (\left | t \right |-1 \right )^{2}-\left (\left | a \right |-1 \right )^{2} \right ]}{t^{2}-a^{2}} \right ) \cdot \lim\limits_{t \to a} \left (\dfrac{\left [\left (\left | t \right |-1 \right )^{2}+\left (\left | a \right |-1 \right )^{2} \right ] \cdot \left (t+a \right ) }{1} \right ) \\
&= K \cdot \left ( \left [\left (\left | a \right |-1 \right )^{2}+\left (\left | a \right |-1 \right )^{2} \right ] \cdot \left (a+a \right ) \right ) \\
&= K \cdot \left ( 2 \left ( \left | a \right |-1 \right )^{2} \cdot \left (2a \right ) \right ) \\
&= 4aK \cdot \left ( \left | a \right |-1 \right )^{2} \\
\end{align} $

$ \therefore $ Pilihan yang sesuai adalah $(C)\ 4aK \left( \left | a \right |-1 \right )^{2}$

75. Soal UTBK SBMPTN 2019 TKA SAINTEK

Dalam sebuah kantong terdapat $m$ bola putih dan $n$ bola merah dengan $mn=120$ dan $m \lt n$. Jika diambil dua bola sekaligus, peluang terambilnya paling sedikit satu bola putih adalah $\dfrac{5}{7}$, maka nilai $m+n=\cdots$
$\begin{align}
(A)\ & 34 \\ (B)\ & 26 \\ (C)\ & 23 \\ (D)\ & 22 \\ (E)\ & 21 \\
\end{align}$
Alternatif Pembahasan:

Dari dalam kantong akan diambil dua bola sekaligus, maka banyak kemungkinan yang terjadi adalah terpilih dua bola dari $(m+n)$ bola
$ \begin{align}
n(S) & = C_{2}^{m+n} \\ & = \dfrac{(m+n)!}{2! (m+n-2)!} \\ & = \dfrac{(m+n)(m+n-1)}{2}
\end{align} $

Dari pengambilan dua bola sekaligus, hasil yang diharapkan adalah paling sedikit satu bola putih, banyak kemungkinan yang diharapkan adalah terambil dua bola putih dari $m$ bola atau terambil satu bola putih dari $m$ bola dan satu bola merah dari $n$ bola.

Jika kita tuliskan banyak kemungkinan yang diharapkan terjadi, yaitu:
$ \begin{align}
n(E) & = C_{2}^{m}+C_{1}^{m} \cdot C_{1}^{n} \\ & = \dfrac{m!}{2! (m-2)!} + \dfrac{m!}{1! (m-1)!} \cdot \dfrac{n!}{1! (n-1)!} \\ & = \dfrac{m (m-1)}{2} + m \cdot n \\ & = \dfrac{m (m-1)}{2} + 120 \\ & = \dfrac{m (m-1)+240}{2}
\end{align} $

Peluang kejadian $E$ paling sedikit satu bola putih adalah $\dfrac{5}{7}$, sehingga berlaku:
$\begin{align}
P(E) & = \dfrac{n(E)}{n(S)} \\ \dfrac{5}{7} & = \dfrac{\dfrac{m (m-1)+240}{2}}{\dfrac{(m+n)(m+n-1)}{2}} \\ \dfrac{5}{7} & = \dfrac{ m (m-1)+240}{ (m+n)(m+n-1) }
\end{align}$
Dari persamaan di atas, dengan mensubstitusi nilai $n=\dfrac{120}{m}$ sehingga kita peroleh sebuah persamaan kudrat dengan variabel $m$. Lalu dengan memfaktorkan akan kita peroleh nilai $m$ lalu nilai $n$.

Dengan sedikit bernalar, untuk melewati beberapa tahap di atas dapat kita gunakan data $mn=120$ dan $m \lt n$. Berdasarkan data tersebut, nilai $(m,n)$ yang mungkin hanya ada tiga yaitu $(10,12)$, $(5,24)$ dan $(2,60)$.

Lalu dengan menguji nilai-nilai $(10,12)$, $(5,24)$ dan $(2,60)$ ke $\dfrac{5}{7} = \dfrac{ m (m-1)+240}{ (m+n)(m+n-1) }$ kita peroleh $m=10$ dan $n=12$, sehingga nilai $m+n=22$

$\therefore$ Pilihan yang sesuai $(D)\ 22$

76. Soal UTBK SBMPTN 2019 TKA SAINTEK

Di dalam sebuah kotak terdapat $m$ bola merah dan $n$ bola putih dengan $m+n=16$. Jika bola diambil dua bola sekaligus secara acak dari dalam kotak, maka peluang terambil dua bola tersebut berbeda warna adalah $\dfrac{1}{2}$. Nilai dari $m^{2}+n^{2}$ adalah
$\begin{align}
(A)\ & 200 \\ (B)\ & 160 \\ (C)\ & 146 \\ (D)\ & 136 \\ (E)\ & 128 \\
\end{align}$
Alternatif Pembahasan:

Dari dalam kantong akan diambil dua bola sekaligus, maka banyak kemungkinan yang terjadi adalah terpilih dua bola dari $m+n$ bola
$ \begin{align}
n(S) & = C_{2}^{m+n} = C_{2}^{16} \\ & = \dfrac{16!}{2! (16-2)!} \\ & = 120
\end{align} $

Dari pengambilan dua bola sekaligus, hasil yang diharapkan adalah kedua bola berbeda warna, banyak kemungkinan yang diharapkan adalah terambil satu bola putih dari $m$ bola dan satu bola merah dari $n$ bola.

Jika kita tuliskan banyak kemungkinan yang diharapkan terjadi, yaitu:
$ \begin{align}
n(E) & =C_{1}^{m} \cdot C_{1}^{n} \\ & = \dfrac{m!}{1! (m-1)!} \cdot \dfrac{n!}{1! (n-1)!} \\ & = m \cdot n
\end{align} $

Peluang kejadian $E$ kedua bola berbeda warna adalah $\dfrac{1}{2}$, sehingga berlaku:
$\begin{align}
P(E) & = \dfrac{n(E)}{n(S)} \\ \dfrac{1}{2} & = \dfrac{mn}{120} \\ mn & = 60 \\ \hline
m^{2}+n^{2} & = (m+n)^{2}-2mn \\ & = 16^{2}-2(60) \\ & = 256-120 \\ & = 136
\end{align}$

$\therefore$ Pilihan yang sesuai $(D)\ 136$

77. Soal UTBK SBMPTN 2019 TKA SAINTEK

Dalam sebuah kotak terdapat bola merah dengan jumlah $2n$ dan bola putih dengan jumlah $3n$. Jika dilakukan pengambilan dua bola sekaligus dengan peluang terambilnya warna berbeda adalah $\dfrac{18}{35}$, maka nilai $\dfrac{5n-1}{n}$ adalah...
$\begin{align}
(A)\ & \dfrac{12}{3} \\ (B)\ & \dfrac{13}{3} \\ (C)\ & \dfrac{14}{3} \\ (D)\ & \dfrac{15}{3} \\ (E)\ & \dfrac{16}{3}
\end{align}$
Alternatif Pembahasan:

Dari dalam kantong akan diambil dua bola sekaligus, maka banyak kemungkinan yang terjadi adalah terpilih dua bola dari $5n$ bola
$ \begin{align}
n(S) & = C_{2}^{5n} \\ & = \dfrac{(5n)!}{2! (5n-2)!} \\ & = \dfrac{(5n)(5n-1)}{2}
\end{align} $

Dari pengambilan dua bola sekaligus, hasil yang diharapkan adalah kedua bola berbeda warna, banyak kemungkinan yang diharapkan adalah terambil satu bola merah dari $2n$ bola dan satu bola putih dari $3n$ bola.

Jika kita tuliskan banyak kemungkinan yang diharapkan terjadi, yaitu:
$ \begin{align}
n(E) & =C_{1}^{2n} \cdot C_{1}^{3n} \\ & = \dfrac{(2n)!}{1! (2n-1)!} \cdot \dfrac{(3n)!}{1! (3n-1)!} \\ & = (2n) (3n) =6n^{2}
\end{align} $

Peluang kejadian $E$ kedua bola berbeda warna adalah $\dfrac{18}{35}$, sehingga berlaku:
$\begin{align}
P(E) & = \dfrac{n(E)}{n(S)} \\ \dfrac{18}{35} & = \dfrac{6n^{2}}{\dfrac{(5n)(5n-1)}{2}} \\ \dfrac{18}{35} & = \dfrac{12n^{2}}{ (5n)(5n-1)} \\ \dfrac{9}{7} & = \dfrac{6n^{2}}{ (n)(5n-1)} \\ 45n^{2}-9n & = 42n^{2} \\ 3n^{2}-9n & = 0 \\ 3n(n-3) & = 0 \\ n=0\ &\ n= 3 \\ \hline
\dfrac{5n-1}{n} & = \dfrac{5n-1}{n} \\ & = \dfrac{5(3)-1}{3}= = \dfrac{14}{3}
\end{align}$

$\therefore$ Pilihan yang sesuai $(C)\ \dfrac{14}{3}$

78. Soal UTBK SBMPTN 2019 TKA SAINTEK

Dalam sebuah kantong terdapat $m$ bola putih dan $n$ bola merah dengan $mn=54$. Jika diambil dua bola secara sekaligus dan peluang terambilnya kedua bola berbeda warna adalah $\dfrac{18}{35}$, maka $m+n=\cdots$
$\begin{align}
(A)\ & 9 \\ (B)\ & 15 \\ (C)\ & 21 \\ (D)\ & 29 \\ (E)\ & 55
\end{align}$
Alternatif Pembahasan:

Dari dalam kantong akan diambil dua bola sekaligus, maka banyak kemungkinan yang terjadi adalah terpilih dua bola dari $(m+n)$ bola
$ \begin{align}
n(S) & = C_{2}^{m+n} \\ & = \dfrac{(m+n)!}{2! (m+n-2)!} \\ & = \dfrac{(m+n)(m+n-1)}{2}
\end{align} $

Dari pengambilan dua bola sekaligus, hasil yang diharapkan adalah kedua bola berbeda warna, banyak kemungkinan yang diharapkan adalah terambil satu bola putih dari $m$ bola dan satu bola merah dari $n$ bola.

Jika kita tuliskan banyak kemungkinan yang diharapkan terjadi, yaitu:
$ \begin{align}
n(E) & =C_{1}^{m} \cdot C_{1}^{n} \\ & = \dfrac{m!}{1! (m-1)!} \cdot \dfrac{n!}{1! (n-1)!} \\ & = m \cdot n
\end{align} $

Peluang kejadian $E$ kedua bola berbeda warna adalah $\dfrac{18}{35}$, sehingga berlaku:
$\begin{align}
P(E) & = \dfrac{n(E)}{n(S)} \\ \dfrac{18}{35} & = \dfrac{mn}{\dfrac{(m+n)(m+n-1)}{2}} \\ \dfrac{18}{35} & = \dfrac{2(54)}{ (m+n)(m+n-1)} \\ \dfrac{1}{35} & = \dfrac{ 6 }{ (m+n)(m+n-1)} \\ (m+n)(m+n-1) & = (35)(6) \\ (m+n)(m+n-1) & = (7)(5)(3)(2) \\ (m+n)(m+n-1) & = (15)(14)
\end{align}$

$\therefore$ Pilihan yang sesuai $(B)\ 15$

79. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $\int \limits_{0}^{2} \left( ax-b \right)\ dx = 4$ dan $\int \limits_{1}^{3} \left( x^{2}+2b \right)\ dx =10$ maka nilai $3a+6b = \cdots$
$ \begin{align}
(A)\ & 5 \\ (B)\ & 6 \\ (C)\ & 7 \\ (D)\ & 8 \\ (E)\ & 9
\end{align} $
Alternatif Pembahasan:

Catatan calon guru yang mungkin bermanfaat tentang defenisi integral tentu yaitu Jika sebuah fungsi $f(x)$ kontinu pada interval $[a,b]$ dan $F(x)$ adalah antidiferensial dari $f(x)$ pada interval $[a,b]$, maka:
$\int \limits_{a}^{b}f(x)dx=F(b)-F(a)$.

Dengan menerapkan defenisi integral di atas, maka berlaku
$\begin{align}
\int \limits_{1}^{3} \left( x^{2}+2b \right)\ dx &=10 \\ \left[ \dfrac{1}{3}x^{3}+2bx \right ]_{1}^{3} &=10 \\ \left[ \dfrac{1}{3}(3)^{3}+2b(3) \right ]-\left[ \dfrac{1}{3}(1)^{3}+2b(1) \right ] &=10 \\ \left[ 9 + 6b \right ]-\left[ \dfrac{1}{3} + 2b \right ] &=10 \\ 9 + 4b - \dfrac{1}{3} &=10 \\ 4b - \dfrac{1}{3} &= 1 \\ 4b &= 1 + \dfrac{1}{3} \\ 4b &= \dfrac{4}{3} \\ b &= \dfrac{1}{3} \\ 6b &= 2
\end{align}$

Untuk nilai $b=\dfrac{1}{3}$ maka kita peroleh:
$\begin{align}
\int \limits_{0}^{2} \left( ax-b \right)\ dx & = 4 \\ \int \limits_{0}^{2} \left( ax-\dfrac{1}{3} \right)\ dx & = 4 \\ \left[ \dfrac{1}{2}ax^{2}-\dfrac{1}{3}x \right]_{0}^{2} & = 4 \\ \left[ \dfrac{1}{2}a(2)^{2}-\dfrac{1}{3}(2) \right]-\left[ 0 \right] & = 4 \\ 2a - \dfrac{2}{3} & = 4 \\ 2a & = 4 + \dfrac{2}{3} \\ 2a & = \dfrac{14}{3} \\ a & = \dfrac{7}{3} \\ 3a & = 7 \\ \end{align}$
Nilai $3a+6b=7+2=9$

$\therefore$ Pilihan yang sesuai adalah $(E) \ 9$

80. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $4 + \int \limits_{0}^{2} \left( bx+x-2 \right)\ dx = \int \limits_{-1}^{b} \left( x+1 \right)\ dx$ dan $b \gt 0$ maka nilai $b = \cdots$
$ \begin{align}
(A)\ & 1 \\ (B)\ & 2 \\ (C)\ & 3 \\ (D)\ & 4 \\ (E)\ & 5
\end{align} $
Alternatif Pembahasan:

Catatan calon guru yang mungkin bermanfaat tentang defenisi integral tentu yaitu Jika sebuah fungsi $f(x)$ kontinu pada interval $[a,b]$ dan $F(x)$ adalah antidiferensial dari $f(x)$ pada interval $[a,b]$, maka:
$\int \limits_{a}^{b}f(x)dx=F(b)-F(a)$.

