Skip to main content

Bank Soal Matematika Dasar Limit Fungsi Trigonometri (*Soal dan Pembahasan)

Matematika Dasar Limit Fungsi Trigonometri (*Soal Dari Berbagai Sumber)Catatan calon guru yang akan kita diskusikan saat ini kita coba dari Matematika Dasar topik Limit Fungsi Trigonometri. Limit fungsi ini termasuk materi yang sangat penting dalam kehidupan kita sehari-hari. Hanya saja kita tidak sadar ternyata sedang menggunakan konsep limit fungsi.

Contoh sederhananya ketika kita mengukur berat badan dan hasilnya terlihat adalah $70,5\ kg$. Hasil $70,5\ kg$ ini sebenarnya belum hasil pengukuran yang paling tepat tetapi sudah bisa mewakili hasil pengukuran karena berat badan kita adalah mendekati $70,5\ kg$. Kata "mendekati" adalah salah satu kata kunci dalam belajar limit fungsi.

Setelah sebelumnya kita sudah diskusikan Limit Fungsi Aljabar, Limit Fungsi Trigonometri ini merupakan dasar atau modal kita dalam mencoba menyelesaikan masalah yang berkaitan dengan Limit Fungsi Tak hingga, Diferensial Fungsi (Turunan) dan sampai kepada Integral Fungsi.

Beberapa sampel soal Limit Fungsi Trigonometri untuk kita diskusikan kita sadur dari soal-soal SBMPTN (Seleksi Bersama Masuk Perguruan Tinggi Negeri), soal SMMPTN (Seleksi Mandiri Masuk Perguruan Tinggi Negeri), soal UN (Ujian Nasional) atau soal ujian yang dilaksanakan di sekolah.

Pembahasan limit fungsi trigonometri yang kita jabarkan di bawah ini masih jauh dari sempurna, jadi jika ada masukan yang sifatnya membangun silahkan disampaikan.

Sedikit informasi tambahan yang mungkin tidak terlalu penting, kemarin siswa baru selesai penilaian harian tentang limit dan ada beberapa siswa yang mendapat nilai sempurna, sehingga sebagai kenang-kenangan hasil pekerjaan siswa kita photo dan ditampilkan sebagai photo dari artikel ini karena hasil sempurna.

Berdasarkan defenisi limit, Jika nilai Limit Kiri = Limit Kanan=L secara simbol dituliskan $\lim\limits_{x \to a^{+}}f(x)=\lim\limits_{x \to a^{-}}f(x)=L$ maka nilai $\lim\limits_{x \to a}f(x)=L$.

Teorema dasar pada limit fungsi trigonometri adalah sebagai berikut:
  • $\underset{x \to 0}{lim} \dfrac{sin\ x }{x} = 1 , \, \, $ atau $\underset{x \to 0}{lim}\dfrac{ x }{sin\ x} = 1$
  • $\underset{x \to 0}{lim} \dfrac{tan\ x }{x} = 1 , \, \, $ atau $\underset{x \to 0}{lim}\dfrac{ x }{tan\ x} = 1$
  • $\underset{x \to 0}{lim} \dfrac{sin\ ax }{bx} = \dfrac{a}{b} , \, \, $ atau $\underset{x \to 0}{lim}\dfrac{ ax }{sin\ bx} = \dfrac{a}{b}$
  • $\underset{x \to 0}{lim} \dfrac{tan\ ax }{bx} = \dfrac{a}{b} , \, \, $ atau $\underset{x \to 0}{lim}\dfrac{ ax }{tan\ bx} = \dfrac{a}{b}$
  • $\underset{x \to 0}{lim} \dfrac{sin\ ax }{sin\ bx} = \dfrac{a}{b} , \, \, $ atau $\underset{x \to 0}{lim}\dfrac{tan\ ax }{tan\ bx} = \dfrac{a}{b}$
  • $\underset{x \to 0}{lim} \dfrac{tan\ ax }{sin\ bx} = \dfrac{a}{b} , \, \, $ atau $\underset{x \to 0}{lim}\dfrac{sin\ ax }{tan\ bx} = \dfrac{a}{b}$
Limit fungsi trigonometri ini umumnya tingkat kesulitan bukan pada limit fungsi trigonometrinya tetapi lebih banyak kesulitan tentang trigonometri terkhusus Identitas Trigonometri Dasar.

Teorema dasar limit fungsi trigonmetri di atas juga tetap menggunakan prinsip teorema limit pada fungsi aljabar yaitu jika nilai yang dihasilkan adalah bentuk tak tentu antara lain $\dfrac{0}{0}, \, \dfrac{\infty}{\infty} , \, \infty - \infty , \, 0^0 , \, \infty ^ \infty $ maka dilakukan manipulasi aljabar dengan cara memfaktorkan atau mengalikan dengan akar sekawan atau dengan Metode L'Hospital (Turunan).

Mari kita simak contoh Soal dan Pembahasan Limit Fungsi Trigonometri berikut ๐Ÿ˜Š

1. Soal UM STIS 2017 (*Soal Lengkap)

$\underset{x \to 2}{lim} \dfrac{\left( x^{2}-5x-6\right)\ sin\ 2(x-2) }{\left( x^{2}-x-2\right)} \cdots$
$\begin{align}
(A)\ & -8 \\
(B)\ & -5 \\
(C)\ & -2 \\
(D)\ & \dfrac{3}{4} \\
(E)\ & 5
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \underset{x \to 2}{lim} \dfrac{\left( x^{2}-5x-6\right)\ sin\ 2(x-2) }{\left( x^{2}-x-2 \right)} \\
& = \underset{x \to 2}{lim} \dfrac{(x+1)(x-6)\ sin\ 2(x-2) }{(x-2)(x+1)} \\
& = \underset{x \to 2}{lim} \dfrac{(x-6)\ sin\ 2(x-2) }{(x-2)} \\
& = \underset{x \to 2}{lim} (x-6) \cdot \underset{x \to 2}{lim} \dfrac{sin\ 2(x-2) }{(x-2)} \\
& = (2-6) \cdot 2 \\
& = -4 \cdot 2 =-8 \\
\end{align}$

$\therefore$ Pilihan yang sesuai $(A)\ - 8$

2. Soal SBMPTN 2018 Kode 423 (*Soal Lengkap)

$\underset{x \to 2}{lim} \dfrac{sin\ \left( 2x-4 \right) }{2- \sqrt{6-x}} =\cdots$
$\begin{align}
(A)\ & -8 \\
(B)\ & -2 \\
(C)\ & 0 \\
(D)\ & 2 \\
(E)\ & 8
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \underset{x \to 2}{lim} \dfrac{sin\ \left( 2x-4 \right) }{2- \sqrt{6-x}} \\
& = \underset{x \to 2}{lim} \dfrac{sin\ \left( 2x-4 \right) }{2- \sqrt{6-x}} \cdot \dfrac{2+ \sqrt{6-x}}{2+ \sqrt{6-x}} \\
& = \underset{x \to 2}{lim} \dfrac{sin\ \left( 2x-4 \right) \left( 2+ \sqrt{6-x} \right) }{4- \left( 6-x \right)} \\
& = \underset{x \to 2}{lim} \dfrac{sin\ \left( 2x-4 \right) \left( 2+ \sqrt{6-x} \right) }{4- 6+x } \\
& = \underset{x \to 2}{lim} \dfrac{sin\ 2\left( x-2 \right) \left( 2+ \sqrt{6-x} \right) }{x-2 } \\
& = \underset{x \to 2}{lim} \dfrac{sin\ 2\left( x-2 \right)}{x-2 } \cdot \underset{x \to 2}{lim} \left( 2+ \sqrt{6-x} \right) \\
& = 2 \cdot \left( 2+ \sqrt{6-2} \right) \\
& = 2 \cdot ( 2+ 2)=8 \\
\end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ 8$

