Gk7qp1DNYQGDurixnE7FWT3LyBvSK3asrvqSm057
Bookmark

Soal dan Pembahasan Matematika Saintek UM UNDIP Tahun 2019 Kode 324

Calon Guru belajar matematika SMA dari Soal dan Pembahasan Kemampuan Matematika Saintek UM UNDIP Tahun 2019 Kode 324. Soal kemampuan matematika saintek UM UNDIP ini sangat cocok dijadikan bahan latihan untuk menghadapi UM UNDIP tahun ini atau untuk menghadapi tes ujian masuk perguruan tinggi negeri lainnya misalnya Seleksi Mandiri Universitas Negeri Semarang (SM-UNNES).

Soal Ujian Mandiri Universitas Diponegoro (UM UNDIP) ini adalah soal mata ujian kelompok saintek yang terdiri dari $100$ soal dan terdiri dari dua bagian. Tes Potensi Umum (Mata ujian Matematika Dasar, Logika, Verbal, Numerik, Bahasa Indonesia, dan Bahasa Inggris) dan Tes Potensi Akademik (Mata Ujian Matematika, Biologi, Fisika, dan Kimia).


Materi Ujian Ujian Mandiri Universitas Diponegoro (UM UNDIP) Tahun 2024

Pada tahun 2024 Ujian Mandiri Universitas Diponegoro (UM UNDIP) Program Sarjana merupakan jalur seleksi secara mandiri yang diselenggarakan oleh Universitas Diponegoro melalui metode tes tertulis berbasis komputer secara daring (online).

Materi Ujian UM UNDIP setara dengan Materi UTBK-SNBT, meliputi:


Soal dan Pembahasan Matematika Saintek UM UNDIP Tahun 2019 Kode 324

Soal yang kita diskusikan berikut ini adalah $15$ soal TPA Matematika Saintek UM UNDIP. Silahkan dikerjakan terlebih dahulu secara mandiri sebelum membuka buku atau sumber lain untuk melihat pembahasan soal. Setelah selesai silahkan Periksa Jawaban dan jika hasilnya belum memuaskan, pilih Ulangi Tes untuk tes ulang.

Ayo dicoba terlebih dahulu, Sebelum melihat pembahasan soal.
Tunjukkan Kemampuan Terbaikmu!
Nama Peserta :
Tanggal Tes :
Jumlah Soal :15 soal
Petunjuk Pengerjaan Soal:
Bentuk soal pilihan ganda, pilihlah jawaban yang benar di antara pilihan jawaban yang tersedia. Apabila Kamu merasa terdapat lebih dari satu jawaban yang benar, maka pilihlah yang paling benar.

1. Soal Matematika UM UNDIP 2019

Parabola $y=x^{2}-4x+3m-2$ mempunyai titik puncak $T \left( p,q \right)$. Jika $p$ dan $\dfrac{q}{3}$ adalah dua suku pertama deret geometri tak hingga yang mempunyai jumlah $4$, maka nilai $m$ adalah...





Alternatif Pembahasan:

Dari Fungsi Kuadrat $y=x^{2}-4x+3m-2$ mempunyai titik puncak $T \left( p,q \right)$, sehingga dapat kita peroleh:
$\begin{align} x_{p}= p &= -\dfrac{b}{2a} \\ p &= -\dfrac{-4}{2(1)} = 2 \\ \hline y_{p} = q &= -\dfrac{b^{2}-4ac}{4a} \\ q &= -\dfrac{16-12m+8}{4} \\ q &= -\dfrac{24-12m}{4} \\ q &= 3m-6 \end{align}$

Dari $p$ dan $\dfrac{q}{3}$ adalah dua suku pertama deret geometri tak hingga yang mempunyai jumlah $4$, maka kita peroleh suku pertama $(a)$ deret geometri tak hingga adalah $a=p=2$ dan rasio $(r)$ adalah $r=\dfrac{\frac{q}{3}}{p}=\dfrac{q}{6}$.