Dengan menerapkan defenisi integral di atas, maka berlaku
$\begin{align}
4 + \int \limits_{0}^{2} \left( bx+x-2 \right)\ dx &= \int \limits_{-1}^{b} \left( x+1 \right)\ dx \\ 4 + \left[ \dfrac{1}{2}bx^{2}+\dfrac{1}{2}x^{2}-2x \right]_{0}^{2} &= \left[ \dfrac{1}{2}x^{2}+x \right]_{-1}^{b} \\ 4 + \left[ \dfrac{1}{2}b(2)^{2}+\dfrac{1}{2}(2)^{2}-2(2) \right]- \left[ 0 \right] &= \left[ \dfrac{1}{2}b^{2}+b \right]-\left[ \dfrac{1}{2}(-1)^{2}+(-1) \right] \\ 4 + 2b +2-4 &= \dfrac{1}{2}b^{2}+b + \dfrac{1}{2} \\ 2b +2 &= \dfrac{1}{2}b^{2}+b + \dfrac{1}{2} \\ 4b + 4 &= b^{2}+ 2b + 1 \\ b^{2} - 2b - 3 &= 0 \\ \left( b-3 \right)\left( b+1 \right)&= 0 \\ b=3\ \text{atau}\ b=-1 &
\end{align}$
Karena nilai $b \gt 0$ maka nilai $b=3$

$\therefore$ Pilihan yang sesuai adalah $(C) \ 3$

81. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika nilai $\int \limits_{b}^{a} f(x)\ dx = 5$ dan $\int \limits_{c}^{a} f(x)\ dx = 0$, maka $\int \limits_{c}^{b} f(x)\ dx = \cdots$
$ \begin{align}
(A)\ & -5 \\ (B)\ & -3 \\ (C)\ & 0 \\ (D)\ & 4 \\ (E)\ & 6
\end{align} $
Alternatif Pembahasan:

Catatan calon guru yang mungkin bermanfaat tentang sifat integral tentu;

  • $\int \limits_{a}^{b} f(x)\ dx = -\int \limits_{b}^{a} f(x)\ dx$
  • $\int \limits_{a}^{b} f(x)\ dx + \int \limits_{b}^{c} f(x)\ dx = \int \limits_{a}^{c} f(x)\ dx$
$\begin{align}
\int \limits_{b}^{a} f(x)\ dx = 5\ &\Rightarrow\ \int \limits_{a}^{b} f(x)\ dx = -5 \\ \int \limits_{c}^{a} f(x)\ dx = 0\ &\Rightarrow\ \int \limits_{a}^{c} f(x)\ dx = 0 \\ \hline
\int \limits_{c}^{b} f(x)\ dx & = \int \limits_{c}^{a} f(x)\ dx +\int \limits_{a}^{b} f(x)\ dx \\ & = 0 + -5 \\ & = -5
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(A) \ -5$

82. Soal UTBK SBMPTN 2019 TKA SAINTEK

Sebuah kotak berisi $10$ bola berwarna merah dan berwarna biru. Diambil dua bola sekaligus secara acak. Jika peluang terambilnya sedikitnya $1$ bola merah adalah $\dfrac{1}{5}$, maka banyaknya bola biru adalah...
$\begin{align}
(A)\ & 1 \\ (B)\ & 3 \\ (C)\ & 5 \\ (D)\ & 7 \\ (E)\ & 9 \\
\end{align}$
Alternatif Pembahasan:

Dari dalam kantong akan diambil dua bola sekaligus, maka banyak kemungkinan yang terjadi adalah terpilih $2$ bola dari $10$ bola
$ \begin{align}
n(S) & = C_{2}^{10} \\ & = \dfrac{10!}{2! (10-2)!} \\ & = \dfrac{10 \cdot 9 \cdot 8!}{2 \cdot 8!}=45
\end{align} $

Hasil yang diharapkan adalah paling sedikit satu bola merah, banyak kemungkinan yang diharapkan adalah terambil dua bola merah dari banyak bola merah atau terambil satu bola merah dari banyak bola merah dan satu bola biru dari banyak bola biru.

Jika kita misalkan banyak bola merah adalam $m$, sehingga banyak bola biru adalah $10-m$ sehingga banyak kemungkinan yang diharapkan terjadi, yaitu:
$ \begin{align}
n(E) & = C_{2}^{m}+C_{1}^{m} \cdot C_{1}^{10-m} \\ & = \dfrac{m(m-1)(m-2)!}{2! \cdot (m-2)!} + \dfrac{m(m-1)!}{1! \cdot (m-1)!} \cdot \dfrac{ (10-m)!}{1! (10-m-1)!} \\ & = \dfrac{m(m-1) }{2 } + m \cdot (10-m) \\ & = \dfrac{m^{2}-m }{2 } + \dfrac{20m-2m^{2})}{2 } \\ & = \dfrac{-m^{2}+19m }{2 }
\end{align} $

Peluang kejadian $E$ adalah $\dfrac{1}{5}$, sehingga berlaku:
$\begin{align}
P(E) & = \dfrac{n(E)}{n(S)} \\ \dfrac{1}{5} & = \dfrac{\dfrac{-m^{2}+19m }{2 }}{45} \\ \dfrac{1}{5} & = \dfrac{-m^{2}+19m }{2 \cdot 45 } \\ \dfrac{18}{90} & = \dfrac{-m^{2}+19m }{90} \\ \hline
-m^{2}+19m & = 18 \\ m^{2}-19m+18 & = 0 \\ (m-1)(m-18) & = 0 \\ m=1 \ \text{atau} m=18 &
\end{align}$
Banyak bola biru saat $m=1$ adalah $10-1=9$

$\therefore$ Pilihan yang sesuai $(E)\ 9$

83. Soal UTBK SBMPTN 2019 TKA SAINTEK

Nilai matematika $7$ orang siswa, setelah diurutkan adalah sebagai berikut: $a,b,c,7,d,d,9$. Jika rata-rata semua siswa $7$ dan rata-rata $3$ nilai terendah $\dfrac{17}{3}$, maka rata-rata $3$ nilai terbaik adalah...
$\begin{align}
(A)\ & 8 \\ (B)\ & \dfrac{25}{3} \\ (C)\ & \dfrac{26}{3} \\ (D)\ & 9 \\ (E)\ & \dfrac{28}{3}
\end{align}$
Alternatif Pembahasan:

Nilai keseluruhan setelah diurutkan $a,b,c,7,d,d,9$
$\begin{align}
\bar{x} &= \dfrac{a+b+c+7+d+d+9}{7} \\ 7 &= \dfrac{a+b+c+d+d+16}{7} \\ 49 &= a+b+c+d+d+16 \\ 33 &= a+b+c+d+d
\end{align}$

Rata-rata $3$ nilai terendah $\dfrac{17}{3}$
$\begin{align}
\bar{x} &= \dfrac{a+b+c}{3} \\ \dfrac{17}{3} &= \dfrac{a+b+c}{3} \\ 17 &= a+b+c \\ \hline
33 &= a+b+c+d+d\\ 33 &= 17+d+d\\ 16 &=2d \\ 8 &= d
\end{align}$

Rata-rata $3$ nilai terbaik adalah
$\begin{align}
\bar{x} &= \dfrac{d+d+9}{3} \\ &= \dfrac{8+8+9}{3} \\ &= \dfrac{25}{3}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(B)\ \dfrac{25}{3}$

84. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui bilangan $a,b,5,3,7,6,6,6,6,6$ dengan rata-rata $5$ dan variansinya $\dfrac{13}{5}$. Nilai $ab=\cdots$
$\begin{align}
(A)\ & 2 \\ (B)\ & 4 \\ (C)\ & 6 \\ (D)\ & 8 \\ (E)\ & 10
\end{align}$
Alternatif Pembahasan:

Catatan calon guru yang mungkin bermanfaat tentang statistika data tunggal terkhusus Varians untuk data tunggal. Rumus varians data untuk populasi yaitu
$S^{2} = \dfrac{\sum_{i=1}^{n}(\overline{x}-x_{i})^{2}}{n}$ atau $S^{2}=\overline{x^{2}}-(\overline{x})^{2}$

Dari data pada soal diketahui $\overline{x}=5$, sehingga berlaku:
$\begin{align}
\overline{x} &= \dfrac{a+b+5+3+7+6 \cdot 5}{10} \\ 5 &= \dfrac{a+b+45}{10} \\ 50 &= a+b+45 \\
5 &= a+b \\ \end{align}$

Diketahui variansinya $\dfrac{13}{5}$, sehingga berlaku:
$\begin{align}
S^{2} = \dfrac{\sum_{i=1}^{n}(\bar{x}-x_{i})^{2}}{n} \\ \dfrac{13}{5} &= \dfrac{(5-a)^{2}+(5-b)^{2}+(5-5)^{2}+(5-3)^{2}+(5-7)^{2}+5 \cdot (5-6)^{2}}{10} \\ 26 &= a^{2}-10a+25+b^{2}-10b+25+0+4+4+5 \\ 26 &= a^{2}+b^{2}-10(a+b) +63 \\ 26-63 &= (a +b)^{2}-2ab-10(a+b) \\ -37 &= (5)^{2}-2ab-10(5) \\ -37 &= 25-2ab-50 \\ 2ab &= -25+37=12 \\ ab &= 6
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 6$

85. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diberikan $7$ data, setelah diurutkan, sebagai berikut $a,a+1,a+1,7,b,b,9$. Jika rata-rata data tersebut adalah $7$ dan simpangan rata-ratanya $\dfrac{8}{7}$, maka $a+b=\cdots$
$\begin{align}
(A)\ & 10 \\ (B)\ & 11 \\ (C)\ & 12 \\ (D)\ & 13 \\ (E)\ & 14
\end{align}$
Alternatif Pembahasan:

Catatan calon guru yang mungkin bermanfaat tentang statistika data tunggal terkhusus simpangan rata-rata untuk data tunggal. Rumus simpangan rata-rata (deviasi rata-rata) yaitu
$ SR=\dfrac{\sum_{i}^{n}\left | x_{i}-\overline{x} \right |}{n}$

Dari data pada soal diketahui $\overline{x}=7$, sehingga berlaku:
$\begin{align}
\overline{x} &= \dfrac{a+a+1+a+1+7+b+b+9}{7} \\ 7 &= \dfrac{3a+2b+18}{7} \\ 49 &= 3a+2b+18 \\ 31 &= 3a+2b
\end{align}$

Diketahui simpangan rata-ratanya $\dfrac{8}{7}$, sehingga berlaku:
$\begin{align}
SR &=\dfrac{\sum_{i}^{n}\left | x_{i}-\overline{x} \right |}{n} \\ \dfrac{8}{7} &=\dfrac{\left | a-7 \right |+2\left | a+1-7 \right |+\left | 7-7 \right |+2\left | b-7 \right |+\left | 9-7 \right | }{7} \\ 8 &= 7-a+2(6-a)+0+2(b-7)+2\\ 8 &= 7-a+12-2a+2b-14+2\\ 1 &= -3a+2b
\end{align}$

$\begin{array}{c|c|cc}
3a+2b = 31 & \\ -3a+2b = 1 & (+) \\ \hline
4b = 32 & \\ b = 8 & \\ a = 5
\end{array} $
Nilai dari $a+b=8+5=13$

$\therefore$ Pilihan yang sesuai adalah $(D)\ 13$

86. Soal UTBK SBMPTN 2019 TKA SAINTEK

Rata-rata $50$ bilangan dalam bentuk $m$ dan $n$ adalah $x$. Jika rata-rata $m$ adalah $a$ maka rata-rata $n$ adalah...
$\begin{align}
(A)\ & \dfrac{50x-am}{50a-m} \\ (B)\ & \dfrac{50mx-a}{50m-a} \\ (C)\ & \dfrac{50mx-am}{50m-a} \\ (D)\ & \dfrac{50x-am}{50-m} \\ (E)\ & \dfrac{50ax-am}{50a-m}
\end{align}$
Alternatif Pembahasan:

Catatan calon guru yang mungkin bermanfaat tentang statistika data tunggal terkhusus rata-rata rata-rata gabungan. Rumus rata-rata gabungan yaitu
$\begin{align}
\overline{x}_{gab} &=\dfrac{\overline{x}_{m} \cdot n_{m}+\overline{x}_{n} \cdot n_{n}}{ {n}_{m} + n_{n}} \\ x &=\dfrac{\overline{x}_{m} \cdot n_{m}+\overline{x}_{n} \cdot n_{n}}{ 50} \\ 50 x &= \overline{x}_{m} \cdot n_{m}+\overline{x}_{n} \cdot n_{n} \\ 50 x &= a \cdot n_{m}+ \overline{x}_{n} \cdot \left( 50-n_{m} \right) \\ \overline{x}_{n} \cdot \left( 50-n_{m} \right) &= 50 x- a \cdot n_{m} \\ \overline{x}_{n} &= \dfrac{50 x- a \cdot n_{m}}{ 50-n_{m}} \\ \end{align}$
Untuk data $m$ dengan rata-rata $a$ berlaku:
$\begin{align}
\overline{x}_{m} &= \dfrac{m}{n_{m}} \\ a &= \dfrac{m}{n_{m}} \\ n_{m} &= \dfrac{m}{a}
\end{align}$

$\begin{align}
\overline{x}_{n}&= \dfrac{50 x- a \cdot n_{m}}{ 50-n_{m}} \\ \overline{x}_{n}&= \dfrac{50 x- a \cdot \dfrac{m}{a}}{ 50-\dfrac{m}{a}} \\ \overline{x}_{n}&= \dfrac{50 x- m}{ \dfrac{50a-m}{a}} \\ \overline{x}_{n}&= \dfrac{50a x- am}{ 50a-m }
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(E)\ \dfrac{50ax-am}{50a-m}$

87. Soal UTBK SBMPTN 2019 TKA SAINTEK

Sekumpulan bilangan memiliki nilai rata-rata $25$ dengan jangkauan $10$. Jika setiap bilangan tersebut dikurangi dengan $a$, kemudian hasilnya dibagi dengan $b$, akan menghasilkan bilangan baru dengan rata-rata $15$ dan jangkauan $5$. Nilai $2a+5b$ adalah...
$\begin{align}
(A)\ & 2 \\ (B)\ & 1 \\ (C)\ & 0 \\ (D)\ & -1 \\ (E)\ & -2 \end{align}$
Alternatif Pembahasan:

Untuk rata-rata data lama $x_{1},\ x_{2},\ x_{3},\ \cdots\ x_{n}$
$\begin{align} \bar{x}_{L} &=\dfrac{x_{1}+x_{2}+x_{3}+ \cdots + x_{n}}{n} \\ 25 &=\dfrac{x_{1}+x_{2}+x_{3}+ \cdots + x_{n}}{n} \\ 25n &=x_{1}+x_{2}+x_{3}+ \cdots + x_{n} \end{align}$

Untuk rata-rata data baru $\dfrac{x_{1}-a}{b},\ \dfrac{x_{2}-a}{b},\ \cdots\ \dfrac{x_{n}-a}{b}$
$\begin{align}
\bar{x}_{B} &=\dfrac{\dfrac{x_{1}-a}{b}+\dfrac{x_{2}-a}{b} + \cdots + \dfrac{x_{n}-a}{b}}{n} \\ 15 &=\dfrac{\dfrac{x_{1}-a}{b}+\dfrac{x_{2}-a}{b} + \cdots + \dfrac{x_{n}-a}{b}}{n} \\ 15n &= \dfrac{x_{1}-a}{b}+\dfrac{x_{2}-a}{b} + \cdots + \dfrac{x_{n}-a}{b} \\ 15nb &= x_{1}-a + x_{2}-a + \cdots + x_{n}-a \\ 15nb &= x_{1} + x_{2} + \cdots + x_{n}- an \\ 15nb &= 25n - an \\ 15 b &= 25 - a \\ 15 b +a &= 25 \end{align}$

Catatan!
Jika sudah paham langkah-langkah di atas untuk berikutnya sudah bisa menggunakan aturan bahwa rata-rata berubah mengikuti "tindakan" yang diberikan kepada setiap data.
Jika data lama rata-ratanya $25$ lalu setiap data dikurang $a$ dan dibagi $b$ maka diperoleh rata-rata baru $15$ sehingga berlaku $\dfrac{25-a}{b}=15$.

Untuk jangkauan data lama $x_{1},\ x_{2},\ x_{3},\ \cdots\ x_{n}$
$\begin{align} R &= x_{n}-x_{1} \\ 10 &= x_{n}-x_{1} \end{align}$


Untuk jangkauan data baru $\dfrac{x_{1}-a}{b},\ \dfrac{x_{2}-a}{b},\ \cdots\ \dfrac{x_{n}-a}{b}$
$\begin{align}
R &= \dfrac{x_{n}-a}{b}-\dfrac{x_{1}-a}{b} \\ 5 &= \dfrac{x_{n}-x_{1}}{b} \\ 5 &= \dfrac{10}{b} \\ 5b &= 10 \\ b &= 2 \end{align}$

Catatan!
Jika sudah paham langkah-langkah di atas untuk berikutnya sudah bisa menggunakan aturan bahwa jangkauan berubah mengikuti "tindakan perkalian atau pembagian" yang diberikan kepada setiap data.
Jika data lama jangkauannya $10$ lalu setiap data dikurang $a$ dan dibagi $b$ maka diperoleh jangkauan baru $5$ sehingga berlaku $5 = \dfrac{10}{b}$.