3. Soal SBMPTN 2017 Kode 106 (*Soal Lengkap)

$\underset{x \to 0}{lim} \dfrac{sec\ x+cos\ x-2}{x^{2}\ sin^{2}x}=\cdots$
$\begin{align}
(A)\ & -\dfrac{1}{8} \\
(B)\ & -\dfrac{1}{4} \\
(C)\ & 0 \\
(D)\ & \dfrac{1}{4} \\
(E)\ & \dfrac{1}{8}
\end{align}$
Alternatif Pembahasan:

Identitas trigonometri yg mungkin diperlukan:
$cos\ 4x=cos^{2}2x-sin^{2}2x$
$cos\ 2x=cos^{2}x-sin^{2}x$
$cos\ x=cos^{2} \dfrac{1}{2}x-sin^{2}\dfrac{1}{2}x$
$1=cos^{2} \dfrac{1}{2}x+sin^{2}\dfrac{1}{2}x$
$cos\ x - 1=-2sin^{2}\dfrac{1}{2}x$

Kita kembali ke soal;
$\begin{align}
& \underset{x \to 0}{lim} \dfrac{sec\ x+cos\ x-2}{x^{2}\ sin^{2}x}\\
= & \underset{x \to 0}{lim} \dfrac{\dfrac{1}{cos\ x}+\dfrac{cos^{2}x}{cos\ x}-\dfrac{2\ cos\ x}{cos\ x}}{x^{2}\ sin^{2}x}\\
= & \underset{x \to 0}{lim} \dfrac{cos^{2}-2\ cos\ x+1}{x^{2}\ sin^{2}x\ cos\ x}\\
= & \underset{x \to 0}{lim} \dfrac{\left (cos\ x-1 \right )^{2}}{x^{2}\ sin^{2}x\ cos\ x}\\
= & \underset{x \to 0}{lim} \dfrac{\left (-2sin^{2}(\dfrac{1}{2}x) \right )^{2}}{x^{2}\ sin^{2}x\ cos\ x}\\
= & \underset{x \to 0}{lim} \dfrac{4\ sin^{2}(\dfrac{1}{2}x)\ sin^{2}(\dfrac{1}{2}x)}{x^{2}\ sin^{2}x\ cos\ x}\\
= & \underset{x \to 0}{lim} 4\ \cdot \dfrac{sin^{2}(\dfrac{1}{2}x)}{x^{2}} \cdot \dfrac{sin^{2}(\dfrac{1}{2}x)}{sin^{2}x} \cdot \dfrac{1}{cos\ x}\\
= & 4\ \cdot \dfrac{1}{4} \cdot \dfrac{1}{4} \cdot \dfrac{1}{1} = \dfrac{1}{4}
\end{align}$

$\therefore$ Pilihan yang sesuai $(D)\ \dfrac{1}{4}$

4. Soal SBMPTN 2016 Kode 255 (*Soal Lengkap)

$\underset{x \to 0}{lim} \dfrac{x^{3}}{\sqrt{1+sin\ x}-\sqrt{1+tan\ x}}=\cdots$
$\begin{align}
(A)\ & -4 \\
(B)\ & -2 \\
(C)\ & 0 \\
(D)\ & 2 \\
(E)\ & 4
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \underset{x \to 0}{lim} \dfrac{x^{3}}{\sqrt{1+sin\ x}-\sqrt{1+tan\ x}} \\
& = \underset{x \to 0}{lim} \dfrac{x^{3}}{\sqrt{1+sin\ x}-\sqrt{1+tan\ x}} \cdot \dfrac{\sqrt{1+sin\ x}+\sqrt{1+tan\ x}}{\sqrt{1+sin\ x}+\sqrt{1+tan\ x}} \\
& \underset{x \to 0}{lim} \dfrac{x^{3} \left( \sqrt{1+sin\ x}+\sqrt{1+tan\ x} \right)}{1+sin\ x-1-tan\ x} \\
& = \underset{x \to 0}{lim} \dfrac{x^{3} \left( \sqrt{1+sin\ x}+\sqrt{1+tan\ x} \right)}{sin\ x-tan\ x} \\
& = \underset{x \to 0}{lim} \dfrac{x^{3} \left( \sqrt{1+sin\ x}+\sqrt{1+tan\ x} \right)}{sin\ x (1-\frac{1}{cos\ x})} \\
& = \underset{x \to 0}{lim} \dfrac{x^{3} \left( \sqrt{1+sin\ x}+\sqrt{1+tan\ x} \right)}{sin\ x \cdot \frac{cos\ x -1}{cos\ x}} \\
& = \underset{x \to 0}{lim} \dfrac{cos\ x \cdot x^{3} \left( \sqrt{1+sin\ x}+\sqrt{1+tan\ x} \right)}{sin\ x (cos\ x -1)} \\
& = \underset{x \to 0}{lim} \dfrac{cos\ x \cdot x^{3} \left( \sqrt{1+sin\ x}+\sqrt{1+tan\ x} \right)}{sin\ x (1-2 sin^{2} \frac{1}{2}x -1)} \\
& = \underset{x \to 0}{lim} \dfrac{cos\ x \cdot x^{3} \left( \sqrt{1+sin\ x}+\sqrt{1+tan\ x} \right)}{sin\ x (-2 sin^{2} \frac{1}{2}x)} \\
& = \underset{x \to 0}{lim}\ cos\ x \left( \sqrt{1+sin\ x}+\sqrt{1+tan\ x} \right) \cdot \underset{x \to 0}{lim} \dfrac{x^{3}}{sin\ x (-2 sin^{2} \frac{1}{2}x)}\\
& = cos\ 0 \left( \sqrt{1+sin\ 0}+\sqrt{1+tan\ 0} \right) \cdot \dfrac{1}{-2 \cdot \frac{1}{2} \cdot \frac{1}{2}} \\
& = 1 \left( \sqrt{1}+\sqrt{1} \right) \cdot \dfrac{1}{-\frac{1}{2}}\\
& = 2 \cdot (-2) =-4
\end{align}$