Untuk jumlah deret tak hingga adalah $4$, maka kita peroleh:
$\begin{align} S_{\infty } &= \dfrac{a}{1-r} \\ 4 &= \dfrac{2}{1-\frac{q}{6}} \\ 4-\dfrac{4q}{6} &= 2 \\ 4-2 &=\dfrac{4q}{6} \\ 12 &= 4q \\ q &= 3 \\ \hline 3m-6 &= 3 \\ 3m &= 9 \\ m &= 3 \end{align}$

$\therefore$ Pilihan yang sesuai $(D)\ 3$

2. Soal Matematika UM UNDIP 2019

Jika persamaan kuadrat $ax^{2}+bx+c=0$ tidak mempunyai akar real, maka grafik fungsi $y=ax^{2}+bx+c$ menyinggung garis $y=x$ bilamana...





Alternatif Pembahasan:

Dari Persamaan Kuadrat $ax^{2}+bx+c$ yang tidak mempunyai akar-akar real sehingga berlaku $D \lt 0$ atau $b^{2}-4ac \lt 0$.

Grafik fungsi $y=ax^{2}+bx+c$ menyinggung garis $y=x$ akan terjadi saat diskrimiman persamaan kuadrat persekutuan adalah nol, sehingga kita peroleh:
$\begin{align} y &= y \\ ax^{2}+bx+c &= x \\ ax^{2}+bx-x+c &= 0 \\ ax^{2}+ \left(b-1 \right) x+c &= 0 \\ \hline D &= 0 \\ b^{2}-4ac &= 0 \\ \left(b-1 \right)^{2}-4ac &= 0 \\ \left(b-1 \right)^{2} &= 4ac \\ \end{align}$

Dari $b^{2}-4ac \lt 0$ dan $\left(b-1 \right)^{2} = 4ac$ dapat kita peroleh:
$\begin{align} b^{2}-4ac & \lt 0 \\ b^{2}-\left(b-1 \right)^{2} & \lt 0 \\ b^{2}-\left(b^{2}-2b+1 \right) & \lt 0 \\ 2b-1 & \lt 0 \\ 2b & \lt 1 \\ b & \lt \dfrac{1}{2} \end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ b \lt \dfrac{1}{2}$

3. Soal Matematika UM UNDIP 2019

Diberikan dua vektor $u$ dan $v$, dengan $u=\left(-1,-2,1 \right)$ dan $v=\left(2,1,1 \right)$. Besar sudut yang dibentuk oleh kedua vektor tersebut adalah...





Alternatif Pembahasan:

Perkalian skalar dua vektor $u$ dan $v$ adalah $u \cdot v = \left| u \right| \cdot \left| v \right| \cdot \cos \theta $, sehingga dapat kita peroleh:
$\begin{align} \cos \theta &= \dfrac{u \cdot v}{\left| u \right| \cdot \left| v \right|} \\ \hline \left| u \right| &= \sqrt{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}} \\ &= \sqrt{(-1)^{2}+(-2)^{2}+(1)^{2}} = \sqrt{6} \\ \left| v \right| &= \sqrt{x_{2}^{2}+y_{2}^{2}+z_{2}^{2}} \\ &= \sqrt{(2)^{2}+(1)^{2}+(1)^{2}} = \sqrt{6} \\ u \cdot v &= x_{1} \cdot x_{2} + y_{1} \cdot y_{2}+z_{1} \cdot z_{2} \\ &= (-1)(2)+(-2)(1)+( 1)(1) = -3 \\ \hline \cos \theta &= \dfrac{-3}{\left( \sqrt{6} \right)\left( \sqrt{6} \right) } \\ \cos \theta &= \dfrac{-3}{6}=-\dfrac{1}{2} \\ \theta &= 120^{\circ} \end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ 120^{\circ} $

4. Soal Matematika UM UNDIP 2019

Diketahui invers matriks $A$ adalah
$A^{-1}=\begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 1 \\ 3 & 5 & 3 \end{bmatrix}$
Matriks $x$ yang memenuhi hubungan
$AX=\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ 0 & -3 \end{bmatrix}$
adalah...





