Skip to main content

Matematika Dasar Limit Fungsi Aljabar (*Soal dan Pembahasan)

Matematika Dasar yang akan kita diskusikan berikut adalah tentang Limit Fungsi Aljabar. Sebelumnya kita sudah coba diskusikan tentang persamaan kuadrat, karena sedikit banyaknya nanti Limit fungsi aljabar ini akan banyak menyinggung kepada persamaan kuadrat. Sehingga materi persamaan kuadrat sebelumnya sangat dibutuhkan untuk memantapkan soal-soal dan pembahasan tentang limit fungsi aljabar ini.

Beberapa sampel soal untuk dibahas yaitu dari soal-soal SBMPTN (Seleksi Bersama Masuk Perguruan Tinggi Negeri) atau SMMPTN (Seleksi Mandiri Masuk Perguruan Tinggi Negeri) dan UN (Ujian Nasional). Soal-soal dan pembahasan limit fungsi trigonometri ini masih jauh dari sempurna, jadi jika ada masukan yang sifatnya membangun silahkan disampaikan.

Tetapi sebelumnya kemarin siswa baru selesai penilaian harian tentang limit, sehingga sebagai kenang-kenangan hasil pekerjaan siswa kita photo dan ditampilkan sebagai photo dari artikel ini karena hasil pekerjaan siswa yang dapat nilai sempurna.

Sebagai catatan sederhana tentang limit fungsi yaitu baik untuk limit fungsi aljabar dan trigonometri.

Berdasarkan defenisi limit, Jika nilai Limit Kiri = Limit Kanan=L secara simbol dituliskan $\lim\limits_{x \to a^{+}}f(x)=\lim\limits_{x \to a^{-}}f(x)=L$ maka nilai $\lim\limits_{x \to a}f(x)=L$.

Nilai limit fungsi $\lim\limits_{x \to a}f(x)$ dapat ditentukan dengan cara mensubstitusi nilai $x=a$ ke fungsi $f(x)$.

Tetapi jika nilai yang dihasilkan adalah bentuk tak tentu antara lain $\dfrac{0}{0}, \, \dfrac{\infty}{\infty} , \, \infty - \infty , \, 0^0 , \, \infty ^ \infty $ maka dilakukan manipulasi aljabar dengan cara memfaktorkan atau mengalikan dengan akar sekawan;

Menyelesaikan Limit fungsi aljabar dengan pemfaktoran

Bentuk-bentuk pemfaktoran yang sering digunakan antara lain:
  • $a^{2} - b^{2} = (a+b)(a-b) $
  • $ a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2}) $
  • $ a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$

Menyelesaikan Limit Fungsi Aljabar dengan mengalikan akar sekawan

Berikut beberapa bentuk akar sekawan dari beberapa fungsi:
  • $ \sqrt{x} + \sqrt{a} \, $ akar sekawannya : $ \sqrt{x} - \sqrt{a} $
  • $ a\sqrt{x} - b \sqrt{y} \, $ akar sekawannya : $ a\sqrt{x} + b \sqrt{y} $
  • $ a\sqrt{x} + b \, $ akar sekawannya : $ a\sqrt{x} - b $

Menyelesaikan Limit Fungsi dengan Metode L'Hospital atau Menggunakan Turunan

Cara menyelesaikan limit dengan turunan ini adalah tambahan karena kita harus sudah mengenal atau belajar Turunan Fungsi. Tetapi jika belum mengenal atau belajar Fungsi Turunan, menggunakan cara ini tidak dianjurkan.
Jika nilai $\lim\limits_{x \to a} \dfrac{f(x)}{g(x)} = \dfrac{0}{0} \,$
Maka manipulasi aljabar pada limit fungsi tersebut diselesaikan dengan turunan, yaitu:
$ \lim\limits_{x \to a} \dfrac{f(x)}{g(x)} = \lim\limits_{x \to a} \dfrac{f^{\prime} (x)}{g^{\prime} (x)} =
\lim\limits_{x \to a} \dfrac{f^{\prime \prime} (x)}{g^{\prime \prime} (x)}=L$

Mari kita simak contoh Soal Limit Fungsi dan Pembahasannya 😊

1. Soal UM UNDIP 2009 (*Soal Lengkap)

Jika $f(x)=\dfrac{x-\sqrt{x}}{x+\sqrt{x}}$, maka $\underset{x \to 0}{lim} f(x)=\cdots$
$\begin{align}
(A)\ & 0 \\
(B)\ & -\dfrac{1}{2} \\
(C)\ & -1 \\
(D)\ & -2 \\
(E)\ & \infty
\end{align}$
Alternatif Pembahasan:

Karena $f(x)=\dfrac{x-\sqrt{x}}{x+\sqrt{x}}$ maka $\underset{x \to 0}{lim} f(x)$ adalah
$\begin{align}
& \underset{x \to 0}{lim} \dfrac{x-\sqrt{x}}{x+\sqrt{x}} \\
& = \underset{x \to 0}{lim} \dfrac{x-\sqrt{x}}{x+\sqrt{x}} \cdot \dfrac{\dfrac{1}{\sqrt{x}}}{\dfrac{1}{\sqrt{x}}} \\
& = \underset{x \to 0}{lim} \dfrac{\dfrac{x}{\sqrt{x}}-1}{\dfrac{x}{\sqrt{x}}+1} \\
& = \underset{x \to 0}{lim} \dfrac{\sqrt{x}-1}{\sqrt{x}+1} \\
& = \dfrac{\sqrt{0}-1}{\sqrt{0}+1} \\
& = \dfrac{-1}{1}=-1
\end{align}$

$\therefore$ Pilihan yang sesuai $(C)\ -1$

2. Soal UM UNDIP 2011 (*Soal Lengkap)

Nilai $\underset{x \to 0}{lim} \dfrac{3-\sqrt{3x^{2}+2x+9}}{2x}=\cdots$
$\begin{align}
(A)\ & -\dfrac{1}{6} \\
(B)\ & -\dfrac{1}{3} \\
(C)\ & \dfrac{1}{6} \\
(D)\ & \dfrac{1}{3} \\
(E)\ & \dfrac{2}{3}
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \underset{x \to 0}{lim} \dfrac{3-\sqrt{3x^{2}+2x+9}}{2x} \\
& = \underset{x \to 0}{lim} \dfrac{3-\sqrt{3x^{2}+2x+9}}{2x} \cdot \dfrac{3+\sqrt{3x^{2}+2x+9}}{3+\sqrt{3x^{2}+2x+9}} \\
& = \underset{x \to 0}{lim} \dfrac{\left( 3-\sqrt{3x^{2}+2x+9} \right) \left( 3+\sqrt{3x^{2}+2x+9} \right)}{ \left(2x \right) \left( 3+\sqrt{3x^{2}+2x+9} \right)} \\
& = \underset{x \to 0}{lim} \dfrac{9- \left( 3x^{2}+2x+9 \right)}{\left( 2x \right) \left( 3+\sqrt{3x^{2}+2x+9} \right)} \\
& = \underset{x \to 0}{lim} \dfrac{-\left(3x^{2}+2x \right)}{\left(2x \right) \left( 3+\sqrt{3x^{2}+2x+9} \right)} \\
& = \underset{x \to 0}{lim} \dfrac{-\left(2x \right) \left(\dfrac{3}{2}x + 1 \right)}{\left(2x \right) \left( 3+\sqrt{3x^{2}+2x+9} \right)} \\
& = \underset{x \to 0}{lim} \dfrac{-\left(\dfrac{3}{2}x + 1 \right)}{\left( 3+\sqrt{3x^{2}+2x+9} \right)} \\
& = \dfrac{-\left(\dfrac{3}{2}(0) + 1 \right)}{\left( 3+\sqrt{3(0)+2(0)+9} \right)} \\
& = \dfrac{-1}{3+\sqrt{9}} = - \dfrac{1}{6}
\end{align}$

$\therefore$ Pilihan yang sesuai $(A)\ -\dfrac{1}{6}$

3. Soal UM UPI 2009

Nilai dari $ \underset{x \to 2}{lim}\ \dfrac{\sqrt{8x}-4}{\sqrt{x+2}-2}$ adalah$ \cdots$
$\begin{align}
(A)\ & 0 \\
(B)\ & \dfrac{1}{4} \\
(C)\ & 1 \\
(D)\ & 4 \\
(E)\ & 4 \dfrac{1}{4}
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \underset{x \to 2}{lim}\ \dfrac{\sqrt{8x}-4}{\sqrt{x+2}-2} \\
& = \underset{x \to 2}{lim}\ \dfrac{\sqrt{8x}-4}{\sqrt{x+2}-2} \cdot \dfrac{ \left(\sqrt{8x}+4 \right)+\left(\sqrt{x+2}+2 \right)}{\left(\sqrt{8x}+4 \right)\left(\sqrt{x+2}+2 \right)} \\
& = \underset{x \to 2}{lim}\ \dfrac{ \left(8x-16 \right)\left(\sqrt{x+2}+2 \right)}{\left(\sqrt{8x}+4 \right)\left(x+2-4 \right)} \\
& = \underset{x \to 2}{lim}\ \dfrac{ 8 \left(x-2 \right)\left(\sqrt{x+2}+2 \right)}{\left(\sqrt{8x}+4 \right)\left(x-2 \right)} \\
& = \underset{x \to 2}{lim}\ \dfrac{ 8 \left(\sqrt{x+2}+2 \right)}{\left(\sqrt{8x}+4 \right)} \\
& = \dfrac{ 8 \left(\sqrt{2+2}+2 \right)}{\left(\sqrt{8(2)}+4 \right)} \\
& = \dfrac{ 8 \left(2+2 \right)}{\left(4+4 \right)}=4
\end{align}$