$\therefore$ Pilihan yang sesuai $(A)\ -4$

5. Soal SBMPTN 2013 Kode 338 (*Soal Lengkap)

$\underset{x \to 0}{lim} \dfrac{x\ tan\ x}{x\ sin\ x - cos\ x +1}=\cdots$
$\begin{align}
(A)\ & 2 \\
(B)\ & \frac{3}{2} \\
(C)\ & 1 \\
(D)\ & \frac{2}{3} \\
(E)\ & -1
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \underset{x \to 0}{lim} \dfrac{x\ tan\ x}{x\ sin\ x - cos\ x +1} \\
&= \underset{x \to 0}{lim} \dfrac{x\ tan\ x}{x\ sin\ x +1- cos\ x} \\
&= \underset{x \to 0}{lim} \dfrac{x\ tan\ x}{x\ sin\ x +2 sin^{2} \dfrac{1}{2}x} \\
&= \underset{x \to 0}{lim} \dfrac{x\ tan\ x}{x\ sin\ x +2 sin^{2} \dfrac{1}{2}x} \cdot \dfrac{\dfrac{1}{x^{2}}}{\dfrac{1}{x^{2}}} \\
&= \underset{x \to 0}{lim} \dfrac{\dfrac{x\ tan\ x}{x^{2}}}{\dfrac{x\ sin\ x}{x^{2}} +\dfrac{2 sin^{2} \dfrac{1}{2}x}{x^{2}}} \\
&= \dfrac{1}{1+2 \cdot \dfrac{1}{2} \cdot \dfrac{1}{2}} \\
&= \dfrac{1}{1+\dfrac{1}{2}} \\
&= \dfrac{1}{\dfrac{3}{2}}= \dfrac{2}{3}
\end{align}$

$\therefore$ Pilihan yang sesuai $(D)\ \dfrac{2}{3}$


6. Soal SBMPTN 2013 Kode 131 (*Soal Lengkap)

$\underset{x \to 0}{lim} \sqrt{\dfrac{x\ tan\ x}{sin^{2} x - cos\ 2x +1}}=\cdots$
$\begin{align}
(A)\ & 3 \\
(B)\ & \sqrt{3} \\
(C)\ & \frac{\sqrt{3}}{3} \\
(D)\ & \frac{1}{3} \\
(E)\ & \frac{\sqrt{3}}{2}
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \underset{x \to 0}{lim} \sqrt{\dfrac{x\ tan\ x}{sin^{2} x - cos\ 2x +1}} \\
&= \underset{x \to 0}{lim} \sqrt{\dfrac{x\ tan\ x}{sin^{2} x + 1- cos\ 2x }} \\
&= \underset{x \to 0}{lim} \sqrt{\dfrac{x\ tan\ x}{sin^{2} x + 2sin^{2} x }} \\
&= \underset{x \to 0}{lim} \sqrt{\dfrac{x\ tan\ x}{3 sin^{2} x }} \\
&= \underset{x \to 0}{lim} \sqrt{\dfrac{x\ tan\ x}{3 sin\ x\ sin\ x}} \\
&= \underset{x \to 0}{lim} \sqrt{\dfrac{1}{3} \cdot \dfrac{x}{sin\ x} \cdot \dfrac{tan\ x}{sin\ x}} \\
&= \sqrt{\dfrac{1}{3} \cdot 1 \cdot 1} \\
&= \sqrt{\dfrac{1}{3}} \\
&= \dfrac{1}{3}\sqrt{3}
\end{align}$

$\therefore$ Pilihan yang sesuai $(C)\ \frac{\sqrt{3}}{3}$

7. Soal SBMPTN 2013 Kode 132 (*Soal Lengkap)

$\underset{x \to 0}{lim} \dfrac{x\ tan\ x}{sin^{2} x - cos\ 2x +1}=\cdots$
$\begin{align}
(A)\ & 1 \\
(B)\ & \frac{1}{3} \\
(C)\ & \frac{2}{3} \\
(D)\ & -\frac{1}{2} \\
(E)\ & -1
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \underset{x \to 0}{lim} \dfrac{x\ tan\ x}{sin^{2} x - cos\ 2x +1} \\
&= \underset{x \to 0}{lim} \dfrac{x\ tan\ x}{sin^{2} x + 1- cos\ 2x } \\
&= \underset{x \to 0}{lim} \dfrac{x\ tan\ x}{sin^{2} x + 2sin^{2} x } \\
&= \underset{x \to 0}{lim} \dfrac{x\ tan\ x}{3 sin^{2} x } \\
&= \underset{x \to 0}{lim} \dfrac{x\ tan\ x}{3 sin\ x\ sin\ x} \\
&= \underset{x \to 0}{lim} \dfrac{1}{3} \cdot \dfrac{x}{sin\ x} \cdot \dfrac{tan\ x}{sin\ x} \\
&= \dfrac{1}{3} \cdot 1 \cdot 1 \\
&= \dfrac{1}{3}
\end{align}$

$\therefore$ Pilihan yang sesuai $(B)\ \frac{1}{3}$

8. Soal UM UGM 2017 Kode 713 (*Soal Lengkap)

$\underset{x \to -4}{lim} \dfrac{1-cos(x+4)}{x^{2}+8x+16}=\cdots$
$\begin{align}
(A)\ & -2 \\
(B)\ & -\frac{1}{2} \\
(C)\ & \frac{1}{3} \\
(D)\ & \frac{1}{2} \\
(E)\ & 2
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \underset{x \to -4}{lim} \dfrac{1-cos(x+4)}{x^{2}+8x+16} \\
& = \underset{x \to -4}{lim} \dfrac{1-cos(x+4)}{(x+4)(x+4)} \\
& = \underset{x \to -4}{lim} \dfrac{2 sin^{2} \dfrac{1}{2}(x+4)}{(x+4)(x+4)} \\
& = \underset{x \to -4}{lim} \dfrac{2 sin \dfrac{1}{2}(x+4)}{(x+4)} \cdot \underset{x \to -4}{lim} \dfrac{sin \dfrac{1}{2}(x+4)}{(x+4)} \\
& = 2 \cdot \dfrac{1}{2} \cdot \dfrac{1}{2} \\
& = \dfrac{1}{2}
\end{align}$

$\therefore$ Pilihan yang sesuai $(D)\ \frac{1}{2}$


9. Soal UM UNDIP 2010 Kode 101 (*Soal Lengkap)

$\underset{x \to y}{lim} \dfrac{sin\ x - sin\ y}{x-y}=\cdots$
$\begin{align}
(A)\ & sin\ x \\
(B)\ & sin\ y \\
(C)\ & 0 \\
(D)\ & cos\ x \\
(E)\ & cos\ y
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan bentuk ini, kita gunakan sedikit identitas trigonometri yaitu $sin\ x - sin\ y$ adalah $2\ cos\ \dfrac{1}{2}(x+y)\ sin\ \dfrac{1}{2}(x-y)$.