Alternatif Pembahasan:

Dengan menggunakan salah satu sifat matriks $A \cdot A^{-1} = I$, sehingga dapat kita tuliskan:
$\begin{align} AX &= \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ 0 & -3 \end{bmatrix} \\ A^{-1} \cdot AX &= \begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 1 \\ 3 & 5 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ 0 & -3 \end{bmatrix} \\ I \cdot X &= \begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 1 \\ 3 & 5 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ 0 & -3 \end{bmatrix} \\ X &= \begin{bmatrix} (1)(2)+(0)(1)+(2)(0) & (1)(-1)+(0)(0)+(2)(-3) \\ (1)(2)+(2)(1)+(1)(0) & (1)(-1)+(2)(0)+(1)(-3) \\ (3)(2)+(5)(1)+(3)(0) & (3)(-1)+(5)(0)+(3)(-3) \\ \end{bmatrix} \\ X &= \begin{bmatrix} 2 & -7 \\ 4 & -4 \\ 11 & -12 \end{bmatrix} \end{align}$

$\therefore$ Pilihan yang sesuai $(C)\ \begin{bmatrix} 2 & -7 \\ 4 & -4 \\ 11 & -12 \end{bmatrix}$

5. Soal Matematika UM UNDIP 2019

Median dari data pada tabel berikut adalah:
Interval Frekuensi
$71-75$ $4$
$76-80$ $6$
$81-85$ $9$
$86-90$ $8$
$91-90$ $12$
$96-100$ $3$





Alternatif Pembahasan:

Data-data yang kita perlukan untuk menghitung median pada data berkelumpok:

  • Total frekuensi adalah $42$, letak median $Me$ ada pada data ke- $\left[\frac{1}{2}(n+1) \right]$
    $Me$ terletak pada data ke- $\left[\frac{1}{2}(42+1) \right]=21,5$
  • $Me$ pada data ke-$21,5$ artinya $Me$ berada pada kelas interval $86-90$
  • Tepi bawah kelas $Me$ yaitu $t_{b}= 86 - 0,5 = 85,5 $
  • Frekuensi kumulatif sebelum kelas $Me$, yaitu $f_{k}= 9+6+4=19$
  • Frekuensi kelas $Me$, $f_{Me}=8$
  • Panjang kelas $c=90,5 -85,5=5$

$ \begin{align}
Me & = t_{b} + \left( \dfrac{\frac{1}{2}n - f_{k}}{f_{Me}} \right)c \\ & = 85,5 + \left( \dfrac{\frac{1}{2} \cdot 42 - 19}{8} \right) \cdot 5 \\ & = 85,5 + \left( \dfrac{21 - 19}{8} \right) \cdot 5 \\ & = 85,5 + \left( \dfrac{10}{8} \right) \\ & = 85,5 + 2,5 \\ & = 88 \end{align} $

$\therefore$ Pilihan yang sesuai $(E)\ 88$

6. Soal Matematika UM UNDIP 2019

Persamaan lingkaran lingkaran yang berpusat di titik $P\left( -2,3 \right)$ dan menyinggung garis $4x-3y +2 = 0$ mempunyai persamaan...





Alternatif Pembahasan:

Lingkaran yang berpusat di $P \left( -2,3 \right)$ dan meyinggung garis garis $4x-3y +2 = 0$, maka jari-jari lingkaran dapat kita tentukan dengan menghitung jarak titik pusat $P \left( -2,3 \right)$ ke garis $4x-3y +2 = 0$.

$\begin{align} d &= \left| \dfrac{ax_{1}+by_{1}+c}{\sqrt{a^{2}+b^{2}}} \right| \\ r &= \left| \dfrac{(4)(-2)+(-3)(3)+(2)}{\sqrt{(4)^{2}+(-3)^{2}}} \right| \\ &= \left| \dfrac{-15}{\sqrt{16+9}} \right|= \left| \dfrac{-15}{5} \right|= 3 \end{align}$

Lingkaran pusatnya $P \left( 2,3 \right)$ dan $r=2$, maka persamaanya adalah:
$\begin{align} \left( x-a \right)^{2}+\left( y-b \right)^{2} &= r^{2} \\ \left( x+2 \right)^{2}+\left( y-3 \right)^{2} &= (3)^{2} \\ x^{2}+4x+4+y^{2}-6y+9 &= 9 \\ x^{2}+y^{2}+4x-6y+4 &= 0 \\ \end{align}$

Jika kita gambarkan Lingkaran yang menyinggung garis, seperti berikut ini:

Persamaan lingkaran lingkaran yang berpusat di titik  $P\left( -2,3 \right)$  dan menyinggung garis  $4x-3y +2 = 0$  mempunyai persamaan

$ \therefore $ Pilihan yang sesuai adalah $(C)\ x^{2}+y^{2}+4x-6y+4=0$

7. Soal Matematika UM UNDIP 2019

Diberikan dua buah matriks $M=\begin{bmatrix} a+b & a \\ b & a-b \end{bmatrix}$ dan $N=\begin{bmatrix} 1 & -\frac{1}{2}a \\ -2b & 3 \end{bmatrix}$.
Jika $M^{t}=N$, dengan $M^{t}$ menyatakan transpose matriks $M$, maka nilai $a$ adalah...





Alternatif Pembahasan:

Dengan menggunakan persamaan $M^{t}=N$ ke matriks $M$ dan $N$, sehingga dapat kita peroleh.

$\begin{align} M^{t} & = N \\ \begin{bmatrix} a+b & b \\ a & a-b \end{bmatrix} & = \begin{bmatrix} 1 & -\frac{1}{2}a \\ -2b & 3 \end{bmatrix} \\ \begin{bmatrix} a+b & b \\ a & a-b \end{bmatrix} & = \begin{bmatrix} 1 & -\frac{1}{2}a \\ -2b & 3 \end{bmatrix} \\ \hline a+b & = 1 \\ a-b & = 3 \\ \hline 2a & = 4 \\ a & = 2 \end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ 2$

8. Soal Matematika UM UNDIP 2019

Diketahui kubus $ABCD.EFGH$ dengan panjang rusuk $12$ cm. Jarak titik $B$ ke diagonal ruang $AG$ adalah...cm





Alternatif Pembahasan:

Jika kita gambarkan kubus $ABCD.EFGH$ dan titik tambahan yang diperlukan untuk menentukan jarak titik $B$ ke garis $AG$ seperti keterangan pada soal maka akan kita peroleh seperti berikut ini:

Diketahui kubus  $ABCD.EFGH$  dengan panjang rusuk  $12$  cm. Jarak titik  $B$  ke diagonal ruang  $AG$  adalah

Pada gambar di atas proyeksi titik $B$ ke garis $AG$ kita misalkan dengan $B'$ sehingga jarak titik $B$ ke $AG$ adalah $BB'$.

Dengan panjang rusuk $12$ maka $AG$ yang merupakan diagonal ruang kubus sehingga $AG=12\sqrt{3}$ dan $BG$ yang merupakan diagonal bidang kubus sehingga $BG=12\sqrt{2}$. Dengan menggunakan luas segitiga siku-siku $ABG$ kita peroleh:
$ \begin{align} \left[ ABG \right] & = \left[ ABG \right]\\ \dfrac{1}{2} \cdot AG \cdot BB' & = \dfrac{1}{2} \cdot AB \cdot BG \\ 12\sqrt{3} \cdot BB' & = 12 \cdot 12\sqrt{2} \\ BB' & = \dfrac{ 12\sqrt{2} }{ \sqrt{3}}= 4\sqrt{6} \end{align}$

$\therefore$ Pilihan yang sesuai $(D)\ 4\sqrt{6}$

9. Soal Matematika UM UNDIP 2019

Diberikan dua fungsi real $f(x)=x^{2}-2 \left| x \right|$ dan $g(x)=x^{2} +1 $. Jumlah semua nilai $x$ yang memenuhi persamaan $\left( fog \right)(x)=0$ adalah...





Alternatif Pembahasan:

Sedikit kita pinjam catatan suku banyak yang mungkin bermanfaat yaitu untuk $P(x)=ax^{4}+bx^{3}+cx^{2}+dx+e$, akar-akarnya $x_{1}$, $x_{2}$, $x_{3}$ dan $x_{4}$ maka berlaku $x_{1}+x_{2}+x_{3}+x_{4} =-\dfrac{b}{a}$