Untuk $b = 2$ kita peroleh
$\begin{align}
15 b +a &= 25 \\ 15 (2) + a &= 25 \\ 30 + a &= 25 \\ a &= -5 \\ \hline 2a+5b &= 2(-5)+5(2) \\ &= -10+10=0 \end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 0$

88. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika garis $y=ax+b$ digeser ke atas sejauh $2$ satuan kemudian dicerminkan terhadap sumbu $x$, maka bayangannya adalah garis $y=-2x+1$. Nilai $3a-2b$ adalah...
$\begin{align}
(A)\ & -8 \\ (B)\ & -4 \\ (C)\ & -1 \\ (D)\ & 8 \\ (E)\ & 12
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang Transformasi Geometri yang mungkin membantu yaitu;

  • Jika titik $A(x,y)$ ditranslasi sejauh $T=\begin{pmatrix}
    a \\b
    \end{pmatrix}$ maka: bayangan yang dihasilkan:
    $\left( x',y' \right)= \begin{pmatrix}
    a \\b
    \end{pmatrix}+(x,y)=\left( x+a,x+b \right)$
  • Jika titik $A(x,y)$ dicerminkan terhadap sumbu-$X$ ($y=0$) maka bayangan yang dihasilkan:
    $A'=\begin{pmatrix}
    x'\\y'
    \end{pmatrix}=\begin{pmatrix}
    1 & 0\\
    0 & -1
    \end{pmatrix}\begin{pmatrix}
    x\\y
    \end{pmatrix}$
Garis $y=ax+b$ di geser sejauh $2$ satuan ke atas sama dengan ditranslasi sejauh $T=\begin{pmatrix}
0 \\ 2
\end{pmatrix}$, setelah pergesaran diperoleh $x'=x+0$ dan $y'=y+2$ sehingga persamaan garis $y=ax+b$ berubah menjadi $y'-2=a(x'+0)+b$ atau $y'=ax'+b+2$.

Garis $y=ax+b+2$ dicerminkan terhadap sumbu-$X$ dan menghasilkan $y=-2x+1$
$\begin{align}
\begin{pmatrix}
x'\\y'
\end{pmatrix} &=\begin{pmatrix}
1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
x\\y
\end{pmatrix} \\ \begin{pmatrix}
x' \\ y'
\end{pmatrix} &=\begin{pmatrix}
x \\ -y
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh $x'=x$ dan $y'=-y$
$\begin{align}
y &= ax+b+2 \\ -y' &= ax'+b+2 \\ -y &= ax +b+2 \\ y &= -ax -b-2
\end{align} $

Persamaan garis $y = -ax -b-2$ ekuivalen dengan $y=-2x+1$, sehingga dapat kita simpulkan:
$\begin{align}
y =& -ax -b-2 \\ y =& -2x+1 \\ \hline
a &=2 \\ -b-2 &=1 \\ b &=3 \\ \hline
3a-2b &= 3(2)-2(-3) \\
&= 12
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(E)\ 12$

89. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $y=2x+1$ digeser sejauh $a$ satuan ke kanan dan sejauh $b$ satuan ke bawah, kemudian dicerminkan terhadap sumbu-$X$, bayangannya menjadi $y=ax-b$. Nilai $a+b=\cdots$
$\begin{align}
(A)\ & -\dfrac{1}{2} \\ (B)\ & -3 \\ (C)\ & 4 \\ (D)\ & 3 \\ (E)\ & \dfrac{1}{2}
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang Transformasi Geometri yang mungkin membantu yaitu;

  • Jika titik $A(x,y)$ ditranslasi sejauh $T=\begin{pmatrix}
    a \\b
    \end{pmatrix}$ maka: bayangan yang dihasilkan:
    $\left( x',y' \right)= \begin{pmatrix}
    a \\b
    \end{pmatrix}+(x,y)=\left( x+a,x+b \right)$
  • Jika titik $A(x,y)$ dicerminkan terhadap sumbu-$X$ ($y=0$) maka bayangan yang dihasilkan:
    $A'=\begin{pmatrix}
    x'\\y'
    \end{pmatrix}=\begin{pmatrix}
    1 & 0\\
    0 & -1
    \end{pmatrix}\begin{pmatrix}
    x\\y
    \end{pmatrix}$
Garis $y=2x+1$ sejauh $a$ satuan ke kanan dan sejauh $b$ satuan ke bawah sama dengan ditranslasi sejauh $T=\begin{pmatrix}
a \\ -b
\end{pmatrix}$ sehingga setelah pergesaran diperoleh $x'=x+a$ dan $y'=y-b$ sehingga persamaan garis $y=2x+1$ berubah menjadi $y'+b=2(x'-a)+1$ atau $y'=2x'-2a-b+1$.

Garis $y =2x -2a-b+1$ dicerminkan terhadap sumbu-$X$ dan menghasilkan $y=ax-b$
$\begin{align}
\begin{pmatrix}
x'\\y'
\end{pmatrix} &=\begin{pmatrix}
1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
x\\y
\end{pmatrix} \\ \begin{pmatrix}
x' \\ y'
\end{pmatrix} &=\begin{pmatrix}
x \\ -y
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh $x'=x$ dan $y'=-y$
$\begin{align}
y &=2x -2a-b+1 \\ -y' &= 2x'-2a-b+1 \\ -y &= 2x -2a-b+1 \\ y &= -2x +2a+b-1
\end{align} $

Persamaan garis $y= -2x +2a+b-1$ ekuivalen dengan $y=ax-b$, sehingga dapat kita simpulkan:
$\begin{align}
y =& -2x +2a+b-1 \\ y =& ax-b \\ \hline
a &=-2 \\ 2a+b-1 &=-b \\ 2(-2) -1 &=-2b \\ \dfrac{5}{2} &= b \\ \hline
a+b &= -2+\dfrac{5}{2} \\
&= \dfrac{1}{2}
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(E)\ \dfrac{1}{2}$

90. Soal UTBK SBMPTN 2019 TKA SAINTEK

Garis $y=2x+1$ dirotasi searah jarum jam sebesar $90^{\circ}$ terhadap titik asal, kemudian digeser ke atas sejauh $b$ satuan dan ke kiri sejauh $a$ satuan, bayangannya menjadi $x-ay=b$. Nilai $a+b=\cdots$
$\begin{align}
(A)\ & 5 \\ (B)\ & 2 \\ (C)\ & 0 \\ (D)\ & -2 \\ (E)\ & -5
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang Transformasi Geometri yang mungkin membantu yaitu;

  • Jika titik $A(x,y)$ ditranslasi sejauh $T=\begin{pmatrix}
    a \\b
    \end{pmatrix}$ maka: bayangan yang dihasilkan:
    $\left( x',y' \right)= \begin{pmatrix}
    a \\b
    \end{pmatrix}+(x,y)=\left( x+a,x+b \right)$
  • Matriks Transformasi rotasi pusat $O(0,0)$ sebesar $270^{\circ}$, $T: \begin{pmatrix}
    cos\ 270 & -sin\ 270\\
    sin\ 270 & cos\ 270
    \end{pmatrix}=\begin{pmatrix}
    0 & 1\\
    -1 & 0
    \end{pmatrix}$.
Garis $y=2x+1$ dirotasi searah jarum jam sebesar $90^{\circ}$ sama dengan sejauh $270^{\circ}$ berlawanan dengan jarum jam terhadap titik asal
$\begin{align}
\begin{pmatrix}
x'\\y'
\end{pmatrix} &=\begin{pmatrix}
0 & 1\\
-1 & 0
\end{pmatrix}\begin{pmatrix}
x\\y
\end{pmatrix} \\ \begin{pmatrix}
x' \\ y'
\end{pmatrix} &=\begin{pmatrix}
y \\ -x
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh $x'= y$ dan $y'=-x$
$\begin{align}
y &= 2x+1 \\ x' &= 2(-y')+1 \\ x &= -2y +1
\end{align} $

Garis $ x= -2y +1$ digeser ke atas sejauh $b$ dan ke kiri sejauh $a$ sama dengan ditranslasi sejauh $T=\begin{pmatrix}
-a \\ b
\end{pmatrix}$ sehingga setelah pergesaran diperoleh $x'=x-a$ dan $y'=y+b$ sehingga persamaan garis $ x=-2y+1$ berubah menjadi $ x'+a =-2(y'-b)+1$ atau $ x'+a=-2y'+2b+1$.

Persamaan garis $x+a=-2y +2b+1$ ekuivalen dengan $x-ay=b$, sehingga dapat kita simpulkan:
$\begin{align}
x +a=& -2y +2b+1 \\ x +2y = & -a +2b+1 \\ x-ay =& b \\ \hline
a &= -2 \\ -a+2b+1 &= b \\ 2 +1 &= -b \\ -3 &= b \\ \hline
a+b &= -2-3 \\
&= -5
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(E)\ -5$

91. Soal UTBK SBMPTN 2019 TKA SAINTEK

Parabola $y=x^{2}-6x+8$ digeser ke kanan sejauh $2$ satuan searah dengan sumbu-$X$ dan digeser ke bawah sejauh $3$ satuan searah sumbu-$Y$. Jika parabola hasil pergeseran ini memotong sumbu-$X$ di $x_{1}$ dan $x_{2}$, maka nilai $x_{1}+x_{2}=\cdots$
$\begin{align}
(A)\ & 7 \\ (B)\ & 8 \\ (C)\ & 9 \\ (D)\ & 10 \\ (E)\ & 11
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang Transformasi Geometri dan tentang persamaan kuadrat yang mungkin membantu yaitu;

  • Jika titik $A(x,y)$ ditranslasi sejauh $T=\begin{pmatrix}
    a \\b
    \end{pmatrix}$ maka: bayangan yang dihasilkan:
    $\left( x',y' \right)= \begin{pmatrix}
    a \\b
    \end{pmatrix}+(x,y)=\left( x+a,x+b \right)$
  • Akar-akar $ax^{2}+bx+c=0$ adalah $x_{1}$ dan $x_{2}$ maka berlaku $x_{1}+x_{2}=-\dfrac{b}{a}$
Parabola $y=x^{2}-6x+8$ digeser ke kanan sejauh $2$ dan ke bawah sejauh $3$ satuan sama dengan ditranslasi sejauh $T=\begin{pmatrix}
2 \\ -3
\end{pmatrix}$ sehingga setelah pergesaran diperoleh $x'=x+2$ dan $y'=y-3$ sehingga berlaku:
$\begin{align}
y &=x^{2}-6x+8 \\ y'+3 &=(x'-2)^{2}-6(x'-2)+8 \\ \hline
y +3 &=(x -2)^{2}-6(x-2)+8 \\ y &= x^{2}-4x+4-6x+12+8-3 \\ y &= x^{2}-10x+21 \\ \hline
0 &= x^{2}-10x+21 \\ x_{1}+x_{2} &= -\dfrac{b}{a} \\ &= -\dfrac{-10}{1} \\ &= 10
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(D)\ 10$

92. Soal UTBK SBMPTN 2019 TKA SAINTEK

Garis $y= x+2$ digeser ke kiri sepanjang sumbu-$X$ sejauh $4$ satuan kemudian diputar $90^{\circ}$ searah jarum jam dengan pusat $O(0,0)$. Jika persamaan garis terakhir adalah $y=mx+b$, maka $m \cdot b =\cdots$
$\begin{align}
(A)\ & 6 \\ (B)\ & 4 \\ (C)\ & 2 \\ (D)\ & -4 \\ (E)\ & -6
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang Transformasi Geometri yang mungkin membantu yaitu;

  • Jika titik $A(x,y)$ ditranslasi sejauh $T=\begin{pmatrix}
    a \\b
    \end{pmatrix}$ maka: bayangan yang dihasilkan:
    $\left( x',y' \right)= \begin{pmatrix}
    a \\b
    \end{pmatrix}+(x,y)=\left( x+a,x+b \right)$
  • Matriks Transformasi rotasi pusat $O(0,0)$ sebesar $270^{\circ}$, $T: \begin{pmatrix}
    cos\ 270 & -sin\ 270\\
    sin\ 270 & cos\ 270
    \end{pmatrix}=\begin{pmatrix}
    0 & 1\\
    -1 & 0
    \end{pmatrix}$.
Garis $y=x+2$ digeser ke kiri sejauh $4$ satuan sama dengan ditranslasi sejauh $T=\begin{pmatrix}
-4 \\ 0
\end{pmatrix}$ sehingga setelah pergesaran diperoleh $x'=x-4$ dan $y'=y+0$ sehingga persamaan garis $y=x+2$ berubah menjadi $ y' =x'+4+2$ atau $y=x+6$.

Garis $y=x+6$ dirotasi searah jarum jam sebesar $90^{\circ}$ sama dengan sejauh $270^{\circ}$ berlawanan dengan jarum jam terhadap titik asal
$\begin{align}
\begin{pmatrix}
x'\\y'
\end{pmatrix} &=\begin{pmatrix}
0 & 1\\
-1 & 0
\end{pmatrix}\begin{pmatrix}
x\\y
\end{pmatrix} \\ \begin{pmatrix}
x' \\ y'
\end{pmatrix} &=\begin{pmatrix}
y \\ -x
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh $x'= y$ dan $y'=-x$
$\begin{align}
y &= x+6 \\ x' &= (-y')+6 \\ x &= -y + 6 \\ y &= -x + 6
\end{align} $

Persamaan garis $y=-x+6$ ekuivalen dengan $y=mx+b$, sehingga dapat kita simpulkan $m=-1$ dan $b=6$ maka $m \cdot b=-6$

$\therefore$ Pilihan yang sesuai adalah $(E)\ -6$

93. Soal UTBK SBMPTN 2019 TKA SAINTEK

Sebuah balok $ABCD.EFGH$ memiliki panjang rusuk $AB=8$ dan $BC=CG=6$. Jika titik $P$ terletak di tengah rusuk $AB$ dan $\theta$ adalah sudut antara $EP$ dan $PG$, maka nilai $cos\ \theta$ adalah...
$\begin{align}
(A)\ & \dfrac{3}{\sqrt{286}} \\
(B)\ & \dfrac{5}{\sqrt{286}} \\
(C)\ & 0 \\
(D)\ & \dfrac{-3}{\sqrt{286}} \\
(E)\ & \dfrac{-5}{\sqrt{286}}
\end{align}$
Alternatif Pembahasan:

Jika kita gambarkan Balok $ABCD.EFGH$, titik $P$ dan sudut $\theta$ seperti berikut ini:

Soal dan Pembahasan UTBK Dimensi tiga

Dari informasi pada gambar dan menggunakan teorema phytagoras kita peroleh:
  • $AP=4$ dan $AE=6$ maka $EP=2\sqrt{13}$
  • $PB=4$ dan $BC=6$ maka $PC=2\sqrt{13}$
  • $PC=2\sqrt{13}$ dan $CG=6$ maka $PG=2\sqrt{22}$
  • $EF=8$ dan $FG=6$ maka $EG=10$
Sudut $\theta$ pada $\bigtriangleup EPG$ adalah sudut antara $EP$ dan $PG$, dapat kita hitung dengan menggunakan aturan cosinus:
$\begin{align}
EG^{2} &= EP^{2}+PG^{2}- 2 \cdot EP \cdot PG\ cos\ \theta \\ cos\ \theta &= \dfrac{EP^{2}+PG^{2}-EG^{2}}{2 \cdot EP \cdot PG} \\ &= \dfrac{\left( 2\sqrt{13} \right)^{2}+\left( 2\sqrt{22} \right)^{2}-\left( 10 \right)^{2}}{2 \cdot 2\sqrt{13} \cdot 2\sqrt{22}} \\ &= \dfrac{52+88-100}{8 \sqrt{286}} \\ &= \dfrac{40}{8 \sqrt{286}} \\ &= \dfrac{5}{\sqrt{286}} \\ \end{align}$

$\therefore$ Pilihan yang sesuai adalah $(B)\ \dfrac{5}{\sqrt{286}}$

94. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui balok $ABCD.EFGH$ dengan $AB=12\ cm$ dan $BC=18\ cm$ dan $CG=20\ cm$. $T$ adalah titik tengah $AD$. Jika $\theta$ adalah sudut antara garis $GT$ dengan bidang $ABCD$, maka nilai $cos\ \theta$ adalah...
$\begin{align}
(A)\ & \dfrac{1}{5} \\
(B)\ & \dfrac{2}{5} \\
(C)\ & \dfrac{3}{5} \\
(D)\ & \dfrac{4}{5} \\
(E)\ & \dfrac{5}{6}
\end{align}$
Alternatif Pembahasan:

Jika kita gambarkan Balok $ABCD.EFGH$, titik $T$ dan sudut $\theta$ seperti berikut ini:

Soal dan Pembahasan UTBK Dimensi tiga

Dari informasi pada gambar dan menggunakan teorema phytagoras kita peroleh:
$\begin{align}
TC^{2} &= DT^{2}+CD^{2} \\ TC^{2} &= 9^{2}+12^{2} \\ TC &= \sqrt{225}=15 \\ \hline
TG^{2} &= TC^{2}+CG^{2} \\ TG^{2} &= (\sqrt{225})^{2}+20^{2} \\ TG &= \sqrt{225 +400}=25 \\ \end{align}$

Dengan menggunkan perbandingan trigonometri kita peroleh:
$\begin{align}
cos\ \theta &= \dfrac{TC}{TG} \\ &= \dfrac{15}{25} = \dfrac{3}{5}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ \dfrac{3}{5}$

95. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui kubus $ABCD.EFGH$ dengan panjang rusuk $2\ cm$. Jika $P$ titik tengah $AB$, $Q$ titik tengah $CG$, dan $R$ terletak pada $PD$ sehingga $QR$ tegak lurus dengan $PD$, maka panjang $QR$ adalah...$cm$
$\begin{align}
(A)\ & \sqrt{\dfrac{21}{5}} \\
(B)\ & \sqrt{\dfrac{21}{6}} \\
(C)\ & \sqrt{\dfrac{21}{9}} \\
(D)\ & \sqrt{\dfrac{21}{12}} \\
(E)\ & \sqrt{\dfrac{21}{15}}
\end{align}$
Alternatif Pembahasan:

Jika kita gambarkan kubus $ABCD.EFGH$ dan titik $P,\ Q,\ R$ seperti berikut ini:

Soal dan Pembahasan UTBK Dimensi tiga

Dari informasi pada gambar dan menggunakan teorema phytagoras kita peroleh:
  • $AP=1$ dan $AD=2$ maka $DP=\sqrt{5}$
  • $CQ=1$ dan $CD=2$ maka $DQ=\sqrt{5}$
  • $PB=1$ dan $BC=2$ maka $PC=\sqrt{5}$
  • $CQ=1$ dan $PC=\sqrt{5}$ maka $PQ=\sqrt{6}$
Dari apa yang kita peroleh di atas, $\bigtriangleup DPQ$ adalah segitiga sama kaki, jika kita gambarkan ilustrasinya seperti berikut ini:
Soal dan Pembahasan UTBK Dimensi tiga
Dari gambar di atas dan menggunakan teorema phytagoras pada segitiga $DSQ$ dapat kita peroleh panjang $DS=\dfrac{1}{2}\sqrt{14}$.