$\begin{align}
& \underset{x \to y}{lim} \dfrac{sin\ x - sin\ y}{x-y} \\
& = \underset{x \to y}{lim} \dfrac{2\ cos\ \dfrac{1}{2}(x+y)\ sin\ \dfrac{1}{2}(x-y)}{x-y} \\
& = \underset{x \to y}{lim}\ 2\ cos\ \dfrac{1}{2}(x+y) \times \underset{x \to y}{lim} \dfrac{sin\ \dfrac{1}{2}(x-y)}{x-y} \\
& = 2\ cos\ \dfrac{1}{2}(y+y) \times \dfrac{1}{2} \\
& = cos\ \dfrac{1}{2}(2y) \\
& = cos\ y
\end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ cos\ y$



10. Soal UM UNDIP 2010 Kode 101 (*Soal Lengkap)

$\underset{x \to -1}{lim} \dfrac{sin(1-x^{2})\ cos (1-x^{2})}{x^{2}-1}=\cdots$
$\begin{align}
(A)\ & 1 \\
(B)\ & -1 \\
(C)\ & 2 \\
(D)\ & -2 \\
(E)\ & 0
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan soal di atas kita coba dengan memisalkan $1-x^{2}=m$, karena $x \to -1$ maka $m \to 0$.
$\begin{align}
& \underset{x \to -1}{lim} \dfrac{sin(1-x^{2})\ cos (1-x^{2})}{x^{2}-1} \\
& = \underset{m \to 0}{lim} \dfrac{sin\ m\ cos\ m}{-m} \\
& = \underset{m \to 0}{lim}\ cos\ m \cdot \underset{m \to 0}{lim} \dfrac{sin\ m}{-m} \\
& = cos\ 0 \cdot -1 \\
& = 1 \cdot -1 =-1
\end{align}$

$\therefore$ Pilihan yang sesuai $(B)\ -1$

11. Soal SIMAK UI 2012 Kode 221 (*Soal Lengkap)

$\underset{x \to 1}{lim} \dfrac{sin\ 2(x-1)}{(x^{2}-2x+1)\ cot\ \frac{1}{2}(x-1)}=\cdots$
$\begin{align}
(A)\ & \dfrac{1}{4} \\
(B)\ & \dfrac{1}{2} \\
(C)\ & 1 \\
(D)\ & 2 \\ \\
(E)\ & 4
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \underset{x \to 1}{lim} \dfrac{sin\ 2(x-1)}{(x^{2}-2x+1)\ cot\ \frac{1}{2}(x-1))} \\
&= \underset{x \to 1}{lim} \dfrac{sin\ 2(x-1)}{(x^{2}-2x+1)\ \cdot \dfrac{cos\ \frac{1}{2}(x-1)}{sin\ \frac{1}{2}(x-1)}} \\
&= \underset{x \to 1}{lim} \left( \dfrac{sin\ 2(x-1)}{(x-1)(x-1)} \cdot \dfrac{sin\ \frac{1}{2}(x-1)}{cos\ \frac{1}{2}(x-1)} \right) \\
&= \underset{x \to 1}{lim} \left( \dfrac{sin\ 2(x-1)}{ (x-1)} \cdot \dfrac{ sin\ \frac{1}{2}(x-1)}{(x-1)} \cdot \dfrac{1}{cos\ \frac{1}{2}(x-1)} \right) \\
&= \left( 2 \cdot \dfrac{1}{2} \cdot \dfrac{1}{cos\ \frac{1}{2}(1-1)} \right) \\
&= 1 \cdot \dfrac{1}{1} \\
&= 1
\end{align}$

$\therefore$ Pilihan yang sesuai $(C)\ 1$

12. Soal SIMAK UI 2009 Kode 941 (*Soal Lengkap)

$\underset{x \to \frac{\pi}{2}}{lim} \dfrac{\pi (\pi-2x)\ tan \left ( x-\frac{\pi}{2} \right)}{2(x-\pi)\ cos^{2}x }=\cdots$
$\begin{align}
(A)\ & -2 \\
(B)\ & -1 \\
(C)\ & -\dfrac{1}{2} \\
(D)\ & 1 \\
(E)\ & 2
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan soal limit trigonometri di atas, seperti kita sampaikan sebelumnya beberapa Identitas Trigonometri Dasar setidaknya bisa kita gunakan pada manipulasi aljabar;

  • $ tan \left ( \dfrac{\pi}{2}-x \right)=cotan\ x$
  • $ cotan\ x =\dfrac{cos\ x}{sin\ x}$
  • $sin\ 2x = 2 sin\ x\ cos\ x$
  • $ sin \left ( \pi -2x \right)=sin\ 2x$
$\begin{align}
& \underset{x \to \frac{\pi}{2}}{lim} \dfrac{\pi (\pi-2x)\ tan \left ( x-\frac{\pi}{2} \right)}{2(x-\pi)\ cos^{2}x } \\
& = \underset{x \to \frac{\pi}{2}}{lim} \dfrac{\pi (\pi-2x)\ \left ( - tan \left ( \frac{\pi}{2}-x \right) \right)}{2(x-\pi)\ cos^{2}x } \\
& = \underset{x \to \frac{\pi}{2}}{lim} \dfrac{-\pi (\pi-2x)\ cotan\ x }{2(x-\pi)\ cos^{2}x } \\
& = \underset{x \to \frac{\pi}{2}}{lim} \dfrac{-\pi (\pi-2x)\ \dfrac{cos\ x}{sin\ x} }{2(x-\pi)\ cos^{2}x } \\
& = \underset{x \to \frac{\pi}{2}}{lim} \dfrac{-\pi (\pi-2x)\ cos\ x }{2(x-\pi)\ sin\ x\ cos^{2}x } \\
& = \underset{x \to \frac{\pi}{2}}{lim} \dfrac{-\pi (\pi-2x) }{2(x-\pi)\ sin\ x\ cos\ x } \\
& = \underset{x \to \frac{\pi}{2}}{lim} \dfrac{-\pi (\pi-2x) }{ (x-\pi)\ sin\ 2x } \\
& = \underset{x \to \frac{\pi}{2}}{lim} \dfrac{-\pi (\pi-2x) }{ (x-\pi)\ sin\ (\pi-2x) } \\
& = \underset{x \to \frac{\pi}{2}}{lim} \dfrac{-\pi }{ (x-\pi)} \\
& = \dfrac{-\pi }{ \frac{\pi}{2}-\pi } \\
& = \dfrac{-\pi }{ -\frac{\pi}{2} } = 2
\end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ 2$

13. Soal SPMB 2006 Kode 510 (*Soal Lengkap)

$\underset{x \to 4}{lim} \dfrac{sin\ \left( 4-2\sqrt{x} \right)}{4-x}=\cdots$
$\begin{align}
(A)\ & -\dfrac{1}{6} \\
(B)\ & -\dfrac{1}{2} \\
(C)\ & 0 \\
(D)\ & \dfrac{1}{4} \\
(E)\ & \dfrac{1}{2}
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \underset{x \to 4}{lim} \dfrac{sin\ \left( 4-2\sqrt{x} \right)}{4-x} \\
& = \underset{x \to 4}{lim} \dfrac{sin\ 2\left( 2- \sqrt{x} \right)}{\left( 2- \sqrt{x} \right)\left( 2+ \sqrt{x} \right)} \\
& = \underset{x \to 4}{lim} \left( \dfrac{sin\ 2\left( 2- \sqrt{x} \right)}{\left( 2- \sqrt{x} \right)} \times \dfrac{1}{\left( 2+ \sqrt{x} \right)} \right)\\
& = 2 \times \dfrac{1}{\left( 2+ \sqrt{4} \right)} \\
& = 2 \times \dfrac{1}{4}= \dfrac{1}{2}
\end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ \dfrac{1}{2}$