$ \begin{align}
(fog)(x) & = f \left( g(x) \right) \\ & = \left( g(x) \right)^{2}-2 \left| \left( g(x) \right) \right| \\ & = \left( x^{2}+1 \right)^{2}-2 \left| \left( x^{2}+1 \right) \right| \\ & = x^{4}+2x^{2}+1 -2 \left| \left( x^{2}+1 \right) \right| \\ \hline \text{saat}\ & \left( x^{2}+1 \right) \gt 0 \\ (fog)(x) &= x^{4}+2x^{2}+1 -2 \left( x^{2}+1 \right) \\ 0 &= x^{4}+2x^{2}+1 -2 x^{2} -2 \\ 0 &= x^{4} -1 \\ \therefore\ x_{1}+x_{2}&+x_{3}+x_{4}=-\dfrac{b}{a}=\dfrac{0}{1}=0 \\ \hline \text{saat}\ & \left( x^{2}+1 \right) \lt 0 \\ (fog)(x) &= x^{4}+2x^{2}+1 -2 \left( -x^{2}-1 \right) \\ 0 &= x^{4}+2x^{2}+1 +2 x^{2} +2 \\ 0 &= x^{4}+4x^{2}+5 \\ \therefore\ x_{1}+x_{2}&+x_{3}+x_{4}=-\dfrac{b}{a}=\dfrac{0}{1}=0 \end{align} $

$\therefore$ Pilihan yang sesuai adalah $(C)\ 0$

10. Soal Matematika UM UNDIP 2019

Jika $\left| f(x)-2 \right| \leq x+3$, maka nilai $\lim\limits_{x \to -3}f(x)=\cdots$





Alternatif Pembahasan:

Berdasarkan sifat pertidaksamaan nilai mutlak Himpunan penyelesaian dari $\left| f(x) \right| \leq a$ adalah $-a \leq f(x) \leq a$. Sehingga jika kita terapkan pada fungsi soal, kita akan peroleh:

\begin{align} \left| f(x)-2 \right| & \leq x+3 \\ -(x+3) \leq f(x) & -2 \leq (x+3) \\ - x-3+2 \leq f(x) & \leq x+3+2 \\ - x-1 \leq f(x) & \leq x+5 \\ \lim\limits_{x \to -3} \left(-x-1 \right) \leq \lim\limits_{x \to -3} & f(x) \leq \lim\limits_{x \to -3}\left( x+5 \right) \\ -(-3)-1 \leq \lim\limits_{x \to -3} & f(x) \leq -3+5 \\ 2 \leq \lim\limits_{x \to -3} & f(x) \leq 2 \end{align}

$\therefore$ Pilihan yang sesuai adalah $(D)\ 2$

11. Soal Matematika UM UNDIP 2019

Diberikan fungsi kuadrat $f(x)=x^{2}+ax+b$, dengan $a$ dan $b$ konstanta real. Jika $f(-1)=2$ dan $f(2)=-1$, maka nilai minimum untuk fungsi $f$ adalah...





Alternatif Pembahasan:

Diketahui $f(-1)=2$ dan $f(2)=-1$ sehingga dapat kita tuliskan:
$\begin{align} f(x) &= x^{2}+ax+b \\ \hline f(-1) &= (-1)^{2}+a(-1)+b \\ 2 &= 1-a +b \\ 1 &= -a +b \\ \hline f(2) &= (2)^{2}+a(2)+b \\ -1 &= 4+2a +b \\ -5 &= 2a +b \\ \hline 2a +b &= -5 \\ -a +b &= 1\ \ (-) \\ \hline 3a &= -6 \\ a &= -2 \\ b &= 3 \end{align}$

Untuk $a=-2$ dan $b=3$ sehingga $f(x)=x^{2}-2x+3$ dan nilai minimum nya adalah:
$\begin{align} y_{p} &= -\dfrac{b^{2}-4ac}{4a} \\ &= -\dfrac{(-2)^{2}-4(1)(3)}{4(1)} \\ &= -\dfrac{4-12}{4} =-2 \end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(B)\ -2$

12. Soal Matematika UM UNDIP 2019

Persamaan kuadrat $x^{2}-ax+ \left( a-1 \right)=0$, mempunyai akar-akar $x_{1} \gt 1$ dan $x_{2} \lt 1$ untuk...