Panjang $QR$ coba kita hitung dengan menggunakan luas segitiga.
$\begin{align}
[DPQ] &= [DPQ] \\ \dfrac{1}{2} \cdot DP \cdot QR &= \dfrac{1}{2} \cdot QP \cdot DS \\ \sqrt{5} \cdot QR &= \sqrt{6} \cdot \dfrac{1}{2}\sqrt{14} \\ QR &= \dfrac{\dfrac{1}{2}\sqrt{14} \cdot \sqrt{6}}{\sqrt{5}} \\ QR &= \sqrt{\dfrac{21}{5}}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(A)\ \sqrt{\dfrac{21}{5}}$

96. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diberikan fungsi $f(x)=2x^{3}+3x^{2}+6x+5$. Garis singgung kurva $y=f(x)$ di titik dengan absis $x=a$ dan $x=a+1$ saling sejajar. Jarak kedua garis singgung tersebut adalah...
$\begin{align}
(A)\ & \dfrac{5}{\sqrt{37}} \\
(B)\ & \dfrac{4}{\sqrt{37}} \\
(C)\ & \dfrac{3}{\sqrt{37}} \\
(D)\ & \dfrac{2}{\sqrt{37}} \\
(E)\ & \dfrac{1}{\sqrt{37}}
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan soal ini kita perlu sedikit catatan tentang turunan yaitu jika $y=f(x)$ maka $m=y'=f'(x)$.

Garis yang menyinggung fungsi $f(x)=2x^{3}+3x^{2}+6x+5$ di $x=a$ dan $x=a+1$ adalah sejajar sehingga gradien kedua garis adalah sama, sehingga berlaku:
$\begin{align}
m = f'(x) & = 6x^{2}+6x+6 \\ \hline
x=a\ & \rightarrow m= 6a^{2}+6a+6 \\ x=a+1\ & \rightarrow m= 6(a+1)^{2}+6(a+1)+6
\end{align}$

$\begin{align}
6a^{2}+6a+6 & = 6 a^{2}+12a+6+6 a+6+6 \\ 6a^{2}+6a+6 & = 6 a^{2}+18a+18 \\ -12 & = 12a \\ a & = -1
\end{align}$

Untuk $x=-1$ maka $y=0$ dan gradien garis singgung adalah $m=y'=6x^{2}+6x+6=6$, persamaan garis adalah:
$\begin{align}
y-y_{1} & = m \left( x-x_{1} \right) \\ y-0 & = 6 \left( x+1 \right) \\ y & = 6 x+ 6
\end{align}$

Untuk $x=0$ maka $y=5$ dan gradien garis singgung adalah $m=y'=6x^{2}+6x+6=6$, persamaan garis adalah:
$\begin{align}
y-y_{1} & = m \left( x-x_{1} \right) \\ y-5 & = 6 \left( x+0 \right) \\ y & = 6 x+5
\end{align}$

Jarak kedua garis adalah jarak titik (-1,0) pada garis $y = 6 x+6$ ke garis $y = 6 x+5$, yaitu:
$\begin{align}
d & = \left| \dfrac{ax_{1}+by_{1}+c}{\sqrt{a^{2}+b^{2}}} \right| \\ & = \left| \dfrac{(-6)(-1)+(1)(0)-5}{\sqrt{(-6)^{2}+(1)^{2}}} \right| \\ & = \left| \dfrac{1}{\sqrt{36+1}} \right| \\ & = \left| \dfrac{1}{\sqrt{37}} \right|
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(E)\ \dfrac{1}{\sqrt{37}}$

97. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika fungsi $\sqrt{ \dfrac{x^{2}-8x+5}{x^{2}+x+12}}$ terdefenisi untuk $x \leq a$ atau $x \geq b$, maka nilai $a+b=\cdots$
$\begin{align}
(A)\ & 8 \\
(B)\ & 5 \\
(C)\ & 0 \\
(D)\ & -5 \\
(E)\ & -8
\end{align}$
Alternatif Pembahasan:

Agar sebuah $f(x)$ terdefinisi maksudnya adalah batasan nilai $x$ agar fungsi $f(x)$ mempunyai nilai real atau sering juga disebut hanya "agar fungsi $f(x)$ mempunyai penyelesaian".

Fungsi pada soal terdiri atas dua fungsi yaitu, fungsi bentuk akar dan fungsi pecahan.

Untuk fungsi pecahan $f(x)=\dfrac{u(x)}{v(x)}$, agar fungsi pecahan terdefenisi (mempunyai nilai real) syaratnya adalah penyebut tidak sama dengan nol $v(x) \neq 0$.

Pada soal di atas penyebut adalah $y=x^{2}+x+12$ karena $a \gt 0$ dan $D \lt 0$ sehingga fungsi selalu bernilai positif untuk setiap $x$ bilangan real atau definit positif.

Untuk fungsi bentuk akar $f(x)=\sqrt{u(x)}$, agar fungsi pecahan terdefenisi (mempunyai nilai real) syaratnya adalah yang di dalam akar harus lebih dari atau sama dengan nol $u(x) \geq 0$. Karena penyebut adalah definit positif, sehingga agar fungsi $\dfrac{x^{2}-8x+5}{x^{2}+x+12} \geq 0$ kita cukup mencari batasan nilai $x$ untuk $ x^{2}-8x+5 \geq 0$.

$ \begin{align}
x^{2}-8x+5 & \geq 0 \\ x_{1,2} & = \dfrac{-b\pm \sqrt{b^{2}-4ac}}{2a} \\ & = \dfrac{-(-8)\pm \sqrt{(-8)^{2}-4(1)(5)}}{2(1)} \\ & = \dfrac{8 \pm \sqrt{64-20}}{2} \\ & = \dfrac{8 \pm \sqrt{44}}{2} \\ & = \dfrac{8 \pm 2 \sqrt{11}}{2} \\ x_{1}& = 4 + \sqrt{11} \\ x_{2}& = 4 - \sqrt{11}
\end{align} $
Himpunan penyelesaian pertidaksamaan kuadrat $x^{2}-8x+5 \geq 0$ adalah Himpunan penyelesaian $\sqrt{ \dfrac{x^{2}-8x+5}{x^{2}+x+12}}$, yaitu $x \leq 4 - \sqrt{11}$ atau $x \geq 4 + \sqrt{11}$, sehingga nilai $a+b= 4 - \sqrt{11}+4 + \sqrt{11}=8$.

$\therefore$ Pilihan yang sesuai adalah $(A)\ 8$

98. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika garis $y=2x-3$ menyinggung parabola $y=4x^{2}+ax+b$ di titik $(-1,-5)$ serta $a$ dan $b$ adalah konstanta, maka $a+b=\cdots$
$\begin{align}
(A)\ & 8 \\
(B)\ & 9 \\
(C)\ & 10 \\
(D)\ & 11 \\
(E)\ & 12
\end{align}$
Alternatif Pembahasan:

Titik $(-1,-5)$ adalah titik singgung sehingga berlaku:
$ \begin{align}
y & =4x^{2}+ax+b \\ -5 & =4(-1)^{2}+a(-1)+b \\ -5 & =4 -a+b \\ -9 & = -a+b \\ a-9 & = b
\end{align} $

Sedikit catatan calon guru yang mungkin kita butuhkan yaitu jika garis $y=2x-3$ menyinggung parabola $y=4x^{2}+ax+b$ maka berlaku diskriminan persamaan kuadrat persekutuan adalah nol $(D=0)$:
$\begin{align}
y & = y \\ 4x^{2}+ax+b & = 2x-3 \\ 4x^{2}+ax-2x+b+3 & = 0 \\ 4x^{2}+(a -2)x+b+3 & = 0 \\ \hline
D & = 0 \\ b^{2}-4ac & = 0 \\ (a-2)^{2}-4(4)(b+3) & = 0 \\ a^{2}-4a+4-16b-48 & = 0 \\ a^{2}-4a -16(a-9)-44 & = 0 \\ a^{2}-4a -16 a+144-44 & = 0 \\ a^{2}-20a+100 & = 0 \\ (a-10) (a-10) &=0 \\ a=10 & \\ \hline
a+b & =10+1=11
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D)\ 11$

99. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika garis $y=mx$ menyinggung elips $\dfrac{(x-2)^{2}}{4}+\dfrac{(y+1)^{2}}{2}=1$, maka nilai $4m=\cdots$
$\begin{align}
(A)\ & 1 \\
(B)\ & 2 \\
(C)\ & 0 \\
(D)\ & -2 \\
(E)\ & -1
\end{align}$
Alternatif Pembahasan:

Sedikit catatan calon guru yang mungkin kita butuhkan pada sistem persamaan yaitu jika garis $y=mx$ menyinggung elips $\dfrac{(x-2)^{2}}{4}+\dfrac{(y+1)^{2}}{2}=1$ maka berlaku diskriminan persamaan kuadrat persekutuan adalah nol $(D=0)$:
$\begin{align}
\dfrac{(x-2)^{2}}{4}+\dfrac{(y+1)^{2}}{2} &=1 \\ (x-2)^{2} + 2(mx+1)^{2} &=4 \\ x^{2}-4x+4 + 2m^{2}x^{2}+4mx+2 &=4 \\ \left(2m^{2}+1\right)x^{2}+(4m-4)x+2 &=0 \\ \hline
D & = 0 \\ b^{2}-4ac & = 0 \\ (4m-4)^{2}-4\left(2m^{2}+1\right)(2) & = 0 \\ 16m^{2}-32m-16m^{2}-8 & = 0 \\ -32m -8 & = 0 \\ -32m & = 8 \\ m & = -\dfrac{8}{32}=-\dfrac{1}{4} \\ 4m &= 1
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(A)\ 1$

100. Soal UTBK SBMPTN 2019 TKA SAINTEK

Garis $y=2x+1$ tidak memotong maupun menyinggung hiperbola $\dfrac{(x-2)^{2}}{2}-\dfrac{(y-a)^{2}}{4}=1$, interval nilai $a$ yang memenuhi adalah....
$\begin{align}
(A)\ & -7 \lt a \lt 3 \\
(B)\ & -3 \lt a \lt 7 \\
(C)\ & a \lt 3\ \text{atau}\ a \gt 7 \\
(D)\ & a \lt -7\ \text{atau}\ a \gt 3 \\
(E)\ & 3 \lt a \lt 7
\end{align}$
Alternatif Pembahasan:

Sedikit catatan calon guru yang mungkin kita butuhkan pada sistem persamaan yaitu jika garis $y=2x+1$ tidak memotong maupun menyinggung hiperbola $\dfrac{(x-2)^{2}}{2}-\dfrac{(y-a)^{2}}{a}=1$ maka berlaku diskriminan persamaan kuadrat persekutuan kurang dari nol $(D \lt 0)$:
$\begin{align}
\dfrac{(x-2)^{2}}{2}-\dfrac{(y-a)^{2}}{4} &=1 \\ \dfrac{x^{2}-4x+4}{2}-\dfrac{y^{2}-2ay+a^{2}}{4} &=1 \\ 2x^{2}-8x+8 - y^{2}+2ay-a^{2} &=4 \\ 2x^{2}-8x+8 - (2x+1)^{2}+2a(2x+1)-a^{2} &=4 \\ 2x^{2}-8x+8 - \left( 4x^{2}+4x+1 \right)+4ax +2a-a^{2} &=4 \\ -2x^{2}-12x+4ax-a^{2}+2a+3 &= 0 \\ 2x^{2}+(12 -4a)x+a^{2}-2a-3 &= 0 \\ \hline
D & \lt 0 \\ b^{2}-4ac & \lt 0 \\ (12-4a)^{2}-4 (2) \left( a^{2}-2a-3 \right) & \lt 0 \\ 144-96a+16a^{2}-8a^{2}+16a+24 & \lt 0 \\ 8a^{2}-80a +168 & \lt 0 \\ a^{2}- 10a +21 & \lt 0 \\ (a-3)(a-7) & \lt 0
\end{align}$
Himpunan penyelesaian pertidaksamaan kuadrat di atas adalah $3 \lt a \lt 7 $

$\therefore$ Pilihan yang sesuai adalah $(E)\ 3 \lt a \lt 7 $

101. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jarak terdekat pada kurva $y=\dfrac{1}{2}x^{2}+1$ ke garis $2x-y=4$ adalah...
$\begin{align}
(A)\ & \dfrac{3}{ 5 }\sqrt{5} \\ (B)\ & \dfrac{5}{ 3 }\sqrt{3} \\ (C)\ & \dfrac{7}{ 5 }\sqrt{5} \\ (D)\ & \dfrac{5}{ 7 }\sqrt{7} \\ (E)\ & \dfrac{1}{ 5 }\sqrt{5} \\
\end{align}$
Alternatif Pembahasan:

Misal titik $(m,n)$ adalah titik pada kurva $y=\dfrac{1}{2}x^{2}+1$ sehingga jarak kurva $y=\dfrac{1}{2}x^{2}+1$ dan garis $2x-y=4$ minimum (terdekat).

$y=\dfrac{1}{2}x^{2}+1$ pada titik $(m,n)$ berlaku $n=\dfrac{1}{2}m^{2}+1$.

Dengan menggunakan rumus jarak titik $\left( x_{1},y_{1}\right)$ ke garis $ax+by+c=0$ adalah $d = \left| \dfrac{ax_{1}+by_{1}+c}{ \sqrt{a^2+b^2}} \right| $ sehingga jarak titik $(m,n)$ ke garis $2x-y-4=0$ adalah
$\begin{align}
d &= \left| \dfrac{ax_{1}+by_{1}+c} {\sqrt{a^2+b^2} } \right| \\ d &= \left| \dfrac{2m-n-4}{\sqrt{(2)^2+(-1)^2}} \right| \\ d &= \left| \dfrac{2m-\left( \dfrac{1}{2}m^{2}+1 \right) -4}{ \sqrt{5}} \right| \\ d &= \left| \dfrac{2m- \dfrac{1}{2} m^{2}-1 -4}{ \sqrt{5}} \right| \\ d &= \left| \dfrac{2m- \dfrac{1}{2}m^{2}-5}{ \sqrt{5}} \right| \\ \end{align}$
Untuk menentukan nilai $d$ minimum maka kita dapat cari dari $d'=0$.