14. Soal SPMB 2006 Kode 720 (*Soal Lengkap)

$\underset{x \to 0}{lim} \dfrac{sin\ \left( 3x-\pi \right)}{\sqrt[3]{8+x}\ tan\ 2x}=\cdots$
$\begin{align}
(A)\ & -\dfrac{3}{2} \\
(B)\ & -\dfrac{3}{4} \\
(C)\ & -\dfrac{1}{4} \\
(D)\ & \dfrac{1}{4} \\
(E)\ & \dfrac{3}{4}
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \underset{x \to 0}{lim} \dfrac{sin\ \left( 3x-\pi \right)}{\sqrt[3]{8+x}\ tan\ 2x} \\
& = \underset{x \to 0}{lim} \dfrac{-sin\ \left( \pi-3x \right)}{\sqrt[3]{8+x}\ tan\ 2x} \\
& = \underset{x \to 0}{lim} \dfrac{-sin\ 3x}{\sqrt[3]{8+x}\ tan\ 2x} \\
& = \underset{x \to 0}{lim} \left( \dfrac{1}{\sqrt[3]{8+x}} \times \dfrac{-sin\ 3x}{tan\ 2x} \right) \\
& = \dfrac{1}{\sqrt[3]{8+0}} \times \dfrac{- 3 }{ 2 } \\
& = \dfrac{1}{2} \times \dfrac{-3}{2} = -\dfrac{3}{4}
\end{align}$

$\therefore$ Pilihan yang sesuai $(B)\ -\dfrac{3}{4}$

15. Soal UM UGM 2006 Kode 381 (*Soal Lengkap)

$\underset{x \to 0}{lim} \left( \dfrac{1}{x}-\dfrac{1}{x\ cos\ x} \right)=\cdots$
$\begin{align}
(A)\ & -1 \\
(B)\ & -\dfrac{1}{2} \\
(C)\ & 0 \\
(D)\ & \dfrac{1}{2} \\
(E)\ & 1
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan soal limit trigonometri di atas, seperti kita sampaikan sebelumnya beberapa Identitas Trigonometri Dasar setidaknya dapat kita gunakan pada manipulasi aljabar;

  • $cos\ 2x= cos^{2}x-sin^{2}x$
  • $cos\ 2x= 1-2sin^{2}x$
  • $cos\ x= 1-2sin^{2} \left( \frac{1}{2}x \right)$
$\begin{align}
& \underset{x \to 0}{lim} \left( \dfrac{1}{x}-\dfrac{1}{x\ cos\ x} \right) \\
& = \underset{x \to 0}{lim} \left( \dfrac{x\ cos\ x-x}{x^{2}\ cos\ x} \right) \\
& = \underset{x \to 0}{lim} \left( \dfrac{ cos\ x-1 }{x\ cos\ x} \right) \\
& = \underset{x \to 0}{lim} \left( \dfrac{ -2sin^{2} \left( \frac{1}{2}x \right) }{x\ cos\ x} \right) \\
& = \underset{x \to 0}{lim} \left( \dfrac{ -2sin \left( \frac{1}{2}x \right) }{x} \times \dfrac{sin \left( \frac{1}{2}x \right) }{cos\ x} \right)\\
& = -2 \cdot \dfrac{1}{2} \times \dfrac{ sin\ 0 }{cos\ 0} \\
& = -1 \times \dfrac{0}{1} = 0
\end{align}$

$\therefore$ Pilihan yang sesuai $(C)\ 0$

16. Soal SPMB 2006 Kode 121 (*Soal Lengkap)

$\underset{x \to 5}{lim} \dfrac{2x^{3}-20x^{2}+50x}{sin^{2}(x-5)cos(2x-10)}=\cdots$
$\begin{align}
(A)\ & 0 \\
(B)\ & 1 \\
(C)\ & 5 \\
(D)\ & 10 \\
(E)\ & \infty
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \underset{x \to 5}{lim} \dfrac{2x^{3}-20x^{2}+50x}{sin^{2}(x-5)cos(2x-10)} \\
& = \underset{x \to 5}{lim} \dfrac{2x \left( x^{2}-10x +25 \right) }{sin^{2}(x-5)cos (2x-10)} \\
& = \underset{x \to 5}{lim} \dfrac{2x \left( x-5 \right)\left( x-5 \right) }{sin^{2}(x-5)cos(2x-10)} \\
& = \underset{x \to 5}{lim} \left( \dfrac{\left( x-5 \right)\left( x-5 \right) }{sin^{2}(x-5)} \times \dfrac{2x}{cos(2x-10)} \right)\\
& = 1 \times \dfrac{2(5)}{cos(2(5)-10)} \\
& = 1 \times \dfrac{10}{cos(0)} = 10
\end{align}$

$\therefore$ Pilihan yang sesuai $(D)\ 10$

17. Soal SPMB 2006 Kode 310 (*Soal Lengkap)

$\underset{x \to \frac{1}{2}\pi}{lim} \dfrac{sin\ x\ tan(2x-\pi)}{2\pi-4x}=\cdots$
$\begin{align}
(A)\ & -\dfrac{1}{2} \\
(B)\ & \dfrac{1}{2} \\
(C)\ & \dfrac{1}{3} \sqrt{3} \\
(D)\ & 1 \\
(E)\ & \sqrt{3}
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \underset{x \to \frac{1}{2}\pi}{lim} \dfrac{sin\ x\ tan(2x-\pi)}{2\pi-4x} \\
& = \underset{x \to \frac{1}{2}\pi}{lim} \dfrac{sin\ x\ \left(- tan(\pi-2x) \right)}{2 (\pi-2x)} \\
& = \underset{x \to \frac{1}{2}\pi}{lim} \dfrac{-sin\ x\ tan(\pi-2x) }{2 (\pi-2x)} \\
& = \underset{x \to \frac{1}{2}\pi}{lim} \left( \dfrac{-sin\ x}{2} \times \dfrac{tan(\pi-2x) }{ \pi-2x } \right) \\
& = \dfrac{-sin\ \left( \frac{1}{2}\pi \right)}{2} \times 1 \\
& = \dfrac{-1}{2}
\end{align}$