Alternatif Pembahasan:

Persamaan kuadrat $ax^{2}-ax+ \left( a-1 \right)=0$ mempunyai akar-akar $x_{1} \gt 1$ dan $x_{2} \lt 1$ sehingga persamaan kuadrat tersebut mempunyai dua akar real yang berbeda sehingga diskriminan persamaan kuadrat tersebut memenuhi $D=b^{2}-4ac \gt 0$.

$\begin{align} b^{2}-4ac & \gt 0 \\ (-a)^{2}-4(1)(a-1) & \gt 0 \\ a^{2}-4a+ 4 & \gt 0 \\ \left( a-2 \right) \left( a-2 \right) & \gt 0 \\ \left( a-2 \right)^{2} & \gt 0 \end{align}$

Agar ketidaksamaan $\left( a-2 \right)^{2} \gt 0$ bernilai benar, nilai $a$ yang memenuhi adalah $a \neq 2$.

$ \therefore $ Pilihan yang sesuai adalah $(A)\ a \neq 2$

13. Soal Matematika UM UNDIP 2019

Jika $a-b=\sin \theta$ dan $\sqrt{2ab}=\cos \theta$, maka $\left( a+b \right)^{2}=\cdots$





Alternatif Pembahasan:

Dengan menggunakan beberapa identitas trigonometri dan manipulasi aljabar, dapat kita tuliskan:

$\begin{align} a-b & = \sin \theta \\ \left(a-b \right)^{2} & = \sin^{2} \theta \\ a^{2}+b^{2}-2ab & = \sin^{2} \theta \\ \hline \sqrt{2ab} & =\cos \theta \\ 2ab & =\cos^{2} \theta \\ \hline a^{2}+b^{2}-2ab & = \sin^{2} \theta \\ a^{2}+b^{2}-\cos^{2} \theta & = \sin^{2} \theta \\ a^{2}+b^{2} & = \sin^{2} \theta +\cos^{2} \theta \\ a^{2}+b^{2} & = 1 \end{align}$

$\begin{align} \left(a+b \right)^{2} & = a^{2}+b^{2}+2ab \\ & = 1+\cos^{2} \theta \\ & = 1+\frac{1}{2}+ \frac{1}{2}\cos 2\theta \\ & = \frac{1}{2} \left( 3+ \cos 2\theta \right) \end{align}$

Catatan
$\begin{align} \cos (2A)\ & = \cos A \cdot \cos A - \sin A \cdot \sin A \\ & = \cos^{2} A - \sin^{2} A \\ & = \cos^{2} A - \left( 1-\cos^{2} A \right) \\ & = 2 \cos^{2} A - 1\\ \cos (2A) + 1 \ & = 2 \cos^{2} A \\ \frac{1}{2} \cos (2A) + \frac{1}{2} \ & = \cos^{2} A \end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(C)\ \frac{1}{2} \left(3+\cos 2 \theta \right)$

14. Soal Matematika UM UNDIP 2019

Persamaan garis singgung yang melalui titik $\left( 6,-6 \right)$ terhadap hiperbola $x^{2}-y^{2}=144$ adalah...





Alternatif Pembahasan:

Salah satu cara untuk menyelesaikan soal ini dapat digunakan dengan bantuan dua rumus. Pertama rumus persamaan garis singgung hiperbola $\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1$ jika diketahui gradien $m$ yaitu $y=mx \pm \sqrt{a^{2}m^{2}-b^{2}}$.

Kedua rumus persamaan garis jika diketahui gradien $m$ dan sebuah titik $\left( x_{1},y_{1} \right)$ yang dilalui garis yaitu $y-y_{1}=m \left(x-x_{1} \right)$.

Persamaan garis singgung hiperbola kita misalkan gradiennya $m$ dan melalui titik $\left( 6,-6 \right)$, sehingga persamaan garis adalah:
$\begin{align}
y - y_{1} &= m \left( x - x_{1} \right) \\ y + 6 &= m \left( x - 6 \right) \\ y &= mx-6m-6 \end{align}$

Garis singgung hiperbola $x^{2}-y^{2}=144$ atau $\dfrac{x^{2}}{144}-\dfrac{y^{2}}{144}=1$ dengan gradien $m$ adalah:
$\begin{align} y &= mx \pm \sqrt{a^{2}m^{2}-b^{2}} \\ y &= mx \pm \sqrt{144m^{2}-144} \\ y &= mx \pm 12\sqrt{ m^{2}-1} \end{align}$