$\begin{align}
d &= \left| \dfrac{2m- \dfrac{1}{2}m^{2}-5}{ \sqrt{5}} \right| \\ d' &= \dfrac{\left( 2 - m \right) \sqrt{5}-0}{ \left( \sqrt{5} \right)^{2}} \\ 0 &= \dfrac{\left( 2 - m \right) \sqrt{5} }{5}\\ 0 &= \left( 2 - m \right) \sqrt{5} \\ \hline
m &= 2 \\ \hline
d &= \left| \dfrac{2m- \dfrac{1}{2}m^{2}-5}{ \sqrt{5}} \right| \\ d &= \left| \dfrac{2(2)- \dfrac{1}{2}(2)^{2}-5}{ \sqrt{5}} \right| \\ d &= \left| \dfrac{4 - 2 -5}{ \sqrt{5}} \right| \\ d &= \left| \dfrac{-3}{ \sqrt{5}} \right| \\ d &= \dfrac{3}{ \sqrt{5} }
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(A)\ \dfrac{3}{ 5 }\sqrt{5}$

102. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jarak terdekat pada kurva $y=x^{2}+1$ ke garis $4x-y=14$ adalah...
$\begin{align}
(A)\ & \dfrac{1}{ 17}\sqrt{17} \\ (B)\ & \dfrac{8}{ 17}\sqrt{17} \\ (C)\ & \sqrt{17} \\ (D)\ & \dfrac{11}{ 17}\sqrt{17} \\ (E)\ & \dfrac{21}{ 17}\sqrt{17}
\end{align}$
Alternatif Pembahasan:

Misal titik $(m,n)$ adalah titik pada kurva $y=x^{2}+1$ sehingga jarak kurva $y=x^{2}+1$ dan garis $4x-y=14$ minimum (terdekat).

$y=x^{2}+1$ pada titik $(m,n)$ berlaku $n=m^{2}+1$.

Dengan menggunakan rumus jarak titik $\left( x_{1},y_{1}\right)$ ke garis $ax+by+c=0$ adalah $d = \left| \dfrac{ax_{1}+by_{1}+c}{ \sqrt{a^2+b^2}} \right| $ sehingga jarak titik $(m,n)$ ke garis $2x-y-4=0$ adalah
$\begin{align}
d &= \left| \dfrac{ax_{1}+by_{1}+c} {\sqrt{a^2+b^2} } \right| \\ d &= \left| \dfrac{4m-n-14}{\sqrt{(4)^2+(-1)^2}} \right| \\ d &= \left| \dfrac{4m-\left( m^{2}+1 \right) -14}{ \sqrt{17}} \right| \\ d &= \left| \dfrac{4m- m^{2} -15}{ \sqrt{17}} \right|
\end{align}$
Untuk menentukan nilai $d$ minimum maka kita dapat cari dari $d'=0$.

$\begin{align}
d &= \left| \dfrac{4m- m^{2} -15}{ \sqrt{17}} \right| \\ d' &= \dfrac{\left( 4 - 2m \right) \sqrt{17}-0}{ \left( \sqrt{17} \right)^{2} } \\ 0 &= \dfrac{\left( 4 - 2m \right) \sqrt{17} }{17} \\ \hline
m &= 2 \\ \hline
d &= \left| \dfrac{4m- m^{2} -15}{ \sqrt{17}} \right| \\ &= \left| \dfrac{4(2)- (2)^{2} -15}{ \sqrt{17}} \right| \\ &= \left| \dfrac{-11}{ \sqrt{17}} \right| = \dfrac{11}{ \sqrt{17}} \\ &= \dfrac{11}{ 17}\sqrt{17}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D)\ \dfrac{11}{ 17}\sqrt{17}$

103. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jarak kurva $y=x^{2}+1$ ke garis $x-2y=0$ adalah...
$\begin{align}
(A)\ & \dfrac{1}{2\sqrt{5}} \\ (B)\ & \dfrac{1}{ \sqrt{5}} \\ (C)\ & \dfrac{3}{2\sqrt{5}} \\ (D)\ & \dfrac{15}{8\sqrt{5}} \\ (E)\ & \dfrac{2}{\sqrt{5}}
\end{align}$
Alternatif Pembahasan:

Misal titik $(m,n)$ adalah titik pada kurva $y=x^{2}+1$ sehingga jarak kurva $y=x^{2}+1$ dan garis $x-2y=0$ minimum (terdekat).

$y=x^{2}+1$ pada titik $(m,n)$ berlaku $n=m^{2}+1$.

Dengan menggunakan rumus jarak titik $\left( x_{1},y_{1}\right)$ ke garis $ax+by+c=0$ adalah $d = \left| \dfrac{ax_{1}+by_{1}+c}{ \sqrt{a^2+b^2}} \right| $ sehingga jarak titik $(m,n)$ ke garis $x-2y=0$ adalah
$\begin{align}
d &= \left| \dfrac{ax_{1}+by_{1}+c} {\sqrt{a^2+b^2} } \right| \\ d &= \left| \dfrac{(m)(1)-(2)(n)+0}{\sqrt{(1)^2+(-2)^2}} \right| \\ d &= \left| \dfrac{ m-2n}{ \sqrt{5}} \right| \\ d &= \left| \dfrac{ m-2 \left( m^{2}+1 \right)}{ \sqrt{5}} \right| \\ d &= \left| \dfrac{ m-2m^{2}+2}{ \sqrt{5}} \right|
\end{align}$
Untuk menentukan nilai $d$ minimum maka kita dapat cari dari $d'=0$.

$\begin{align}
d &= \left| \dfrac{ m-2m^{2}+2}{ \sqrt{5}} \right| \\ d' &= \dfrac{\left( 1 - 2m \right) \sqrt{5}-0}{ \left( \sqrt{5} \right)^{2} } \\ 0 &= \dfrac{\left( 1 - 2m \right) \sqrt{5} }{5} \\ 0 &= \left( 1 - 2m \right) \sqrt{5} \\ \hline
m &= \dfrac{1}{2} \\ \hline
d &= \left| \dfrac{ m-2m^{2}+2}{ \sqrt{5}} \right| \\ &= \left| \dfrac{ \dfrac{1}{2}-2 \cdot \dfrac{1}{4}+2}{ \sqrt{5}} \right| \\ &= \left| \dfrac{ \dfrac{1}{2}- \dfrac{1}{2}+2}{ \sqrt{5}} \right| \\ &= \dfrac{2}{ \sqrt{5}}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(E)\ \dfrac{2}{\sqrt{5}}$

104. Soal UTBK SBMPTN 2019 TKA SAINTEK

Misalkan $l_{1}$ menyatakan garis singgung kurva $y=x^{2}+1$ di titik $(2,5)$ dan $l_{2}$ menyatakan garis singgung kurva $y=1-x^{2}$ yang sejajar dengan garis $l_{1}$. Jarak $l_{1}$ dan $l_{2}$ adalah...
$\begin{align}
(A)\ & \dfrac{2}{\sqrt{17}} \\ (B)\ & \dfrac{4}{\sqrt{17}} \\ (C)\ & \dfrac{6}{\sqrt{17}} \\ (D)\ & \dfrac{8}{\sqrt{17}} \\ (E)\ & \dfrac{10}{\sqrt{17}}
\end{align}$
Alternatif Pembahasan:

Jika kita gambarkan apa yang disampaikan soal, ilustrasinya kurang lebih seperti berikut ini:

Soal dan pembahasan UTBK Tes Kemampuan Akademik SAINTEK Matematika IPA 2019
Pertama kita cari persamaan garis $l_{1}$ yang menyinggung $y=x^{2}+1$ dititi $(2,5)$, sehingga berlaku:
$\begin{align}
m_{1} = y'& = 2x \\ \text{untuk}\ x=2 & \rightarrow m_{1} = 4 \\ \hline
y-y_{1} & = m \left( x- x_{2} \right) \\ y-5 & = 4 \left( x- 2 \right) \\ y-5 & = 4 x - 8 \\ y & = 4 x - 3
\end{align}$
Garis $l_{2}$ menyinggung $y=1-x^{2}$ dan garis $l_{1}$ sejajar $l_{2}$ maka $m_{1}=m_{2}=4$, sehingga berlaku:
$\begin{align}
m_{2} = y'& = -2x \\ 4 & = -2x \\ x = -2 & \rightarrow y=-3
\end{align}$

Titik $(-2,-3)$ berada pada $l_{2}$ dan $l_{1} \parallel l_{2}$ sehingga jarak $l_{1}$ dan $l_{2}$ adalah jarak titik $(-2,-3)$ ke garis $y = 4 x - 3$ atau $4x-y-3=0$.
dimana:
$\begin{align}
d &= \left| \dfrac{ax_{1}+by_{1}+c} {\sqrt{a^2+b^2} } \right| \\ &= \left| \dfrac{(4)(-2)+(-1)(-3)-3}{\sqrt{(1)^2+(-4)^2}} \right| \\ &= \left| \dfrac{-8+3-3}{\sqrt{ 1 + 16}} \right| \\ &= \left| \dfrac{-8}{\sqrt{17}} \right| \\ &= \dfrac{8}{\sqrt{17}}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D)\ \dfrac{8}{\sqrt{17}} $

105. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $0 \lt a \lt 1$ maka $\dfrac{a^{x}+2}{a^{x}} \lt a^{x}$ mempunyai penyelesaian...
$\begin{align}
(A)\ & x \lt {}^\!\log_{a}2 \\ (B)\ & x \lt -{}^\!\log_{a}2 \\ (C)\ & x \gt {}^\!\log_{a}2 \\ (D)\ & x \gt - {}^\!\log_{a}2 \\ (E)\ & x \lt {}^\!\log_{a}4
\end{align}$
Alternatif Pembahasan:

Untuk menyederhanakan penulisan pertidaksamaan sementara kita coba dengan memisalkan $a^{x}=m$ dimana $m \gt 0$ menjadi;
$\begin{align}
\dfrac{a^{x}+2}{a^{x}} & \lt a^{x} \\ \dfrac{m+2}{m} & \lt m \\ \hline
\text{sama-sama dikali}\ & (m) \\ \hline
m+2 & \lt m(m) \\ m+2 & \lt m^{2} \\ m^{2}-m-2 & \gt 0 \\ (m-2)(m+1) & \gt 0 \\ m \lt -1\ \text{atau}\ & m \gt 2
\end{align}$

Kita kembalikan nilai $m=a^{x}$ maka $a^{x} \lt -1$ atau $a^{x} \gt 2$.

  • Untuk $a^{x} \lt -1$ dan $0 \lt a \lt 1$ sehingga tidak ada nilai $x$ yang memenuhi.
  • Untuk $a^{x} \gt 2$ dan $0 \lt a \lt 1$, maka berlaku:
    $\begin{align}
    a^{x} & \gt 2 \\ {}^a\!\log a^{x} & \lt {}^a\!\log 2 \\ x & \lt {}^a\!\log 2 \\ x & \lt {}^ \!\log_{a} 2
    \end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ x \lt {}^\!\log_{a}2$

106. Soal UTBK SBMPTN 2019 TKA SAINTEK

Sebuah lingkaran memiliki pusat $(a,b)$ dengan $a,b \gt 3$, menyinggung garis $3x+4y=12$. Jika lingkaran tersebut berjari-jari $12$, maka $3a+4b=\cdots$
$\begin{align}
(A)\ & 24 \\ (B)\ & 36 \\ (C)\ & 48 \\ (D)\ & 60 \\ (E)\ & 72
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang Lingkaran yang mungkin kita butuhkan adalah:

  • Pusat $(a,b)$ dengan jari-jari $r$
    $\Leftrightarrow $ Persamaan Lingkaran $(x-a)^{2}+(y-b)^{2}=r^{2}$
  • Jarak titik $(x_{1},y_{1})$ ke garis $ax+by+c=0$ adalah:
    $d=\left| \dfrac{ax_{1}+by_{1}+c}{\sqrt{a^{2}+b^{2}}} \right|$
Lingkaran dengan pusat $(a,b)$ dengan jari-jari $12$ menyinggung garis $3x+4y-12=0$, sehingga jarak titik pusat $(a,b)$ ke garis $3x+4y-12=0$ adalah jari-jari lingkaran $r=12$, sehingga berlaku:
$\begin{align}
d &=\left| \dfrac{ax_{1}+by_{1}+c}{\sqrt{a^{2}+b^{2}}} \right| \\ 12 &=\left| \dfrac{3a+4b-12}{\sqrt{3^{2}+4^{2}}} \right| \\ 12 &=\left| \dfrac{3a+4b-12}{5} \right| \\ \end{align}$
Karena $a,b \gt 3$ maka $3a+4b-12 \gt 0$, sehingga berlaku:
$\begin{align}
12 &= \dfrac{3a+4b-12}{5} \\ 60 &= 3a+4b-12 \\ 72 &= 3a+4b
\end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(E)\ 72$

107. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $p(x)=ax^{3}+bx^{2}+2x-3$ habis dibagi $x^{2}+1$, maka nilai $3a - b$ adalah...
$\begin{align}
(A)\ & -9 \\
(B)\ & -3 \\
(C)\ & 3 \\
(D)\ & 9 \\
(E)\ & 12
\end{align}$
Alternatif Pembahasan:

Soal ini kita coba selesaikan dengan Cara Manipulasi Faktor, dengan manipulasi faktor ini, kita anggap faktornya adalah sama dengan nol. Dengan menganggap faktor (pembagi) $x^{2}+1=0$ sehingga diperoleh $x^{2}=-1$.

Dengan $x^{2}=-1$ dan $p(x)=ax^{3}+bx^{2}+2x-3$ habis dibagi $x^{2}+1$ maka berlaku:
$\begin{align}
p(x) & \equiv ax^{3}+bx^{2}+2x-3 \\
p(x) & \equiv ax \cdot x^{2}+bx^{2}+2x-3 \\
0 & \equiv ax (-1) +b (-1) +2x-3 \\
0 & \equiv -ax -b +2x-3 \\
0 & \equiv (2-a)x -b-3 \\
\hline
2-a\ & = 0 \\
a & = 2 \\ \hline
-b-3\ & = 0 \\ b\ & = -3 \\ \hline
\text{nilai}\ 3a-b &= 3(2)-(-3) =9
\end{align}$

$\therefore$ Pilihan yang sesuai $(D)\ 9$

108. Soal UTBK SBMPTN 2019 TKA SAINTEK

Soal dan Pembahasan UTBK Tes Kemampuan Akademik SAINTEK Matematika IPA 2019
Diketahui grafik fungsi $f'$ dan $g'$ dengan beberapa nilai fungsi $f$ dan $g$ sebagai berikut.
$x$ $f(x)$ $g(x)$
$1$ $3$ $2$
$2$ $1$ $3$
$3$ $2$ $1$
Jika $h(x) = \left ( f \circ g \right )(x)$, maka nilai $h'(2)$ adalah...
$\begin{align}
(A)\ & -27 \\
(B)\ & -9 \\
(C)\ & 0 \\
(D)\ & 3 \\
(E)\ & 9
\end{align}$
Alternatif Pembahasan:

Dengan menerapkan aturan turunan fungsi $\dfrac{d}{dx}[u^{n}]=nu^{n-1}u'$ kepada fungsi komposisi $h(x)$, sehingga dapat berlaku:
$\begin{align}
h(x) & = \left ( f \circ g \right )(x) \\
h(x) & = f \left ( g(x) \right ) \\
h'(x) & = f' \left ( g(x) \right ) \cdot g'(x) \\
h'(2) & = f' \left ( g(2) \right ) \cdot g'(2) \\
& = f' \left ( 3 \right ) \cdot 3 \\
& = -3 \cdot 3 \\
& = - 9
\end{align}$
Keterangan:

  • dari kurva $y=g'(x)$ dapat kita peroleh nilai $g'(2)=2$
  • dari tabel $f(x)$ dan $g(x)$ dapat kita peroleh nilai $g(2)=3$
  • dari kurva $y=f'(x)$ dapat kita peroleh nilai $f'(3)=-3$

$\therefore$ Pilihan yang sesuai $(B)\ -9$

109. Soal UTBK SBMPTN 2019 TKA SAINTEK

Soal dan Pembahasan UTBK Tes Kemampuan Akademik SAINTEK Matematika IPA 2019
Jika $h(x) = \left ( f \circ g \right )(x)$, maka $h'(1)$ adalah...
$\begin{align}
(A)\ & 2 \\
(B)\ & -\sqrt{3} \\
(C)\ & 1 \\
(D)\ & -2 \\
(E)\ & -2\sqrt{2}
\end{align}$
Alternatif Pembahasan:

Dari gambar, dapat kita tentukan fungsi $f(x)$ dan $g(x)$ yaitu:

  • Fungsi $g(x)$ adalah garis yang memlalui $(2,0)$ dan $(0,-4)$ sehingga $g(x)$ adalah $2y-4x=-8 \rightarrow y=2x-4$ atau $g(x)=2x-4$ dan $g'(x)=2$
  • Fungsi $f(x)$ adalah lingkaran dengan pusat $(0,0)$ dan $r=2\sqrt{2}$ sehingga $f(x)$ adalah $x^{2}+y^{2}=8$.
    $\begin{align}
    f(x): y^{2} & = 8-x^{2} \\
    y & = \left( 8-x^{2} \right)^{\frac{1}{2}} \\
    y' & = \dfrac{1}{2} \left( 8-x^{2} \right)^{-\frac{1}{2}} \cdot \left( -2x \right) \\
    y' & = \dfrac{1}{2} \left( 8-x^{2} \right)^{-\frac{1}{2}} \cdot \left( -2x \right) \\
    f'(x) & = \dfrac{1}{2} \left( 8-x^{2} \right)^{-\frac{1}{2}} \cdot \left( -2x \right) \\
    \end{align}$

Dengan menerapkan aturan turunan fungsi $\dfrac{d}{dx}[u^{n}]=nu^{n-1}u'$ kepada fungsi komposisi $h(x)$, sehingga dapat berlaku:
$\begin{align}
h(x) & = \left ( f \circ g \right )(x) \\
h(x) & = f \left ( g(x) \right ) \\
h'(x) & = f' \left ( g(x) \right ) \cdot g'(x) \\
h'(1) & = f' \left ( g(1) \right ) \cdot 2 \\
& = f' \left ( -2 \right ) \cdot 2 \\
\hline
f'(x) & = \dfrac{1}{2} \left( 8-x^{2} \right)^{-\frac{1}{2}} \cdot \left( -2x \right) \\
f'(-2) & = \dfrac{1}{2} \left( 8-(-2)^{2} \right)^{-\frac{1}{2}} \cdot \left( -2(-2) \right) \\
& = \dfrac{1}{2} \left( 4 \right)^{-\frac{1}{2}} \cdot 4 \\
& = 1 \\ \hline
h'(1) & = f' \left ( -2 \right ) \cdot 2 \\
& = 1 \cdot 2 \\
& = 2
\end{align}$

$\therefore$ Pilihan yang sesuai $(A)\ 2$

110. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diberikan fungsi $f$ dengan $f(x+3)=f(x)$ untuk tiap $x$. Jika $\int \limits_{-3}^{6} f(x)\ dx = -6$, maka $\int \limits_{3}^{9} f(x)\ dx = \cdots$
$ \begin{align}
(A)\ & -4 \\ (B)\ & -6 \\ (C)\ & -8 \\ (D)\ & -10 \\ (E)\ & -12
\end{align} $
Alternatif Pembahasan:

Catatan calon guru yang mungkin bermanfaat tentang sifat integral tentu;

  • $\int \limits_{a}^{b} f(x)\ dx + \int \limits_{b}^{c} f(x)\ dx = \int \limits_{a}^{c} f(x)\ dx$
  • Jika $f$ periodik dengan periode $p$, maka $\int \limits_{a+p}^{b+p} f(x)dx =\int \limits_{a }^{b } f(x)dx$
    $'$Suatu fungsi $f$ adalah periodik jika terdapat suatu bilangan $p$ sedemikian sehingga $f(x+p)=f(x)$$'$
Karena $f(x+3)=f(x)$ maka $f(x)$ periodik dengan periode $3$, sehingga berlaku:
$\begin{align}
\int \limits_{3}^{9} f(x) dx &= \int \limits_{0}^{6} f(x) \\ \hline
-6 &= \int \limits_{-3}^{6} f(x) dx \\ -6 &= \int \limits_{-3}^{0} f(x) dx +\int \limits_{0}^{3} f(x) dx+\int \limits_{3}^{6} f(x) dx \\ -6 &= \int \limits_{-3}^{0} f(x) dx +\int \limits_{0}^{3} f(x) dx+\int \limits_{3-3}^{6-3} f(x+3) dx \\ -6 &= \int \limits_{0}^{3} f(x) dx +\int \limits_{0}^{3} f(x) dx+\int \limits_{0}^{3} f(x) dx \\ -6 &= 3 \int \limits_{0}^{3} f(x) dx \\ -2 &= \int \limits_{0}^{3} f(x) dx \\ \hline
\int \limits_{3}^{9} f(x) dx & = \int \limits_{0}^{6} f(x) \\ & = \int \limits_{0}^{3} f(x) + \int \limits_{3}^{6} f(x)\\ & = \int \limits_{0}^{3} f(x) + \int \limits_{3-3}^{6-3} f(x+3)\\ & = \int \limits_{0}^{3} f(x) + \int \limits_{0}^{3} f(x)\\ & = (-2) + (-2) \\ &= -4
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(A) \ -4$

111. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika garis $y=mx+4$ tidak memotong elips $\dfrac{x^{2}}{4}+\dfrac{y^{2}}{8}=1$, maka nilai $m$ adalah...
$\begin{align}
(A)\ & -\dfrac{1}{2} \lt m \lt \dfrac{1}{2} \\ (B)\ & -\dfrac{1}{\sqrt{2}} \lt m \lt \dfrac{1}{\sqrt{2}} \\ (C)\ & -1 \lt m \lt 1 \\ (D)\ & -\sqrt{2} \lt m \lt \sqrt{2} \\ (E)\ & -2 \lt m \lt 2
\end{align}$
Alternatif Pembahasan:

Garis tersebut tidak memotong elips maka diskriminan persamaan kuadrat persekutuan kurang dari nol $(D \lt 0)$.
$\begin{align}
\dfrac{x^{2}}{4}+\dfrac{y^{2}}{8} &= 1 \\ 2 x^{2} + y^{2} &= 8 \\ 2 x^{2} + \left( mx+4 \right)^{2} &= 8 \\ 2 x^{2} + m^{2}x^{2}+8mx+16-8 &= 0 \\ \left( m^{2}+2 \right)x^{2} +8mx+8 &= 0 \\ \hline
D & \lt 0 \\ \left( 8m \right)^{2}-4\left( m^{2}+2 \right)\left( 8 \right) & \lt 0 \\ 64m^{2}-32m^{2}-64 & \lt 0 \\ 32m^{2} -64 & \lt 0 \\ m^{2} - 2 & \lt 0 \\ (m-\sqrt{2})(m+\sqrt{2}) & \lt 0 \\ -\sqrt{2} \lt m \lt \sqrt{2}
\end{align}$
Simak kembali jika masih kurang paham menentukan Himpunan Penyelesaian pertidaksamaan kuadrat dengan mudah dan cepat

$ \therefore $ Pilihan yang sesuai adalah $(D)\ -\sqrt{2} \lt m \lt \sqrt{2}$

112. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika garis $y=mx$ tidak berpotongan dengan hiperbola $3x^{2}-4y^{2}=12$, maka nilai $m$ adalah...
$\begin{align}
(A)\ & \left | m \right | \gt \sqrt{\dfrac{2}{3}} \\ (B)\ & \left | m \right | \gt \dfrac{1}{2\sqrt{3}} \\ (C)\ & \left | m \right | \lt \sqrt{\dfrac{2}{3}} \\ (D)\ & \left | m \right | \gt \dfrac{\sqrt{3}}{2} \\ (E)\ & \left | m \right | \lt \dfrac{\sqrt{3}}{2}
\end{align}$
Alternatif Pembahasan:

Garis tersebut tidak memotong hiperbola maka diskriminan persamaan kuadrat persekutuan kurang dari nol $(D \lt 0)$.
$\begin{align}
3x^{2}-4y^{2} &= 12 \\ 3x^{2}-4(mx)^{2} &= 12 \\ 3x^{2}-4 m^{2}x^{2} &= 12 \\ \left(3 -4 m^{2} \right)x^{2} -12 &= 0 \\ \hline
D & \lt 0 \\ \left( 0 \right)^{2}-4\left( 3 -4 m^{2} \right)\left( -12 \right) & \lt 0 \\ 0-4\left( 3 -4 m^{2} \right)\left( -12 \right) & \lt 0 \\ 144-192m^{2} & \lt 0 \\ 192m^{2}-144 & \gt 0 \\ 4m^{2}-3 & \gt 0 \\ (2m-\sqrt{3})(2m+\sqrt{3}) & \gt 0 \\ m \lt -\dfrac{\sqrt{3}}{2}\ \text{atau}\ m \gt \dfrac{\sqrt{3}}{2} & \\ \left | m \right | \gt \dfrac{\sqrt{3}}{2} & \\ \end{align}$
Simak kembali jika masih kurang paham menentukan Himpunan Penyelesaian pertidaksamaan kuadrat dengan mudah dan cepat

$ \therefore $ Pilihan yang sesuai adalah $(D)\ \left | m \right | \gt \dfrac{\sqrt{3}}{2}$

113. Soal UTBK SBMPTN 2019 TKA SAINTEK

Nilai $m$ agar garis $y=mx+1$ tidak memotong hiperbola $\dfrac{x^{2}}{2} - \dfrac{y^{2}}{4} =1$ adalah...
$\begin{align}
(A)\ & m \lt -\dfrac{1}{2}\sqrt{10}\ \text{atau}\ m \gt \dfrac{1}{2}\sqrt{10} \\ (B)\ & m \lt -\dfrac{1}{2}\sqrt{5}\ \text{atau}\ m \gt \dfrac{1}{2}\sqrt{5} \\ (C)\ & m \lt -\dfrac{1}{2}\sqrt{10}\ \text{atau}\ m \gt \dfrac{1}{2}\sqrt{5} \\ (D)\ & -\dfrac{1}{2}\sqrt{10} \lt m \lt \dfrac{1}{2}\sqrt{10} \\ (E)\ & -\dfrac{1}{2}\sqrt{5} \lt m \lt \dfrac{1}{2}\sqrt{5}
\end{align}$
Alternatif Pembahasan:

Garis tersebut tidak memotong hiperbola maka diskriminan persamaan kuadrat persekutuan kurang dari nol $(D \lt 0)$.
$\begin{align}
\dfrac{x^{2}}{2} - \dfrac{y^{2}}{4} & = 1 \\ 2x^{2} - y^{2} & = 4 \\ 2x^{2} - (mx+1)^{2} & = 4 \\ 2x^{2} - (mx+1)^{2} - 4 & = 0 \\ 2x^{2} - m^{2}x^{2}-2mx-1 - 4 & = 0 \\ \left( 2 - m^{2} \right)x^{2}-2mx - 5 & = 0 \\ \hline
D & \lt 0 \\ \left( -2m \right)^{2} - 4 \left( 2 - m^{2} \right)\left( -5 \right) & \lt 0 \\ 4m^{2} + 40 - 20m^{2} & \lt 0 \\ -16m^{2} + 40 & \lt 0 \\ 2m^{2} - 5 & \gt 0 \\ \left( m+\dfrac{1}{2}\sqrt{5} \right) \left( m-\dfrac{1}{2}\sqrt{5} \right) & \gt 0 \\ m \lt - \dfrac{1}{2}\sqrt{5}\ \text{atau}\ m \gt \dfrac{1}{2}\sqrt{5} &
\end{align}$
Simak kembali jika masih kurang paham menentukan Himpunan Penyelesaian pertidaksamaan kuadrat dengan mudah dan cepat

$ \therefore $ Pilihan yang sesuai adalah $(D)\ \left | m \right | \gt \dfrac{\sqrt{3}}{2}$

114. Soal UTBK SBMPTN 2019 TKA SAINTEK

Diketahui $B=\begin{pmatrix}
2 & 0 \\
0 & 1
\end{pmatrix}$ dan $B+C=\begin{pmatrix}
2 & 1 \\
-3 & 1
\end{pmatrix}$. Jika $A$ adalah matriks berukuran $2 \times 2$ sehingga $AB+AC=\begin{pmatrix}
4 & 2 \\
-3 & 1
\end{pmatrix}$, maka determinan matriks $AB$ adalah...
$\begin{align}
(A)\ & 4 \\ (B)\ & 2 \\ (C)\ & 1 \\ (D)\ & -1 \\ (E)\ & -2
\end{align}$
Alternatif Pembahasan:

Berdasarkan informasi pada penjumlahan matriks soal di atas dan menggunakan sifat determinan matriks yaitu $ |A_{m\times m} \times B_{m\times m}| = |A| \times |B|$, maka berlaku:
$\begin{align}
AB+AC & =\begin{pmatrix}
4 & 2 \\
-3 & 1
\end{pmatrix} \\
A \left( B+ C \right) & =\begin{pmatrix}
4 & 2 \\
-3 & 1
\end{pmatrix} \\

A \begin{pmatrix}
2 & 1 \\
-3 & 1
\end{pmatrix} & =\begin{pmatrix}
4 & 2 \\
-3 & 1
\end{pmatrix} \\
A & =\begin{pmatrix}
4 & 2 \\
-3 & 1
\end{pmatrix} \cdot \begin{pmatrix}
2 & 1 \\
-3 & 1
\end{pmatrix}^{-1} \\
A & =\begin{pmatrix}
4 & 2 \\
-3 & 1
\end{pmatrix} \cdot \dfrac{1}{2+3} \begin{pmatrix}
1 & -1 \\
3 & 2
\end{pmatrix} \\
A & = \dfrac{1}{5} \begin{pmatrix}
10 & 0 \\
0 & 5
\end{pmatrix} = \begin{pmatrix}
2 & 0 \\
0 & 1
\end{pmatrix} \\ \hline
\left|AB \right| & = \begin{vmatrix}
2 & 0 \\
0 & 1
\end{vmatrix} \cdot \begin{vmatrix}
2 & 0 \\
0 & 1
\end{vmatrix} \\
& = 2 \cdot 2 \\ &= 4
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(A)\ 4$

115. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika diketahui $x =sin\ \alpha + sin\ \beta$ dan $y =cos\ \alpha - cos\ \beta$, maka nilai terbesar $x^{2}+y^{2}$ tercapai saat...
$\begin{align}
(A)\ & \alpha = - \beta + 45^{\circ} \\ (B)\ & \alpha = - \beta + 60^{\circ} \\ (C)\ & \alpha = - \beta + 90^{\circ} \\ (D)\ & \alpha = - \beta + 120^{\circ} \\ (E)\ & \alpha = - \beta + 180^{\circ} \\ \end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang trigonometri yang mungkin dibutuhkan adalah:

  • $sin^{2} A+cos^{2} A=1$
  • $cos\left ( A-B \right )=cos\ A\ cos\ B + sin\ A\ sin\ B$
$\begin{align}
x &= sin\ \alpha + sin\ \beta \\
y &= cos\ \alpha - cos\ \beta \\ \hline
x^{2} &= sin^{2} \alpha + sin^{2} \beta+2\ sin\ \alpha\ sin\ \beta \\
y^{2} &= cos^{2} \alpha + cos^{2} \beta-2\ cos\ \alpha\ cos\ \beta \, \, [+] \\
\hline
x^{2}+y^{2} &=1 + 1 +2\ sin\ \alpha\ sin\ \beta-2\ cos\ \alpha\ cos\ \beta \\
&=2 +2\ \left( sin\ \alpha\ sin\ \beta - cos\ \alpha\ cos\ \beta \right) \\
&=2 -2\ \left( cos\ \alpha\ cos\ \beta - sin\ \alpha\ sin\ \beta \right) \\
&=2 - 2\ cos\left ( \alpha+\beta \right ) \\
\end{align} $
Nilai terbesar $x^{2}+y^{2}$ terjadi saat $cos\left ( \alpha+\beta \right )=-1$ terkecil, dan $cos\left ( \alpha+\beta \right )=-1$ tercapai salah satunya saat $\alpha+\beta =180^{\circ}$.