$\therefore$ Pilihan yang sesuai $(A)\ -\dfrac{1}{2}$

18. Soal SPMB 2006 Kode 111 (*Soal Lengkap)

$\underset{x \to \frac{1}{2}\pi}{lim} \dfrac{ \left(x-\frac{1}{2} \pi \right)^{2}\ sin\ x}{cos^{2}x}=\cdots$
$\begin{align}
(A)\ & -1 \\
(B)\ & -\dfrac{1}{2} \\
(C)\ & 0 \\
(D)\ & 1 \\
(E)\ & 2
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \underset{x \to \frac{1}{2}\pi}{lim} \dfrac{ \left(x-\frac{1}{2} \pi \right)^{2}\ sin\ x}{cos^{2}x} \\
& = \underset{x \to \frac{1}{2}\pi}{lim} \dfrac{ \left(\frac{1}{2} \pi-x \right)^{2}\ sin\ x}{sin^{2}\left(\frac{1}{2} \pi-x \right)} \\
& = \underset{x \to \frac{1}{2}\pi}{lim} \left( \dfrac{ \left(\frac{1}{2} \pi-x \right)^{2}}{sin^{2}\left(\frac{1}{2} \pi-x \right)} \times sin\ x \right) \\
& = 1 \times sin\ \frac{1}{2} \pi \\
& = 1 \times 1 =1
\end{align}$

$\therefore$ Pilihan yang sesuai $(D)\ 1$

19. Soal SPMB 2006 Kode 420 (*Soal Lengkap)

$\underset{x \to 0}{lim} \dfrac{x^{2}\ \sqrt{4-x^{3}}}{cos\ x-cos\ 3x}=\cdots$
$\begin{align}
(A)\ & -\dfrac{3}{2} \\
(B)\ & -\dfrac{1}{2} \\
(C)\ & 0 \\
(D)\ & \dfrac{1}{2} \\
(E)\ & \dfrac{3}{2}
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan soal limit trigonometri di atas, seperti kita sampaikan sebelumnya beberapa Identitas Trigonometri Dasar setidaknya dapat kita gunakan pada manipulasi aljabar;

  • $cos\ A +cos\ B = 2cos \left( \dfrac{A+B}{2} \right)\ sin \left( \dfrac{A-B}{2} \right)$
  • $cos\ A -cos\ B= 2sin \left( \dfrac{A+B}{2} \right)\ sin \left( \dfrac{A-B}{2} \right)$
  • $cos\ x -cos\ 3x= -2sin \left( \dfrac{x+3x}{2} \right)\ sin \left( \dfrac{x-3x}{2} \right)$
    $cos\ x -cos\ 3x= -2sin \left(2x \right)\ sin \left(-x \right)$
$\begin{align}
& \underset{x \to 0}{lim} \dfrac{x^{2}\ \sqrt{4-x^{3}}}{cos\ x-cos\ 3x} \\
& = \underset{x \to 0}{lim} \dfrac{x^{2}\ \sqrt{4-x^{3}}}{-2sin \left(2x \right)\ sin \left(-x \right)} \\
& = \underset{x \to 0}{lim} \dfrac{x^{2}\ \sqrt{4-x^{3}}}{ 2sin \left(2x \right)\ sin \left( x \right)} \\
& = \underset{x \to 0}{lim} \left( \dfrac{x^{2}}{ 2sin \left(2x \right)\ sin \left( x \right)} \times\ \sqrt{4-x^{3}} \right) \\
& = \dfrac{1}{ 2 \cdot 2} \times \ \sqrt{4-0^{3}} \\
& = \dfrac{1}{4} \times 2 = \dfrac{1}{2}
\end{align}$

$\therefore$ Pilihan yang sesuai $(D)\ \dfrac{1}{2}$


20. Soal UM UGM 2005 Kode 611 (*Soal Lengkap)

$\underset{x \to \frac{1}{4}\pi}{lim} \dfrac{ \left(x-\frac{\pi}{4} \right) tan \left(3x-\frac{3\pi}{4} \right) }{2 \left( 1-sin\ 2x \right)}=\cdots$
$\begin{align}
(A)\ & 0 \\
(B)\ & -\dfrac{3}{2} \\
(C)\ & \dfrac{3}{2} \\
(D)\ & -\dfrac{3}{4} \\
(E)\ & \dfrac{3}{4}
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan soal limit trigonometri di atas, seperti kita sampaikan sebelumnya beberapa Identitas Trigonometri Dasar setidaknya dapat kita gunakan pada manipulasi aljabar;

  • $cos\ \left( \frac{1}{2}\pi -x \right) = sin\ \left( x \right)$
  • $cos\ 2x= cos^{2}x-sin^{2}x$
  • $cos\ 2x= 1-2sin^{2}x$
  • $cos\ x= 1-2sin^{2} \left( \frac{1}{2}x \right)$
$\begin{align}
& \underset{x \to \frac{1}{4}\pi}{lim} \dfrac{ \left(x-\frac{\pi}{4} \right) tan\ \left(3x-\frac{3\pi}{4} \right) }{2\left( 1-sin\ 2x \right)} \\
& = \underset{x \to \frac{1}{4}\pi}{lim} \dfrac{ \left(x-\frac{\pi}{4} \right) \left(-tan\ \left(\frac{3\pi}{4}-3x \right) \right) }{2 \left(1-cos\ \left( \frac{1}{2}\pi-2x \right)\right)} \\
&= \underset{x \to \frac{1}{4}\pi}{lim} \dfrac{ -\left(x-\frac{\pi}{4} \right) tan\ 3\left( \frac{\pi}{4}-x \right) }{2 \left( 2sin^{2} \left( \frac{1}{2} \left( \frac{1}{2}\pi-2x \right) \right) \right)} \\
&= \underset{x \to \frac{1}{4}\pi}{lim}\ \dfrac{ \left(\frac{\pi}{4}-x \right) tan\ 3\left( \frac{\pi}{4}-x \right) }{4sin^{2} \left( \frac{1}{4}\pi-x \right)} \\
&= \underset{x \to \frac{1}{4}\pi}{lim}\ \left( \dfrac{ \left(\frac{\pi}{4}-x \right)}{4sin\ \left( \frac{1}{4}\pi-x \right)} \times \dfrac{tan\ 3\left( \frac{\pi}{4}-x \right) }{ sin\ \left( \frac{1}{4}\pi-x \right)} \right) \\
&= \dfrac{ 1}{4} \times \dfrac{ 3 }{1} = \dfrac{3}{4}
\end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ \dfrac{3}{4}$

21. Soal UM UGM 2005 Kode 812 (*Soal Lengkap)

$\underset{x \to 0}{lim}\ \dfrac{x\ tan\ 5x}{cos\ 2x - cos\ 7x}=\cdots$
$\begin{align}
(A)\ & \dfrac{1}{9} \\
(B)\ & -\dfrac{1}{9} \\
(C)\ & \dfrac{2}{9} \\
(D)\ & -\dfrac{2}{9} \\
(E)\ & 0
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan soal limit trigonometri di atas, seperti kita sampaikan sebelumnya beberapa Identitas Trigonometri Dasar harus kita bisa gunakan pada manipulasi aljabar;