$\therefore$ Pilihan yang sesuai $(D)\ 4$

4. Soal UM UNPAD 2006

$ \underset{x \to -6}{lim}\ \dfrac{\sqrt{x+a}-2}{x+6}=b $ maka $2a+4b= \cdots $
$\begin{align}
(A)\ & -\dfrac{1}{4} \\
(B)\ & \dfrac{1}{4} \\
(C)\ & 10 \\
(D)\ & 20 \\
(E)\ & 21
\end{align}$
Alternatif Pembahasan:

Nilai $ \underset{x \to -6}{lim}\ \dfrac{\sqrt{x+a}-2}{x+6}=b $.
Jika kita substitusi langsung nilai $x=-6$ maka nilai $\sqrt{-6+a}-2$ harus $0$, karena jika $\sqrt{-6+a}-2$ tidak nol maka nilai limit adalah $\infty$.
$\begin{align}
\sqrt{-6+a}-2 &= 0 \\
\sqrt{-6+a} &= 2 \\
-6+a &= 4 \\
a &= 6+4=10
\end{align}$

Untuk $a=10$ maka
$\underset{x \to -6}{lim}\ \dfrac{\sqrt{x+10}-2}{x+6}=b $

$\begin{align}
\underset{x \to -6}{lim}\ \dfrac{\sqrt{x+10}-2}{x+6} &= b \\
\underset{x \to -6}{lim}\ \dfrac{\sqrt{x+10}-2}{x+6} \cdot \dfrac{ \left(\sqrt{x+10}+2 \right)}{\left(\sqrt{x+10}+2 \right)} &= b \\
\underset{x \to -6}{lim}\ \dfrac{x+10-4}{(x+6)\left(\sqrt{x+10}+2 \right)} &= b \\
\underset{x \to -6}{lim}\ \dfrac{x+6}{(x+6)\left(\sqrt{x+10}+2 \right)} &= b \\
\underset{x \to -6}{lim}\ \dfrac{1}{\left(\sqrt{x+10}+2 \right)} &= b \\
\dfrac{1}{\left(\sqrt{-6+10}+2 \right)} &= b \\
\dfrac{1}{4} &= b \\
2a+4b &= 2(10)+4(\dfrac{1}{4}) \\
&= 21
\end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ 21$

5. Soal SBMPTN 2016 (*Soal Lengkap)

Jika $a$ dan $b$ adalah dua bilangan real dengan $\underset{x \to 2}{lim} \dfrac{x^{2}+2ax+b}{x-2}=-3$, maka $ab=\cdots$
$\begin{align}
(A)\ & -35 \\
(B)\ & -30 \\
(C)\ & -15 \\
(D)\ & -3 \\
(E)\ & -1
\end{align}$
Alternatif Pembahasan:

Nilai $ \underset{x \to 2}{lim} \dfrac{x^{2}+2ax+b}{x-2}=-3$.
Jika kita substitusi langsung nilai $x=2$ maka nilai $x^{2}+2ax+b$ harus $0$, karena jika $x^{2}+2ax+b$ tidak nol maka nilai limit adalah $\infty$.

Karena nilai $x^{2}+2ax+b$ untuk $x=2$ adalh $0$ maka $x-2$ adalah salah satu faktornya sehingga berlaku;
$\begin{align}
x^{2}+2ax+b & \equiv (x-2)(mx+n) \\
x^{2}+2ax+b & \equiv mx^{2}+nx-2mx-2n \\
x^{2}+2ax+b & \equiv mx^{2}+(n-2m)x-2n \\
1 &= m \\
2a &= n-2m=n-2 \\
b &= -2n
\end{align}$

Nilai $\underset{x \to 2}{lim} \dfrac{x^{2}+2ax+b}{x-2}=-3$, maka
$\begin{align}
\underset{x \to 2}{lim} \dfrac{(x-2)(x+n)}{x-2} & =-3 \\
\underset{x \to 2}{lim} (x+n) & =-3 \\
2+n & =-3 \\
n &= -3-2 \\
n &= -5
\end{align}$

Untuk $n=-5$ maka $b=10$ dan $a=-\dfrac{7}{2}$

Nilai $ab=-\dfrac{7}{2} \cdot 10 = -35$

$\therefore$ Pilihan yang sesuai $(A)\ -35$

6. Soal SBMPTN 2014 (*Soal Lengkap)

Jika $\underset{x \to 0}{lim} \dfrac{\sqrt{Ax+B}-2}{x}=1$, maka$\cdots$
$\begin{align}
(A)\ & B=A^{2} \\
(B)\ & 4B^{2}=A \\
(C)\ & 4B=A^{2} \\
(D)\ & 4B=A \\
(E)\ & A+B=0
\end{align}$
Alternatif Pembahasan:

Nilai $\underset{x \to 0}{lim} \dfrac{\sqrt{Ax+B}-2}{x}=1$.
Jika kita substitusi langsung nilai $x=0$ maka nilai $ \sqrt{Ax+B}-2$ harus $0$, karena jika $\sqrt{Ax+B}-2$ tidak nol maka nilai limit adalah $\infty$.
Untuk $x=0$
$\begin{align}
\sqrt{Ax+B}-2 & = 0 \\
\sqrt{A(0)+B}-2 & = 0\\
\sqrt{B} & = 2\\
B & = 4
\end{align}$

Untuk $B=4$
Nilai $\underset{x \to 0}{lim} \dfrac{\sqrt{Ax+B}-2}{x}=1$, maka
$\begin{align}
\underset{x \to 0}{lim} \dfrac{\sqrt{Ax+4}-2}{x} & = 1 \\
\underset{x \to 0}{lim} \dfrac{\sqrt{Ax+4}-2}{x} \cdot \dfrac{\sqrt{Ax+4}+2}{\sqrt{Ax+4}-2} & = 1 \\
\underset{x \to 0}{lim} \dfrac{\left( \sqrt{Ax+4}-2 \right) \left( \sqrt{Ax+4}+2 \right)}{x\left( \sqrt{Ax+4}+2 \right)} & = 1 \\
\underset{x \to 0}{lim} \dfrac{\left( Ax+4 -4 \right)}{x\left( \sqrt{Ax+4}+2 \right)} & = 1 \\
\underset{x \to 0}{lim} \dfrac{Ax}{x\left( \sqrt{Ax+4}+2 \right)} & = 1 \\
\underset{x \to 0}{lim} \dfrac{A}{ \sqrt{Ax+4}+2 } & = 1 \\
\dfrac{A}{ \sqrt{A(0)+4}+2 } & = 1 \\
\dfrac{A}{ \sqrt{4}+2 } & = 1 \\
\dfrac{A}{4} & = 1 \\
A & = 4
\end{align}$

$\therefore$ Pilihan yang sesuai $(C)\ 4B=A^{2}$

7. Soal SBMPTN 2015 (*Soal Lengkap)

Nilai $\underset{x \to 1}{lim} \dfrac{\left( \sqrt{5-x}-2 \right) \left( \sqrt{2-x}+1 \right)}{1-x}$ adalah$\cdots$
$\begin{align}
(A)\ & -\dfrac{1}{2} \\
(B)\ & -\dfrac{1}{4} \\
(C)\ & -\dfrac{1}{8} \\
(D)\ & \dfrac{1}{4} \\
(E)\ & \dfrac{1}{2}
\end{align}$
Alternatif Pembahasan:

Nilai $\underset{x \to 1}{lim} \dfrac{\left( \sqrt{5-x}-2 \right) \left( \sqrt{2-x}+1 \right)}{1-x}$ adalah
$\begin{align}
& = \underset{x \to 1}{lim} \dfrac{\left( \sqrt{5-x}-2 \right) \left( \sqrt{2-x}+1 \right)}{1-x} \cdot \dfrac{\left( \sqrt{5-x}+2 \right)}{\left( \sqrt{5-x}+2 \right)} \\
& = \underset{x \to 1}{lim} \dfrac{\left( 5-x-4 \right) \left( \sqrt{2+x}+1 \right)}{\left( \sqrt{5-x}+2 \right) \left(1-x \right)} \\
& = \underset{x \to 1}{lim} \dfrac{ \left( \sqrt{2-x}+1 \right)}{\left( \sqrt{5-x}+2 \right)} \\
& = \dfrac{ \sqrt{2-(1)}+1 }{ \sqrt{5-(1)}+2 } \\
& = \dfrac{2}{ \sqrt{4}+2 } \\
& = \dfrac{2}{4} =\dfrac{1}{2}
\end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ \dfrac{1}{2}$

8. Soal SBMPTN 2017 (*Soal Lengkap)

Jika kurva $f(x)=ax^{2}+bx+c$ memotong sumbu-$y$ di titik $(0,1)$ dan $\underset{x \to 1}{lim} \dfrac{f(x)}{x-1}=-4$ maka $\dfrac{b+c}{a}=\cdots$
$\begin{align}
(A)\ & -1 \\
(B)\ & -\dfrac{1}{2} \\
(C)\ & 0 \\
(D)\ & 1 \\
(E)\ & \dfrac{3}{2}
\end{align}$
Alternatif Pembahasan:

Kurva $f(x)=ax^{2}+bx+c$ memotong sumbu-$y$ di titik $(0,1)$ maka nilai $c=1$ sehingga $f(x)=ax^{2}+bx+1$.

Nilai $\underset{x \to 1}{lim} \dfrac{ax^{2}+bx+1}{x-1}=-4$
Jika kita substitusi langsung nilai $x=1$ maka nilai $ax^{2}+bx+1$ harus $0$, karena jika $ax^{2}+bx+1$ tidak nol maka nilai limit adalah $\infty$.