$\therefore$ Pilihan yang sesuai adalah $(E)\ \alpha = - \beta + 180^{\circ}$

116. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $(x,y)$ dengan $0 \lt x,\ y \lt \pi $, merupakan penyelesaian dari sistem persamaan:
$\left\{\begin{matrix}
cos\ 2x+cos\ 2y= \dfrac{2}{5} \\
sin\ y=2\ sin\ x\\
\end{matrix}\right.$
maka $3sin\ x-2 sin\ y=\cdots$
$\begin{align}
(A)\ & -\dfrac{4}{5} \\ (B)\ & -\dfrac{2}{5} \\ (C)\ & -\dfrac{1}{5} \\ (D)\ & \dfrac{1}{5} \\ (E)\ & \dfrac{2}{5}
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang trigonometri yang mungkin dibutuhkan adalah:

  • $cos \left ( 2A \right )=cos^{2} A-sin^{2} A$
  • $cos \left ( 2A \right )=1-2sin^{2} A$
$\begin{align}
cos\ 2x+cos\ 2y &= \dfrac{2}{5} \\
1-2sin^{2} x+1-2sin^{2} y &= \dfrac{2}{5} \\
-2sin^{2} x -2sin^{2} y &= \dfrac{2}{5}-2 \\
sin^{2} x +sin^{2} y &= -\dfrac{1}{5}+1 \\
sin^{2} x + \left( 2 sin\ x \right)^{2} &= \dfrac{4}{5} \\
sin^{2} x +4 sin^{2}\ x &= \dfrac{4}{5} \\
5 sin^{2}\ x &= \dfrac{4}{5} \\
sin^{2}\ x &= \dfrac{4}{25} \\
sin\ x &= \pm \sqrt{ \dfrac{4}{25}} \\
sin\ x &= \pm \dfrac{2}{5} \\ \hline
\text{karena}\ 0 \lt x,\ y \lt \pi &\ \text{maka}\ sin\ x = \dfrac{2}{5} \\
\hline
3 sin\ x - 2 sin\ y &= 3 \cdot \dfrac{2}{5} - 2 \cdot 2\ sin\ x \\ &= \dfrac{6}{5} - 2 \cdot 2\ \dfrac{2}{5} \\ &= \dfrac{6}{5} - \dfrac{8}{5} = -\dfrac{2}{5}
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(B)\ - \dfrac{2}{5}$

117. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika garis $y= ax+b$ digeser ke bawah sejauh $6$ satuan kemudian diputar dengan pusat $O(0,0)$ searah jarum jam sebesar $90^{\circ}$ sehingga menghasilkan bayangan garis $y=\dfrac{1}{\sqrt{3}}x$, maka nilai $\dfrac{b}{a^{2}}$ adalah...
$\begin{align}
(A)\ & 1 \\ (B)\ & 2 \\ (C)\ & 3 \\ (D)\ & 4 \\ (E)\ & 6
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang Transformasi Geometri yang mungkin membantu yaitu;

  • Jika titik $A(x,y)$ ditranslasi sejauh $T=\begin{pmatrix}
    a \\b
    \end{pmatrix}$ maka: bayangan yang dihasilkan:
    $\left( x',y' \right)= \begin{pmatrix}
    a \\b
    \end{pmatrix}+(x,y)=\left( x+a,x+b \right)$
  • Matriks Transformasi rotasi pusat $O(0,0)$ sebesar $270^{\circ}$, $T: \begin{pmatrix}
    cos\ 270 & -sin\ 270\\
    sin\ 270 & cos\ 270
    \end{pmatrix}=\begin{pmatrix}
    0 & 1\\
    -1 & 0
    \end{pmatrix}$.
Garis $y=ax+b$ digeser ke bawah sejauh $6$ satuan sama dengan ditranslasi sejauh $T=\begin{pmatrix}
0 \\ -6
\end{pmatrix}$ sehingga setelah pergesaran diperoleh $x'=x+0$ dan $y'=y-6$ sehingga persamaan garis $y=ax+b$ berubah menjadi $ y'+6 =ax'+b$ atau $y=ax+b-6$.

Garis $y=ax+b-6$ dirotasi searah jarum jam sebesar $90^{\circ}$ sama dengan sejauh $270^{\circ}$ berlawanan dengan jarum jam terhadap titik asal
$\begin{align}
\begin{pmatrix}
x'\\y'
\end{pmatrix} &=\begin{pmatrix}
0 & 1\\
-1 & 0
\end{pmatrix}\begin{pmatrix}
x\\y
\end{pmatrix} \\ \begin{pmatrix}
x' \\ y'
\end{pmatrix} &=\begin{pmatrix}
y \\ -x
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh $x'= y$ dan $y'=-x$
$\begin{align}
y &= ax+b-6 \\ x' &= a(-y')+b-6 \\ x' &= -ay'+b-6 \\ x &= -ay+b-6 \\ ay &= x+b-6 \\ y &= \dfrac{1}{a}x+\dfrac{b-6}{a}
\end{align} $

Bayangan garis yang dihasilkan adalah $y = \dfrac{1}{a}x+\dfrac{b-6}{a}$ dan $y=\dfrac{1}{\sqrt{3}}x$, sehingga berlaku:
$\begin{align}
\dfrac{1}{a}x+\dfrac{b-6}{a} & \equiv \dfrac{1}{\sqrt{3}}x \\ \hline
\dfrac{1}{a} &= \dfrac{1}{\sqrt{3}} \\ a &= \sqrt{3} \\ \hline
\dfrac{b-6}{a} &= 0 \\ b-6 &= 0 \\ b &= 6 \\ \hline
\dfrac{b}{a^{2}} &= \dfrac{6}{\left( \sqrt{3} \right)^{2}} \\ &= \dfrac{6}{3}=2
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(B)\ 2$

118. Soal UTBK SBMPTN 2019 TKA SAINTEK

Misalkan balok $ABCD.EFGH$ memiliki panjang rusuk $AB=2\ cm$, $BC=1\ cm$ dan $AE=1\ cm$ . Jika $P$ adalah titik tengah $AB$ dan $\theta$ adalah $\angle EPG$, maka $cos\ \theta$ adalah...
$\begin{align}
(A)\ & 0 \\
(B)\ & \dfrac{1}{\sqrt{6}} \\
(C)\ & \dfrac{2}{\sqrt{6}} \\
(D)\ & \dfrac{\sqrt{5}}{\sqrt{6}} \\
(E)\ & 1
\end{align}$
Alternatif Pembahasan:

Jika kita gambarkan Balok $ABCD.EFGH$, titik $P$ dan sudut $\theta$ seperti berikut ini:

Soal dan Pembahasan UTBK Dimensi tiga

Dari informasi pada gambar dan menggunakan teorema phytagoras kita peroleh:
  • dari $\bigtriangleup APE$, $AP=1$ dan $AE=1$ maka $EP= \sqrt{2}$,
  • dari $\bigtriangleup PBC$, $PB=1$ dan $BC=1$ maka $PC= \sqrt{2}$,
  • dari $\bigtriangleup PCG$, $PC=\sqrt{2}$ dan $CG=1$ maka $PG= \sqrt{3}$,
  • dari $\bigtriangleup EFG$, $EF=2$ dan $FG=1$ maka $EG= \sqrt{5}$
Sudut $\theta$ pada $\bigtriangleup EPG$ adalah sudut antara $EP$ dan $PG$, dapat kita hitung dengan menggunakan aturan cosinus:
$\begin{align}
EG^{2} &= EP^{2}+PG^{2}- 2 \cdot EP \cdot PG\ cos\ \theta \\ cos\ \theta &= \dfrac{EP^{2}+PG^{2}-EG^{2}}{2 \cdot EP \cdot PG} \\ &= \dfrac{\left( \sqrt{2} \right)^{2}+\left( \sqrt{3} \right)^{2}-\left( \sqrt{5} \right)^{2}}{2 \cdot \sqrt{2} \cdot \sqrt{3}} \\ &= \dfrac{0}{8 \sqrt{6}} \\ &= 0
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(A)\ 0$

119. Soal UTBK SBMPTN 2019 TKA SAINTEK

Soal dan Pembahasan UTBK Dimensi tiga
Diketahui segitiga $ABC$ siku-siku di $C$. Titik $D$ berada pada sisi $AB$ sehingga $AD=2 \cdot BD$. Jika $AC=a$ dan $BC=b$, maka luas segitiga $CDD'$ adalah...
$\begin{align}
(A)\ & \dfrac{1}{24}ab \\
(B)\ & \dfrac{1}{18}ab \\
(C)\ & \dfrac{1}{12}ab \\
(D)\ & \dfrac{1}{9}ab \\
(E)\ & \dfrac{1}{6}ab
\end{align}$
Alternatif Pembahasan:

Pada soal disampaikan bahwa $AD=2 \cdot BD$ dan dari besar sudut pada gambar dapat kita ketahui bahwa $\bigtriangleup APE$ sebangun dengan $\bigtriangleup BDD'$, sehingga berlaku:
$\dfrac{DD'}{AC}=\dfrac{BD'}{BC}=\dfrac{BD}{AB}=\dfrac{1}{3}$

  • dengan $AC=a$ maka $DD'=\dfrac{1}{3}a$,
  • dengan $BC=b$ maka $BD'=\dfrac{1}{3}b$ dan $CD'= \dfrac{2}{3}b$,
Dari apa yang kita peroleh di atas, dapat kita hitung luas $\bigtriangleup EPG$, yaitu:
$\begin{align}
\left[ CDD' \right] &= \dfrac{1}{2} \cdot CD' \cdot DD' \\ &= \dfrac{1}{2} \cdot \dfrac{2}{3}b \cdot \dfrac{1}{3}a \\ &= \dfrac{1}{9} ab
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D)\ \dfrac{1}{9}ab$

120. Soal UTBK SBMPTN 2019 TKA SAINTEK

Agar sistem persamaan kuadrat di bawah ini hanya mempunyai satu solusi
$\left\{\begin{matrix}
y=-mx^{2}-2 \\
4x^{2}+y^{2}=4
\end{matrix}\right.$
Nilai $m$ adalah...
$\begin{align}
(A)\ & \dfrac{1}{3} \\ (B)\ & \dfrac{1}{\sqrt{2}} \\ (C)\ & 1 \\ (D)\ & \sqrt{2} \\ (E)\ & \sqrt{3} \\ \end{align}$
Alternatif Pembahasan:

Karena sistem persamaan di atas memiliki tepat satu penyelesaian maka diskriminan $(D=b^{2}-4ac)$ dari persamaan kuadrat persekutuan adalah nol.

Persamaan $y=-mx^{2}-2$ kita ubah menjadi $\dfrac{y+2}{-m}=x^{2}$ lalu kita substitusikan ke $4x^{2}+y^{2}=4$ dan kita peroleh persamaan kuadrat baru.
$\begin{align}
4x^{2}+y^{2} &= 4 \\ 4 \left( \dfrac{y+2}{-m} \right)+y^{2} &= 4 \\ -4y+8+my^{2} &= 4m \\ my^{2}-4y+8-4m &= 0 \\ \hline
b^{2}-4ac & = 0 \\ (-4)^{2} -4(m)(8-4m) & = 0 \\ 16-32m+16m^{2} & = 0 \\ 16m^{2}-32m+16 & = 0 \\ m^{2}-2m+1 & = 0 \\ (m-1)^{2} & = 0 \\ m & = 1
\end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(C)\ 1$

121. Soal UTBK SBMPTN 2019 TKA SAINTEK

Agar sistem persamaan kuadrat di bawah ini hanya mempunyai satu solusi
$\left\{\begin{matrix}
x^{2}+y^{2} = 4 \\
(x-1)^{2}+my^{2}=1
\end{matrix}\right.$
Nilai $m$ adalah...
$\begin{align}
(A)\ & \dfrac{1}{4} \\ (B)\ & \dfrac{1}{2} \\ (C)\ & 1 \\ (D)\ & -\dfrac{1}{2} \\ (E)\ & - \dfrac{1}{4} \\ \end{align}$
Alternatif Pembahasan:

Karena sistem persamaan di atas memiliki tepat satu penyelesaian maka diskriminan $(D=b^{2}-4ac)$ dari persamaan kuadrat persekutuan adalah nol.

Persamaan $x^{2}+y^{2} = 4$ kita ubah menjadi $y^{2}= 4-x^{2}$ lalu kita substitusikan ke $(x-1)^{2}+my^{2}=1$ dan kita peroleh persamaan kuadrat baru.
$\begin{align}
(x-1)^{2}+my^{2} &=1 \\ (x-1)^{2}+m \left( 4-x^{2} \right) &=1 \\ x^{2}-2x+1+4m-mx^{2} &=1 \\ (m-1)x^{2}+2x-4m &= 0 \\ \hline
b^{2}-4ac & = 0 \\ (2)^{2} -4(m-1)(-4m) & = 0 \\ 4 + 16m^{2}-16m & = 0 \\ \left(4m-2 \right)^{2} & = 0 \\ m=\dfrac{1}{2} &
\end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(B)\ \dfrac{1}{2}$

122. Soal UTBK SBMPTN 2019 TKA SAINTEK

Himpunan penyelesaian $\left( 0,25 \right)^{x+2} \gt \left( 0,5 \right)^{x^{2}+1}$ adalah...
$\begin{align}
(A)\ & -1 \lt x \lt 3 \\ (B)\ & -1 \lt x \lt 0 \\ (C)\ & 0 \lt x \lt 3 \\ (D)\ & x \lt -1\ \text{atau}\ x \gt 3 \\ (E)\ & x \lt -2\ \text{atau}\ x \gt 4 \\ \end{align}$
Alternatif Pembahasan:

Salah satu sifat-sifat pertidaksamaan eksponen yaitu Untuk $0 \lt a \lt 1$, jika $a^{f(x)}\ \gt\ a^{g(x)}$ maka $ {f(x)}\ \lt\ {g(x)}$ (*tanda pertidaksamaan berubah). Sehingga dengan menggunakan sifat pertidaksamaan dan manipulasi aljabar, maka kita peroleh:

$\begin{align}
\left( 0,25 \right)^{x+2} & \gt \left( 0,5 \right)^{x^{2}+1} \\ \left( 0,5 \right)^{2x+4} & \gt \left( 0,5 \right)^{x^{2}+1} \\ \hline
2x+4 & \lt x^{2}+1 \\ 0 & \lt x^{2}-2x+1-4 \\ x^{2}-2x+3 & \gt 0 \\ (x+1)(x-3) & \gt 0
\end{align}$
Dengan menerapkan cara kreatif menentukan himpunan penyelesaian pertidaksamaan kuadrat kita peroleh $x \lt -1\ \text{atau}\ x \gt 3$.

$\therefore$ Pilihan yang sesuai $(D)\ x \lt -1\ \text{atau}\ x \gt 3$


123. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika ${}^{3x}\!\log \left( \dfrac{4-x^{2}}{x-3} \right)$ terdefenisi untuk $a \lt x \lt b$, maka $a+b=\cdots$
$\begin{align}
(A)\ & 1 \\ (B)\ & 2 \\ (C)\ & 3 \\ (D)\ & 4 \\ (E)\ & 5
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan soal ini kita perlu mengetahui defenisi logaritma lengkap dengan syaratnya yaitu ${}^a\!\log b=c$ dengan syarat $a \gt 0$, $a \neq 1$ dan $b \gt 0$.

Agar ${}^{3x}\!\log \left( \dfrac{4-x^{2}}{x-3} \right)$ terdefenisi (mempunyai nilai) ada dua syarat yang harus dipenuhi yaitu:
Syarat (I) bilangan pokok $3x$
$\begin{align}
3x \gt 0\ & \text{dan}\ 3x \neq 1 \\ x \gt 0\ & \text{dan}\ x \neq \dfrac{1}{3} \\ 0 \lt x \lt \dfrac{1}{3}\ & \text{atau}\ x \gt \dfrac{1}{3}
\end{align}$

Syarat (II) Numerus $\left( \dfrac{4-x^{2}}{x-3} \right)$:
$\begin{align}
\left( \dfrac{4-x^{2}}{x-3} \right) & \gt 0 \\ \left( \dfrac{x^{2}-4}{x-3} \right) & \lt 0 \\ \dfrac{(x-2)(x+2)}{x-3} & \lt 0
\end{align}$

Soal dan Pembahasan Pertidaksamaan UTBK 2019
Himpunan penyelesaian dari uji nilai $x$ di atas adalah $x \lt -2$ atau $2 \lt x \lt 3$

Berikutnya kita cari irisan himpunan penyelesaian yang kita peroleh dari syarat (I) $0 \lt x \lt \dfrac{1}{3}\ \text{atau}\ x \gt \dfrac{1}{3}$ dan syarat (II) $x \lt -2$ atau $2 \lt x \lt 3$ maka kita peroleh:
Soal dan Pembahasan Pertidaksamaan UTBK 2019
Himpunan penyelesaian adalah $2 \lt x \lt 3$ sehingga nilai $a+b=2+3=5$

$\therefore$ Pilihan yang sesuai adalah $(E)\ 5$

124. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika untuk semua bilangan real $x \lt 7$ sehingga ${}^{x}\!\log \left( \dfrac{x^{2}+x-12}{x^{2}+x+12} \right)$ terdefenisi untuk $a \lt x \lt b$, maka $b-a=\cdots$
$\begin{align}
(A)\ & 1 \\ (B)\ & 2 \\ (C)\ & 3 \\ (D)\ & 4 \\ (E)\ & 5
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan soal ini kita perlu mengetahui defenisi logaritma lengkap dengan syaratnya yaitu ${}^a\!\log b=c$ dengan syarat $a \gt 0$, $a \neq 1$ dan $b \gt 0$.