  • $cos\ A +cos\ B = 2cos \left( \dfrac{A+B}{2} \right)\ sin \left( \dfrac{A-B}{2} \right)$
  • $cos\ A -cos\ B= 2sin \left( \dfrac{A+B}{2} \right)\ sin \left( \dfrac{A-B}{2} \right)$
  • $cos\ 2x -cos\ 7x= -2sin \left( \dfrac{2x+7x}{2} \right)\ sin \left( \dfrac{2x-7x}{2} \right)$
    $cos\ 2x -cos\ 7x= -2sin \left( \dfrac{9}{2}x \right)\ sin \left( \dfrac{-5}{2}x \right)$
$\begin{align}
& \underset{x \to 0}{lim}\ \dfrac{x\ tan\ 5x}{cos\ 2x - cos\ 7x} \\
& = \underset{x \to 0}{lim}\ \dfrac{x\ tan\ 5x}{-2sin \left( \dfrac{9}{2}x \right)\ sin \left( \dfrac{-5}{2}x \right)} \\
& = \underset{x \to 0}{lim}\ \left( \dfrac{x}{-2sin \left( \dfrac{9}{2}x \right)} \times \dfrac{ tan\ 5x}{sin \left( \dfrac{-5}{2}x \right)} \right) \\
& = \dfrac{1}{-2 \cdot \dfrac{9}{2}} \times \dfrac{5}{ \dfrac{-5}{2}} \\
& = \dfrac{1}{-9} \times -2 = \dfrac{2}{9}
\end{align}$

$\therefore$ Pilihan yang sesuai $(C)\ \dfrac{2}{9}$

22. Soal SPMB 2005 Kode 270 (*Soal Lengkap)

$\underset{x \to 0}{lim}\ \dfrac{1-cos\ x}{2x\ sin\ 3x}=\cdots$
$\begin{align}
(A)\ & 0 \\
(B)\ & \dfrac{1}{12} \\
(C)\ & \dfrac{1}{6} \\
(D)\ & \dfrac{1}{3} \\
(E)\ & \dfrac{1}{2}
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan soal limit trigonometri di atas, seperti kita sampaikan sebelumnya beberapa Identitas Trigonometri Dasar harus kita bisa gunakan pada manipulasi aljabar;

  • $cos\ \left( \frac{1}{2}\pi -x \right) = sin\ \left( x \right)$
  • $cos\ 2x= cos^{2}x-sin^{2}x$
  • $cos\ 2x= 1-2sin^{2}x$
  • $cos\ x= 1-2sin^{2} \left( \frac{1}{2}x \right)$
$\begin{align}
& \underset{x \to 0}{lim}\ \dfrac{1-cos\ x}{2x\ sin\ 3x} \\
& = \underset{x \to 0}{lim}\ \dfrac{2sin^{2} \left( \frac{1}{2}x \right)}{2x\ sin\ 3x} \\
& = \underset{x \to 0}{lim}\ \left( \dfrac{2 sin \left( \frac{1}{2}x \right)}{2x} \times \dfrac{ sin \left( \frac{1}{2}x \right)}{sin\ 3x} \right)\\
& = \dfrac{2 \cdot \dfrac{1}{2}}{2} \times \dfrac{ \dfrac{1}{2}}{3} \\
& = \dfrac{1}{2} \times \dfrac{ \dfrac{1}{2} }{3}=\dfrac{1}{12}
\end{align}$

$\therefore$ Pilihan yang sesuai $(B)\ \dfrac{1}{12}$

23. Soal SPMB 2005 Kode 181 (*Soal Lengkap)

$\underset{x \to 2}{lim}\ \dfrac{tan\ \left( 2-\sqrt{2x} \right)}{x^{2}-2x}=\cdots$
$\begin{align}
(A)\ & \dfrac{1}{4} \\
(B)\ & \dfrac{1}{8} \\
(C)\ & 0 \\
(D)\ & -\dfrac{1}{6} \\
(E)\ & -\dfrac{1}{4}
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \underset{x \to 2}{lim}\ \dfrac{tan\ \left( 2-\sqrt{2x} \right)}{x^{2}-2x} \\
& = \underset{x \to 2}{lim}\ \dfrac{tan\ \left(-\sqrt{2}\left( \sqrt{x}-\sqrt{2} \right)\right)}{x(x-2)} \\
& = \underset{x \to 2}{lim}\ \dfrac{-tan\ \sqrt{2}\left( \sqrt{x}-\sqrt{2} \right)}{x\left( \sqrt{x}-\sqrt{2} \right)\left( \sqrt{x}+\sqrt{2} \right)} \\
& = \underset{x \to 2}{lim}\ \left( \dfrac{-tan\ \sqrt{2}\left( \sqrt{x}-\sqrt{2} \right)}{\left( \sqrt{x}-\sqrt{2} \right)} \times \dfrac{1}{x\ \left( \sqrt{x}+\sqrt{2} \right)} \right)\\
& = \dfrac{- \sqrt{2}}{1} \times \dfrac{1}{2\ \left( \sqrt{2}+\sqrt{2} \right)} \\
& = - \sqrt{2} \times \dfrac{1}{4\sqrt{2}} = -\dfrac{1}{4}
\end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ -\dfrac{1}{4}$

24. Soal SPMB 2005 Kode 780 (*Soal Lengkap)

$\underset{x \to 1}{lim}\ \dfrac{ \left( x^{2}+x-2 \right) sin\ (x-1)}{x^{2}+x-2}=\cdots$
$\begin{align}
(A)\ & 4 \\
(B)\ & 3 \\
(C)\ & 0 \\
(D)\ & -\dfrac{1}{4} \\
(E)\ & -\dfrac{1}{2}
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \underset{x \to 1}{lim}\ \dfrac{ \left( x^{2}+x-2 \right) sin\ (x-1)}{x^{2}+x-2} \\
& = \underset{x \to 1}{lim}\ \dfrac{ \left( x+2 \right)\left( x-1 \right) sin\ (x-1)}{\left( x-1 \right) \left( x-1 \right)} \\
& = \underset{x \to 1}{lim}\ \left( \dfrac{ \left( x+2 \right)\left( x-1 \right)}{\left( x-1 \right)} \times \dfrac{sin\ (x-1)}{\left( x-1 \right)} \right)\\
& = 1+2 \times 1 =3
\end{align}$

$\therefore$ Pilihan yang sesuai $(B)\ 3$

25. Soal SPMB 2005 Kode 370 (*Soal Lengkap)

$\underset{x \to 0}{lim}\ \dfrac{-x^{2}}{1-cos\ x}=\cdots$
$\begin{align}
(A)\ & -2 \\
(B)\ & -1 \\
(C)\ & 0 \\
(D)\ & 1 \\
(E)\ & 2
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan soal limit trigonometri di atas, seperti kita sampaikan sebelumnya beberapa Identitas Trigonometri Dasar harus kita bisa gunakan pada manipulasi aljabar;