Karena nilai $ax^{2}+bx+1$ untuk $x=1$ adalh $0$ maka $x-1$ adalah salah satu faktornya sehingga berlaku;
$\begin{align}
ax^{2}+bx+1 & \equiv (x-1)(mx+n) \\
ax^{2}+bx+1 & \equiv mx^{2}+nx-mx-n \\
ax^{2}+bx+1 & \equiv mx^{2}+(n-m)x-n \\
-1 &= n \\
b &= n-m \\
b &= -1-m \\
a &= m
\end{align}$

Nilai $\underset{x \to 1}{lim} \dfrac{ax^{2}+bx+1}{x-1}=-4$, maka
$\begin{align}
\underset{x \to 1}{lim} \dfrac{(x-1)(mx+n)}{x-1} & =-4 \\
\underset{x \to 1}{lim} (mx+n) & =-4 \\
\underset{x \to 1}{lim} (mx-1) & =-4 \\
m-1 & =-4 \\
m &= -4+1 \\
m &=-3
\end{align}$

Untuk $m=-3$ nilai $a=-3$, $b=2$ dan $c=1$, maka $\dfrac{b+c}{a}=\dfrac{2+1}{-3}=-1$
$\therefore$ Pilihan yang sesuai $(A)\ -1$

9. Soal UM UGM 2014 (*Soal Lengkap)

Diketahui $f(x)=\sqrt{1+x}$.
Nilai $\underset{h \to 0}{lim} \dfrac{f(3+2h^{2})-f(3-3h^{2})}{h^{2}}$ adalah$\cdots$
$\begin{align}
(A)\ & 0 \\
(B)\ & \dfrac{2}{3} \\
(C)\ & \dfrac{6}{7} \\
(D)\ & \dfrac{9}{8} \\
(E)\ & \dfrac{5}{4}
\end{align}$
Alternatif Pembahasan:

Fungsi $f(x)=\sqrt{1+x}$, maka
$\begin{align}
f(3+2h^{2}) & = \sqrt{1+3+2h^{2}} \\
& = \sqrt{4+2h^{2}} \\
f(3-3h^{2}) & = \sqrt{1+3-3h^{2}} \\
& = \sqrt{4-3h^{2}}
\end{align}$
Nilai $\underset{h \to 0}{lim} \dfrac{f(3+2h^{2})-f(3-3h^{2})}{h^{2}}$ adalah
$\begin{align}
& \underset{h \to 0}{lim} \dfrac{\sqrt{4+2h^{2}}-\sqrt{4-3h^{2}}}{h^{2}} \\
& = \underset{h \to 0}{lim} \dfrac{\sqrt{4+2h^{2}}-\sqrt{4-2h^{2}}}{h^{2}} \cdot \dfrac{\sqrt{4+2h^{2}}+\sqrt{4-3h^{2}}}{\sqrt{4+2h^{2}}+\sqrt{4-3h^{2}}} \\
& = \underset{h \to 0}{lim} \dfrac{\left(4+2h^{2}\right) -\left(4-3h^{2}\right)}{h^{2} \left(\sqrt{4+2h^{2}}+\sqrt{4-3h^{2}} \right)}\\
& = \underset{h \to 0}{lim} \dfrac{4+2h^{2}-4+3h^{2}}{h^{2} \left(\sqrt{4+2h^{2}}+\sqrt{4-3h^{2}} \right)}\\
& = \underset{h \to 0}{lim} \dfrac{5h^{2}}{h^{2} \left(\sqrt{4+2h^{2}}+\sqrt{4-3h^{2}} \right)}\\
& = \underset{h \to 0}{lim} \dfrac{5}{ \sqrt{4+2h^{2}}+\sqrt{4-3h^{2}} }\\
& = \dfrac{5}{\sqrt{4+0}+\sqrt{4-0} } \\
& = \dfrac{5}{4}
\end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ \dfrac{5}{4}$

10. Soal USM STIS 2017 (*Soal Lengkap)

$\underset{x \to 0}{lim} \dfrac{\sqrt{1-x}-1}{1-\sqrt[3]{1-x}}$ adalah$\cdots$
$\begin{align}
(A)\ & \dfrac{3}{2} \\
(B)\ & \dfrac{2}{3} \\
(C)\ & 0 \\
(D)\ & -\dfrac{2}{3} \\
(E)\ & -\dfrac{3}{2}
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan limit ini untuk menghemat penulisan kita coba dengan memisalkan $m=\sqrt{1-x}$, karena $x \to 0$ maka $m \to 1$.
Soal limit $\underset{x \to 0}{lim} \dfrac{\sqrt{1-x}-1}{1-\sqrt[3]{1-x}}$ sudah bisa kita tuliskan menjadi $\underset{m \to 1}{lim} \dfrac{m-1}{1-\sqrt[3]{m^{2}}}$ atau $\underset{m \to 1}{lim} \dfrac{m-1}{1-m^{\frac{2}{3}}}$.