Agar ${}^{x}\!\log \left( \dfrac{x^{2}+x-12}{x^{2}+x+12} \right)$ terdefenisi (mempunyai nilai) ada dua syarat yang harus dipenuhi yaitu:
Syarat (I) bilangan pokok $x$
$\begin{align}
x \gt 0\ & \text{dan}\ x \neq 1 \\ 0 \lt x \lt 1\ & \text{atau}\ x \gt 1
\end{align}$

Syarat (II) Numerus $\left( \dfrac{x^{2}+x-12}{x^{2}+x+12} \right)$:
$\begin{align}
\left( \dfrac{x^{2}+x-12}{x^{2}+x+12} \right) & \gt 0 \\ \dfrac{(x+4)(x-3)}{x^{2}+x+12} & \gt 0 \\ \end{align}$
$x^{2}+x+12$ adalah Definit Positif $\left( a \gt 0\ \text{dan}\ b^{2}-4ac \lt 0 \right)$ artinya selalu bernilai positif untuk setiap $x$ bilangan real.

Soal dan Pembahasan Pertidaksamaan UTBK 2019
Himpunan penyelesaian dari uji nilai $x$ di atas adalah $x \lt -4$ atau $x \gt 3$

Berikutnya kita cari irisan himpunan penyelesaian yang kita peroleh dari syarat (I) $0 \lt x \lt 1$ atau $x \gt 1$, syarat (II) $x \lt -4$ atau $x \gt 3$ dan syarat soal $x \lt 7$ maka kita peroleh:
Soal dan Pembahasan Pertidaksamaan UTBK 2019

Himpunan penyelesaian akhir adalah $3 \lt x \lt 7$ sehingga nilai $b-a=7-3=4$

$\therefore$ Pilihan yang sesuai adalah $(E)\ 4$

125. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $a \lt x \lt b$ adalah solusi dari $\dfrac{x^{2}+2x+2}{x^{2}+x} \lt 0$, maka nilai $a+b$ adalah...
$\begin{align}
(A)\ & 2 \\ (B)\ & 1 \\ (C)\ & 0 \\ (D)\ & -1 \\ (E)\ & -2
\end{align}$
Alternatif Pembahasan:

Pertidaksamaan pecahan $\dfrac{x^{2}+2x+2}{x^{2}+x} \lt 0$ agar mempunyai solusi syarat pertama adalah:
$\begin{align}
x^{2}+x & \neq 0 \\ x \left( x+1 \right) & \neq 0 \\ x \neq 0\ \text{atau}\ & x \neq -1
\end{align}$

Berikutnya kita coba selesaikan pertidaksamaan dengan uji nilai $x$:
$\begin{align}
\dfrac{x^{2}+2x+2}{x^{2}+x} & \lt 0 \\ \dfrac{x^{2}+2x+2}{x \left( x+1 \right)} & \lt 0
\end{align}$
$x^{2}+2x+2$ adalah Definit Positif $\left( a \gt 0\ \text{dan}\ b^{2}-4ac \lt 0 \right)$ artinya selalu bernilai positif untuk setiap $x$ bilangan real.

Soal dan Pembahasan Pertidaksamaan UTBK 2019
Himpunan penyelesaian dari uji nilai $x$ di atas adalah $-1 \lt x \lt 0 \equiv a \lt x \lt b$, dan jika kita lihat dengan syarat pertama $x \neq 0$ atau $x \neq -1$ sudah memenuhi sehingga nilai $a+b=-1+0=-1$

$\therefore$ Pilihan yang sesuai adalah $(D)\ -1$

126. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika $a \lt x \lt b$ adalah solusi dari $\dfrac{x^{2}+x+3}{x^{2}-x-2} \lt 0$, maka nilai $b-2a$ adalah...
$\begin{align}
(A)\ & 1 \\ (B)\ & 2 \\ (C)\ & 3 \\ (D)\ & 4 \\ (E)\ & 5
\end{align}$
Alternatif Pembahasan:

Pertidaksamaan pecahan $\dfrac{x^{2}+x+3}{x^{2}-x-2} \lt 0$ agar mempunyai solusi syarat pertama adalah:
$\begin{align}
x^{2}-x-2 & \neq 0 \\ \left( x-2 \right) \left( x+1 \right) & \neq 0 \\ x \neq 2\ \text{atau}\ & x \neq -1
\end{align}$

Berikutnya kita coba selesaikan pertidaksamaan dengan uji nilai $x$:
$\begin{align}
\dfrac{x^{2}+x+3}{x^{2}-x-2} \lt 0 \\ \dfrac{x^{2}+x+3}{\left( x-2 \right) \left( x+1 \right)} & \lt 0
\end{align}$
$x^{2}+x+3$ adalah Definit Positif $\left( a \gt 0\ \text{dan}\ b^{2}-4ac \lt 0 \right)$ artinya selalu bernilai positif untuk setiap $x$ bilangan real.

Soal dan Pembahasan Pertidaksamaan UTBK 2019
Himpunan penyelesaian dari uji nilai $x$ di atas adalah $-1 \lt x \lt 2 \equiv a \lt x \lt b$, dan jika kita lihat dengan syarat pertama $x \neq -1$ atau $x \neq 2$ sudah memenuhi sehingga nilai $b-2a=2-2(-1)=4$

$\therefore$ Pilihan yang sesuai adalah $(D)\ 4$

127. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika semua nilai $x$ dengan $-1 \leq x \leq 1$ yang memenuhi $\left| 2x+1 \right|-\left| 2-x \right| \leq 0$ adalah $a \leq x \leq b$, maka nilai $3ab$ adalah...
$ \begin{align}
(A)\ & -2 \\ (B)\ & -1 \\ (C)\ & 0 \\ (D)\ & 1 \\ (E)\ & 2
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba dengan menggunakan $\sqrt{x^{2}}=\left| x \right|$ dan beberapa manipulasi aljabar😊

$\begin{align}
\left| 2x+1 \right|-\left| 2-x \right| & \leq 0 \\ \left| 2x+1 \right| & \leq \left| 2-x \right| \\ \sqrt{ \left( 2x+1 \right )^{2}} & \leq \sqrt{ \left( 2-x \right)^{2}} \\ \sqrt{ 4x^{2}+4x+1} & \leq \sqrt{x^{2}-4x+4} \\ 4x^{2}+4x+1 & \leq x^{2}-4x+4 \\ 4x^{2}+4x+1-x^{2}+4x-4 & \leq 0 \\ 3x^{2}+8x-3 & \leq 0 \\ \left(3x-1 \right)\left(x+3 \right) & \leq 0 \\ \end{align}$
Dengan menggunakan cara kreatif menentukan Himpunan Penyelesaian pertidaksamaan kuadrat kita peroleh $-3\ \leq x \leq \dfrac{1}{3}$.

Yang diminta pada soal adalah semua nilai $x$ yang memenuhi $-1 \leq x \leq 1$ dan $-3\ \leq x \leq \dfrac{1}{3}$, maka kita coba tentukan irisan dari kedua pertidasamaan dengan menggunakan ilustrasi gambar berikut:

Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
Dari ilustrasi pada gambar di atas kita peroleh irisannya adalah $-1 \leq x \leq \dfrac{1}{3} \equiv a \leq x \leq b$ sehingga nilai $3ab=3(-1)\left( \dfrac{1}{3} \right)=-1$

$ \therefore $ Pilihan yang sesuai adalah $(B)\ -1$

128. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika semua nilai $x$ dengan $0 \lt x \lt 10$ yang memenuhi $\left| 2x-1 \right|-\left| x+2 \right| \geq 0$ adalah $a \leq x \lt b$, maka nilai $b-a$ adalah...
$ \begin{align}
(A)\ & 5 \\ (B)\ & 6 \\ (C)\ & 7 \\ (D)\ & 8 \\ (E)\ & 9
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba dengan menggunakan $\sqrt{x^{2}}=\left| x \right|$ dan beberapa manipulasi aljabar😊

$\begin{align}
\left| 2x-1 \right|-\left| x+2 \right| & \geq 0 \\ \left| 2x-1 \right| & \leq \left| x+2 \right| \\ \sqrt{ \left( 2x-1 \right )^{2}} & \geq \sqrt{ \left( x+2 \right)^{2}} \\ \sqrt{ 4x^{2}-4x+1} & \geq \sqrt{x^{2}+4x+4} \\ 4x^{2}-4x+1 & \geq x^{2}+4x+4 \\ 4x^{2}-4x+1-x^{2}-4x-4 & \geq 0 \\ 3x^{2}-8x-3 & \geq 0 \\ \left(3x+1 \right)\left(x-3 \right) & \geq 0 \\ \end{align}$
Dengan menggunakan cara kreatif menentukan Himpunan Penyelesaian pertidaksamaan kuadrat kita peroleh $x \leq -\dfrac{1}{3}$ atau $x \geq 3$.

Yang diminta pada soal adalah semua nilai $x$ yang memenuhi $0 \lt x \lt 10$ dan $x \leq -\dfrac{1}{3}$ atau $x \geq 3$, maka kita coba tentukan irisan dari kedua pertidasamaan dengan menggunakan ilustrasi gambar berikut:

Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
Dari ilustrasi pada gambar di atas kita peroleh irisannya adalah $3 \leq x \lt 10 \equiv a \leq x \lt b$ sehingga nilai $b-a=10-3=7$

$ \therefore $ Pilihan yang sesuai adalah $(C)\ 7$

129. Soal UTBK SBMPTN 2019 TKA SAINTEK

Jika interval $\left[ a,b \right]$ adalah himpunan penyelesaian dari pertidaksamaan $\left| 3 - |x-3| \right| \leq 3$, maka nilai $a+b=\cdots$
$ \begin{align}
(A)\ & 6 \\ (B)\ & 7 \\ (C)\ & 8 \\ (D)\ & 9 \\ (E)\ & 10
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba dengan menggunakan sifat pertidaksamaan nilai mutlak yaitu:

  • Jika $|f(x)| \lt a$ maka HP adalah $\left \{ x|-a\ \lt f(x) \lt a \right \}$
  • Jika $|f(x)| \gt a$ maka HP adalah $\left \{ x|f(x) \lt -a\ \text{atau}\ f(x) \gt a \right \}$
\begin{array} \\ \left| 3- |x-3| \right | \leq 3 &\\ -3 \leq 3- |x-3| \leq 3 & \\ -3-3 \leq - |x-3| \leq 3-3 &\\ -6 \leq - |x-3| \leq 0 & \\ 0 \leq |x-3| \leq 6 & \\ \end{array}
Pertidaksamaan di atas kita kerjakan dalam dua tahap, yaitu:
\begin{array} \\ 0 \leq |x-3| & \\ x-3 \leq 0\ \text{atau}\ x-3 \geq 0 & \\ x \leq 3\ \text{atau}\ x \geq 3 & \\ \text{atau}\ \text{selalu benar untuk}\ x \in \text{Bilangan Real} & \\ \hline
|x-3| \leq 6 & \\ -6 \leq x-3 \leq 6 & \\ -6+3 \leq x \leq 6+3 & \\ -3 \leq x \leq 9 &
\end{array}
Himpunan penyelesaian soal adalah irisan dari pertidaksamaan $x \leq 3\ \text{atau}\ x \geq 3$ dan $-3 \leq x \leq 9$ , jika kita gambarkan ilustrasinya seperti berikut ini:
Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
Dari gambar di atas himpunan penyelesaian adalah $-3 \leq x \lt 9 \equiv \left[-3,9 \right]$ sehingga nilai $a+b=-3+9=6$

$ \therefore $ Pilihan yang sesuai adalah $(A)\ 6$

130. Soal UTBK SBMPTN 2019 TKA SAINTEK

Himpunan penyelesaian dari $\left| x \right| \lt 3 + \left| x-3 \right|$ adalah...
$\begin{align}
(A)\ & 0 \leq x \leq 3 \\ (B)\ & x \lt 3 \\ (C)\ & x \geq 3 \\ (D)\ & x \geq -3 \\ (E)\ & x \geq 0
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba mulai dari mencari batasan (pembuat nol) untuk setiap nilai mutlak. Pembuat nol ini untuk melihat batasan nilai $x$ karena nilai mutlak nilainya selalu lebih dari atau sama dengan nol.
$|x|=\left\{\begin{matrix}
x,\ \text{untuk}\ x\geq 0 \\
x,\ \text{untuk}\ x \lt 0
\end{matrix}\right.$

$|x-3|=\left\{\begin{matrix}
x-3,\ \text{untuk}\ x \geq 3 \\
-(x-3),\ \text{untuk}\ x \lt 3
\end{matrix}\right.$

Berdasarkan batasan nilai $x$ dari defenisi nilai mutlak di atas, kita peroleh batasan nilai $x$ yang memenuhi:

  • Untuk $x \lt 0$, maka
    $\begin{align}
    \left| x \right| & \lt 3 + \left| x-3 \right| \\ \left| x \right| - \left| x-3 \right| & \lt 3 \\ -\left( x \right) - \left(- (x-3) \right) & \lt 3 \\ -x+x-3 & \lt 3 \\ -3 & \lt 3 \\ \text{selalu benar untuk}\ & x \in R \\ \end{align}$
    Jika dapat penyelesaian akhir seperti di atas (Pernyataan Benar), maka semua nilai $x$ bilangan real memenuhi.
    Irisan $x \lt 0$ dan $x \in R $ adalah $x \lt 0$
  • Untuk $0 \leq x \lt 3$, maka
    $\begin{align}
    \left| x \right| & \lt 3 + \left| x-3 \right| \\ \left| x \right| - \left| x-3 \right| & \lt 3 \\ \left( x \right) - \left(- (x-3) \right) & \lt 3 \\ x +x-3 & \lt 3 \\ 2x & \lt 6 \\ x & \lt 3
    \end{align}$
    Irisan $0 \leq x \lt 3$ dan $x \lt 3$ adalah $0 \leq x \lt 3$
    Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019
  • Untuk $x \geq 3$, maka
    $\begin{align}
    \left| x \right| & \lt 3 + \left| x-3 \right| \\ \left| x \right| - \left| x-3 \right| & \lt 3 \\ x - x + 3 & \lt 3 \\ 0 & \lt 0 \\ \end{align}$
    Jika dapat penyelesaian akhir seperti di atas (Pernyataan Salah), maka tidak ada nilai $x$ bilangan real yang memenuhi.
    Irisan $x \geq 3$ dan tidak ada nilai $x \in R$ yang memenuhi adalah Himpunan Kosong $\left( \varnothing \right)$.
Himpunan penyelesaian soal adalah gabungan dari ketiga pertidaksamaan dari apa yang kita peroleh di atas, jika kita ilustrasikan dalam gambar yaitu:
Soal dan pembahasan Pertidaksamaan Nilai mutlak UTBK SAINTEK 2019

Berdasarkan ilustrasi di atas, himpunan penyelesaian yang merupakan gabungan pertidaksamaan yaitu $x \lt 3$

$ \therefore $ Pilihan yang sesuai adalah $(B)\ x \lt 3$

Catatan 100+ Soal dan Pembahasan UTBK SBMPTN 2019 TKA SAINTEK Matematika IPA (*Simulasi UTBK SBMPTN 2024) di atas sifatnya "dokumen hidup" yang senantiasa diperbaiki atau diperbaharui sesuai dengan dinamika kebutuhan dan perubahan zaman. Catatan tambahan dari Anda untuk admin diharapkan dapat meningkatkan kualitas catatan ini 🙏 CMIIW.

JADIKAN HARI INI LUAR BIASA!
Ayo Share (Berbagi) Satu Hal Baik.
Jangan jadikan sekolah hanya untuk mencari nilai, tetapi bagaimana sekolah itu menjadikanmu bernilai.
close