Dari kedua persamaan di atas kita peroleh:
$\begin{align}
y &= y \\ mx \pm 12\sqrt{ m^{2}-1} &= mx-6m-6 \\ \pm 12\sqrt{ m^{2}-1} &= -6m-6 \\ \left( \pm 12\sqrt{ m^{2}-1}\right)^{2} &= \left( -6m-6 \right)^{2} \\ 144 \left( m^{2}-1 \right) &= 36m^{2}+72m+36 \\ 108m^{2} -72m- 180 &= 0 \\ 3m^{2} -2m - 5 &= 0 \\ \left( m+1 \right) \left( 3m-5 \right)&= 0 \\ m= -1\ \text{atau}\ & m=\frac{5}{3} \end{align}$

  • untuk $m=-1$ kita peroleh $y= (-1)x-6(-1)-6$ atau $y= -x$.
  • untuk $m= \frac{5}{3}$ kita peroleh $y= \left( \frac{5}{3} \right)x-6\left( \frac{5}{3} \right)-6$ atau $3y= 5x-48$.
(*Sebagai catatan jika untuk soal essay persamaan garis yang diperoleh di atas harus diuji terhadap hiperbola dan diperiksa apakah diskriminan persekutuan adalah nol)

Jika kita gambarkan kedudukan garis dan hiperbola seperti berikut ini:

Soal dan Pembahasan Kemampuan Matematika Saintek UM UNDIP Tahun 2019 Kode 324

$ \therefore $ Pilihan yang sesuai adalah $(A)\ 3y=5x-48$

15. Soal Matematika UM UNDIP 2019

Pada ulangan matematika diketahui nilai rata-rata kelas adalah $67$. Jika rata-rata nilai matematika untuk siswa $65$ dan untuk siswi $70$, maka perbandingan banyaknya siswa dan siswi pada kelas tersebut adalah...





Alternatif Pembahasan:

Catatan calon guru tentang statistika yang mungkin membantu yaitu rata-rata gabungan dapat kita tentukan dengan aturan $\bar{x}_{gab}=\dfrac{\bar{x}_{1} \cdot n_{1}+\bar{x}_{2} \cdot n_{2}}{n_{1}+n_{2}}$.

Kelompok siswa rata-ratanya adalah $\bar{x}_{a}=65$ dan anggotanya ${n}_{a}$. Kelompok siswi rata-ratanya adalah $\bar{x}_{i}=70$ dan anggotanya ${n}_{i}$. Rata-rata kelasnya atau rata-rata gabungannya adalah $67$, sehingga dapat kita tuliskan:
$\begin{align} \bar{x}_{gab} &= \dfrac{\bar{x}_{a} \cdot n_{a}+\bar{x}_{i} \cdot n_{i}}{n_{a}+n_{i}} \\ 67 &= \dfrac{65 \cdot n_{a} + 70 \cdot n_{i}}{n_{a}+n_{i}} \\ 67n_{a}+67n_{i} &= 65n_{a} + 70n_{i} \\ 67n_{a}-65n_{a} &= 70n_{i} - 67n_{i} \\ 2n_{a} &= 3n_{i} \\ \dfrac{n_{a}}{n_{i}} &= \dfrac{3}{2} \end{align} $

$\therefore$ Pilihan yang sesuai adalah $(B)\ 3:2$


Catatan Soal dan Pembahasan Matematika Saintek UM UNDIP Tahun 2019 Kode 324 di atas sifatnya "dokumen hidup" yang senantiasa diperbaiki atau diperbaharui sesuai dengan dinamika kebutuhan dan perubahan zaman. Catatan tambahan dari Anda yang dialamatkan kepada admin diharapkan dapat meningkatkan kualitas catatan ini 🙏 CMIIW.

JADIKAN HARI INI LUAR BIASA!
Ayo Share (Berbagi) Satu Hal Baik.
Untuk siapapun yang sedang galau. Jangan terus bersedih. Percayalah Badai pasti berlalu. Kegagalan dalam berusaha adalah tiket bagi kesuksesan. Sepekat apapun malam ini, percayalah esok fajar kan bersinar kembali.