Soal ini bisa kita kerjakan dengan mengalikan akar sekawan tetapi prosesnya lebih panjang jadi untuk soal ini kita coba dengan memakai turunan;
turunan $m-1$ adalah $1-0=1$.
turunan $1-m^{\frac{2}{3}}$ adalah $0-\dfrac{2}{3}m^{-\frac{1}{3}}=-\dfrac{2}{3}m^{-\frac{1}{3}}$
$\begin{align}
& \underset{m \to 1}{lim} \dfrac{m-1}{1-m^{\frac{2}{3}}} \\
& = \underset{m \to 1}{lim} \dfrac{1}{\dfrac{2}{3}m^{-\frac{1}{3}}} \\
& = \dfrac{1}{-\frac{2}{3}(1)^{-\frac{1}{3}}} \\
& = \dfrac{1}{-\dfrac{2}{3}} = - \dfrac{3}{2}
\end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ - \dfrac{3}{2}$

11. Soal SBMPTN 2018 Kode 526 (*Soal Lengkap)

Diketahui $O(0,0)$, $A(1,0)$, $B(2,0)$, $C(2,y)$, dan $D(0,y)$. Nilai $\underset{y \to 1}{lim}\ \dfrac{keliling\ \square ABCD}{keliling\ \bigtriangleup ACD}$ adalah...
$ \begin{align}
(A)\ & \dfrac{1}{2}(2\sqrt{3}+3) \\
(B)\ & \dfrac{1}{4}(3\sqrt{2}+2) \\
(C)\ & \dfrac{1}{2}( \sqrt{3}+1) \\
(D)\ & \dfrac{1}{2}(3\sqrt{2}-2) \\
(E)\ & \dfrac{1}{4}(3\sqrt{2}-2)
\end{align} $
Alternatif Pembahasan:

Sebelum kita hitung nilai $\underset{y \to 1}{lim}\ \dfrac{keliling\ \square ABCD}{keliling\ \bigtriangleup ACD}$, coba kita hitung keliling $\square ABCD$ dan keliling $\bigtriangleup ACD$.

Jarak dua titik dapat kita hitung dengan $d=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}$,

  • Jarak titik $A(1,0)$ ke $B(2,0)$ adalah $AB=\sqrt{(2-1)^{2}+(0-0)^{2}}$$=\sqrt{1}=1$
  • Jarak titik $B(2,0)$ ke $C(2,y)$ adalah $BC=\sqrt{(2-2)^{2}+(y-0)^{2}}$$=\sqrt{y^{2}}=y$
  • Jarak titik $C(2,y)$ ke $D(0,y)$ adalah $CD=\sqrt{(0-2)^{2}+(y-y)^{2}}$$=\sqrt{4}=2$
  • Jarak titik $A(1,0)$ ke $D(0,y)$ adalah $AD=\sqrt{(1-0)^{2}+(0-y)^{2}}$$=\sqrt{1+y^{2}}$
  • Jarak titik $A(1,0)$ ke $C(2,y)$ adalah $AC=\sqrt{(2-1)^{2}+(y-0)^{2}}$$=\sqrt{1+y^{2}}$

$ \begin{align}
& \text{keliling}\ \square ABCD \\
& = AB+BC+CD+DA \\
& = 1+y+2+\sqrt{1+y^{2}} \\
& = 3+y+\sqrt{1+y^{2}}
\end{align} $

$ \begin{align}
& \text{keliling}\ \bigtriangleup ACD \\
& = AC+CD+DA \\
& = \sqrt{1+y^{2}} +2+\sqrt{1+y^{2}} \\
& = 2+2\sqrt{1+y^{2}}
\end{align} $

$ \begin{align}
& \underset{y \to 1}{lim}\ \dfrac{keliling\ \square ABCD}{keliling\ \bigtriangleup ACD} \\
& = \underset{y \to 1}{lim}\ \dfrac{3+y+\sqrt{1+y^{2}}}{2+2\sqrt{1+y^{2}}} \\
& = \dfrac{3+1+\sqrt{1+1^{2}}}{2+2\sqrt{1+1^{2}}} \\
& = \dfrac{4+\sqrt{2}}{2+2\sqrt{2}} \times \dfrac{2-2\sqrt{2}}{2-2\sqrt{2}} \\
& = \dfrac{8-8\sqrt{2}+2\sqrt{2}-4}{4-8} \\
& = \dfrac{4-6\sqrt{2}}{-4} \\
& = \dfrac{2-3\sqrt{2}}{-2} \\
& =\dfrac{1}{2}\left(3\sqrt{2}-2 \right)
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(D)\ \dfrac{1}{2}(3\sqrt{2}-2)$


12. Soal SBMPTN 2018 Kode 527 (*Soal Lengkap)

Diketahui $O(0,0)$, $A(2,0)$, $B(2,y)$, $C(0,y)$, dan $D(0,\frac{1}{2}y)$. Nilai $\underset{y \to 2}{lim}\ \dfrac{keliling\ \bigtriangleup BCD}{keliling\ \square OABD}$ adalah...
$ \begin{align}
(A)\ & \dfrac{5+2\sqrt{5}}{5} \\
(B)\ & \dfrac{5+\sqrt{5}}{10} \\
(C)\ & \dfrac{1}{2}\sqrt{5} \\
(D)\ & \dfrac{5-2\sqrt{5}}{5} \\
(E)\ & \dfrac{5-\sqrt{5}}{5}
\end{align} $
Alternatif Pembahasan:

Sebelum kita hitung nilai $\underset{y \to 2}{lim}\ \dfrac{keliling\ \bigtriangleup BCD}{keliling\ \square OABD}$, coba kita hitung keliling $\square OABD$ dan keliling $\bigtriangleup BCD$.

Jarak dua titik dapat kita hitung dengan $d=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}$,

  • Jarak titik $O(0,0)$ ke $A(2,0)$ adalah $OA=\sqrt{(2-0)^{2}+(0-0)^{2}}$$=\sqrt{4}=2$
  • Jarak titik $A(2,0)$ ke $B(2,y)$ adalah $AB=\sqrt{(2-2)^{2}+(y-0)^{2}}$$=\sqrt{y^{2}}=y$
  • Jarak titik $B(2,y)$ ke $D(0,\frac{1}{2}y)$ adalah $BD=\sqrt{(0-2)^{2}+(\frac{1}{2}y-y)^{2}}$$=\sqrt{4+\frac{1}{4}y^{2}}$
  • Jarak titik $O(0,0)$ ke $D(0,\frac{1}{2}y)$ adalah $OD=\sqrt{(0-0)^{2}+(0-\frac{1}{2}y)^{2}}$$=\sqrt{\frac{1}{4}y^{2}}=\frac{1}{2}y$
  • Jarak titik $B(2,y)$ ke $C(0,y)$ adalah $BC=\sqrt{(2-0)^{2}+(y-y)^{2}}$$=\sqrt{4}=2$
  • Jarak titik $C(0,y)$ ke $D(0,\frac{1}{2}y)$ adalah $CD=\sqrt{(0-0)^{2}+(\frac{1}{2}y-y)^{2}}$$=\sqrt{\frac{1}{4}y^{2}}=\frac{1}{2}y$

$ \begin{align}
& \text{keliling}\ \bigtriangleup BCD \\
& = BC+CD+DB \\
& = 2+\frac{1}{2}y +\sqrt{4+\frac{1}{4}y^{2}}
\end{align} $

$ \begin{align}
& \text{keliling}\ \square OABD \\
& = OA+AB+BD+DO \\
& = 2+y+\sqrt{4+\frac{1}{4}y^{2}}+\frac{1}{2}y \\
& = 2+\frac{3}{2}y+\sqrt{4+\frac{1}{4}y^{2}}
\end{align} $

$ \begin{align}
& \underset{y \to 2}{lim}\ \dfrac{keliling\ \bigtriangleup BCD}{keliling\ \square OABD} \\
& = \underset{y \to 2}{lim}\ \dfrac{2+\frac{1}{2}y +\sqrt{4+\frac{1}{4}y^{2}}}{2+\frac{3}{2}y+\sqrt{4+\frac{1}{4}y^{2}}} \\
& = \dfrac{2+\frac{1}{2}(2) +\sqrt{4+\frac{1}{4}(2)^{2}}}{2+\frac{3}{2}(2)+\sqrt{4+\frac{1}{4}(2)^{2}}} \\
& = \dfrac{2+1+\sqrt{4+1}}{2+3+\sqrt{4+1}} \\
& = \dfrac{3+\sqrt{5}}{5+\sqrt{5}} \times \dfrac{5-\sqrt{5}}{5-\sqrt{5}} \\
& = \dfrac{15-3\sqrt{5}+5\sqrt{5}-5}{25-5} \\
& = \dfrac{10+2\sqrt{5}}{20} \\
& = \dfrac{5+\sqrt{5}}{10}
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(B)\ \dfrac{5+\sqrt{5}}{10}$

13. Soal SIMAK UI 2018 Kode 416 (*Soal Lengkap)

Jika $\underset{x \to -3}{lim} \dfrac{\frac{1}{ax}+\frac{1}{3}}{bx^{3}+27}=-\dfrac{1}{3^{5}}$, nilai $a+b$ untuk $a$ dan $b$ bulat positif adalah...
$\begin{align}
(A)\ & -4 \\
(B)\ & -2 \\
(C)\ & 0 \\
(D)\ & 2 \\
(E)\ & 4
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan soal limit di atas sehingga hasilnya seperti yang diharapkan, kita coba dengan menggunakan turunan. Kita anggap pada turunan pertama nilai limit untuk $x \to -3$ hasilnya adalah $-\dfrac{1}{3^{5}}$.
$\begin{align}
\underset{x \to -3}{lim} \dfrac{\frac{1}{ax}+\frac{1}{3}}{bx^{3}+27} & = -\dfrac{1}{3^{5}} \\
\underset{x \to -3}{lim} \dfrac{\frac{1}{a}x^{-1}+\frac{1}{3}}{bx^{3}+27} & = -\dfrac{1}{3^{5}} \\
\underset{x \to -3}{lim} \dfrac{-\frac{1}{ax^{2}}}{3bx^{2}} & = -\dfrac{1}{3^{5}} \\
\underset{x \to -3}{lim} \dfrac{-1}{3bx^{2} \cdot ax^{2}} & = -\dfrac{1}{3^{5}} \\
\underset{x \to -3}{lim} \dfrac{-1}{3abx^{4}} & = -\dfrac{1}{3^{5}} \\
-\dfrac{1}{3ab(-3)^{4}} & = -\dfrac{1}{3^{5}} \\
-\dfrac{1}{ ab3^{5}} & = -\dfrac{1}{3^{5}} \\
ab & = 1
\end{align}$
Untuk $a$ dan $b$ bilangan bulat positif yang memenuhi $ab=1$ adalah $a=1$ dan $b=1$, maka $a+b=2$

$\therefore$ Pilihan yang sesuai $(D)\ 2$

14. Soal SIMAK UI 2018 Kode 421 (*Soal Lengkap)

Jika $\underset{x \to 4}{lim} \dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\cdots$
$\begin{align}
(A)\ & \dfrac{1}{64} \\
(B)\ & \dfrac{1}{128} \\
(C)\ & \dfrac{1}{256} \\
(D)\ & \dfrac{1}{512} \\
(E)\ & \dfrac{1}{1024}
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan soal limit diatas, kita coba dengan memisalkan $\sqrt{x}=p$ sehingga $x^{2}=p^{4}$ dan karena $x \to 4$ maka $p \to 2$, perubahan pada soal menjadi;
$\begin{align}
& \underset{x \to 4}{lim} \dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16} \\
& = \underset{p \to 2}{lim} \dfrac{p-\sqrt{3p-2}}{p^{4}-16} \\
& = \underset{p \to 2}{lim} \dfrac{p-\sqrt{3p-2}}{p^{4}-16} \\
& = \underset{p \to 2}{lim} \dfrac{p-\sqrt{3p-2}}{p^{4}-16} \times \dfrac{p+\sqrt{3p-2}}{p+\sqrt{3p-2}} \\
& = \underset{p \to 2}{lim} \dfrac{p^{2}-(3p-2)}{\left (p^{2}-4 \right )\left (p^{2}+4 \right )\left (p+\sqrt{3p-2} \right )} \\
& = \underset{p \to 2}{lim} \dfrac{(p-2)(p-1)}{\left (p-2 \right )\left (p+2 \right )\left (p^{2}+4 \right )\left (p+\sqrt{3p-2} \right )} \\
& = \underset{p \to 2}{lim} \dfrac{ (p-1)}{ \left (p+2 \right )\left (p^{2}+4 \right )\left (p+\sqrt{3p-2} \right )} \\
& = \dfrac{ (2-1)}{ \left (2+2 \right )\left (2^{2}+4 \right )\left (2+\sqrt{3(2)-2} \right )} \\
& = \dfrac{1}{ \left (4 \right )\left (8 \right )\left (4 \right )} = \dfrac{1}{128}
\end{align}$

$\therefore$ Pilihan yang sesuai $(B)\ \dfrac{1}{128}$

Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras
Beberapa pembahasan soal Matematika Dasar Limit Fungsi Aljabar (*Soal Dari Berbagai Sumber) di atas adalah coretan kreatif siswa pada
  • lembar jawaban penilaian harian matematika,
  • lembar jawaban penilaian akhir semester matematika,
  • presentasi hasil diskusi matematika atau
  • pembahasan quiz matematika di kelas.
Jadi saran, kritik atau masukan yang sifatnya membangun terkait masalah alternatif penyelesaian soal Limit Fungsi Aljabar sangat diharapkan😊CMIIW

Jangan Lupa Untuk Berbagi πŸ™Share is Caring πŸ‘€ dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊

Bagaimana Matematika dapat mempengaruhi karakter kita, mari kita simak penjelasannya pada video berikut;
youtube image

Comment Policy: Silahkan tuliskan komentar atau pertanyaan yang berhubungan dengan "Matematika Dasar Limit Fungsi Aljabar (*Soal dan Pembahasan)" 😊 and thank you for your concern in support of blog
Buka Komentar
Tutup Komentar