  • $cos\ \left( \frac{1}{2}\pi -x \right) = sin\ \left( x \right)$
  • $cos\ 2x= cos^{2}x-sin^{2}x$
  • $cos\ 2x= 1-2sin^{2}x$
  • $cos\ x= 1-2sin^{2} \left( \frac{1}{2}x \right)$
$\begin{align}
& \underset{x \to 0}{lim}\ \dfrac{-x^{2}}{1-cos\ x} \\
& = \underset{x \to 0}{lim}\ \dfrac{-x^{2}}{2sin^{2} \left( \frac{1}{2}x \right)} \\
& = \underset{x \to 0}{lim}\ \left( \dfrac{-x }{2sin \left( \frac{1}{2}x \right)} \times \dfrac{x}{sin \left( \frac{1}{2}x \right)} \right) \\
& = \dfrac{-1}{2 \cdot \frac{1}{2}} \times \dfrac{1}{ \frac{1}{2} } \\
& = -1 \times 2 = -2
\end{align}$

$\therefore$ Pilihan yang sesuai $(A)\ -2$

26. Soal SPMB 2005 Kode 772 (*Soal Lengkap)

$\underset{x \to 0}{lim}\ \dfrac{-x+ tan\ x}{x}=\cdots$
$\begin{align}
(A)\ & -2 \\
(B)\ & -1 \\
(C)\ & 0 \\
(D)\ & 1 \\
(E)\ & 2
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \underset{x \to 0}{lim}\ \dfrac{-x+ tan\ x}{x} \\
& = \underset{x \to 0}{lim}\ \left( \dfrac{-x}{x} + \dfrac{tan\ x}{x} \right) \\
& = \underset{x \to 0}{lim}\ \left( -1 + \dfrac{tan\ x}{x} \right) \\
& = -1 + 1 =0
\end{align}$

$\therefore$ Pilihan yang sesuai $(C)\ 0$

27. Soal UM UGM 2004 Kode 121 (*Soal Lengkap)

$\underset{a \to 0}{lim} \dfrac{1}{a} \left( \dfrac{sin^{3}2a}{cos\ 2a}+sin\ 2a\ cos\ 2a \right)$ sama dengan
$\begin{align}
(A)\ & 0 \\
(B)\ & \frac{1}{2} \\
(C)\ & 1 \\
(D)\ & 2 \\
(E)\ & \infty
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \underset{a \to 0}{lim} \dfrac{1}{a} \left( \dfrac{sin^{3}2a}{cos\ 2a}+sin\ 2a\ cos\ 2a \right) \\
& = \underset{a \to 0}{lim} \left( \dfrac{sin^{3}2a}{a \cdot cos\ 2a}+\dfrac{sin\ 2a}{a}\ \cdot cos\ 2a \right) \\
& = \underset{a \to 0}{lim} \left( \dfrac{sin\ 2a}{a} \cdot \dfrac{sin\ 2a}{cos\ 2a} \cdot \dfrac{sin\ 2a}{1}+\dfrac{sin\ 2a}{a}\ \cdot cos\ 2a \right) \\
& = 2 \cdot 0 \cdot 0 + 2 \cdot 1 \\
& = 2
\end{align}$

$\therefore$ Pilihan yang sesuai $(D)\ 2$

28. Soal UM UGM 2004 Kode 322 (*Soal Lengkap)

$\underset{x \to 1}{lim} \dfrac{tan\ (x-1)\ sin\ \left(1-\sqrt{x} \right)}{x^{2}-2x+1}=\cdots$
$\begin{align}
(A)\ & -1 \\
(B)\ & -\frac{1}{2} \\
(C)\ & 0 \\
(D)\ & \frac{1}{2} \\
(E)\ & 1
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \underset{x \to 1}{lim} \dfrac{tan\ (x-1)\ sin\ \left(1-\sqrt{x} \right)}{x^{2}-2x+1} \\
& = \underset{x \to 1}{lim} \dfrac{tan\ (x-1)\ sin\ \left(1-\sqrt{x} \right)}{(x-1)(x-1)} \\
& = \underset{x \to 1}{lim} \dfrac{tan\ (x-1)\ sin\ \left(1-\sqrt{x} \right)}{-(x-1)(1-x)} \\
& = \underset{x \to 1}{lim} \dfrac{tan\ (x-1)\ sin\ \left(1-\sqrt{x} \right)}{-(x-1) \left(1-\sqrt{x} \right)\left(1+\sqrt{x} \right)} \\
& = \underset{x \to 1}{lim} \left( \dfrac{tan\ (x-1)}{-(x-1)} \cdot \dfrac{sin\ \left(1-\sqrt{x} \right)}{\left(1-\sqrt{x} \right)} \cdot \dfrac{1}{\left(1+\sqrt{x} \right)} \right) \\
& = -1 \cdot 1 \cdot \dfrac{1}{\left(1+\sqrt{1}\right)} =\dfrac{1}{2}
\end{align}$

$\therefore$ Pilihan yang sesuai $(D)\ \dfrac{1}{2}$

29. Soal SNMPTN 2008 Kode 201 (*Soal Lengkap)

$\underset{x \to \frac{1}{4}\pi}{lim} \dfrac{ 1-2 sin\ x\ cos\ x}{cos\ x - sin\ x}=\cdots$
$\begin{align}
(A)\ & \dfrac{1}{2} \\
(B)\ & \dfrac{1}{2}\sqrt{2} \\
(C)\ & 1 \\
(D)\ & 0 \\
(E)\ & -1
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan soal limit trigonometri di atas, seperti kita sampaikan sebelumnya beberapa Identitas Trigonometri Dasar setidaknya dapat kita gunakan pada manipulasi aljabar;
$\begin{align}
& \underset{x \to \frac{1}{4}\pi}{lim} \dfrac{ 1-2 sin\ x\ cos\ x}{sin\ x - cos\ x} \\
& = \underset{x \to \frac{1}{4}\pi}{lim} \dfrac{ sin^{2}x+cos^{2}x-2 sin\ x\ cos\ x}{sin\ x - cos\ x} \\
& = \underset{x \to \frac{1}{4}\pi}{lim} \dfrac{ \left(sin\ x-cos\ x \right)^{2}}{sin\ x - cos\ x} \\
& = \underset{x \to \frac{1}{4}\pi}{lim} \dfrac{ \left(sin\ x-cos\ x \right) }{1} \\
& = sin\ \frac{1}{4}\pi-cos\ \frac{1}{4}\pi \\
& = \dfrac{1}{2}\sqrt{2}-\dfrac{1}{2}\sqrt{2}=0
\end{align}$

$\therefore$ Pilihan yang sesuai $(D)\ 0$


30. Soal UM STIS 2011 (*Soal Lengkap)

Jika $\underset{x \to 0}{lim} \dfrac{x^{a}\ sin^{4}x}{sin^{6}x}=1$, maka nilai $a$ yang memenuhi adalah...
$\begin{align}
(A)\ & 1 \\
(B)\ & 2 \\
(C)\ & 3 \\
(D)\ & 4 \\
(E)\ & 5
\end{align}$
Alternatif Pembahasan:

Catatan calon guru yang mungkin kita perlukan tentang Limit Trigonometri yaitu $\underset{x \to 0}{lim} \dfrac{sin\ ax }{bx} = \dfrac{a}{b}$ atau $\underset{x \to 0}{lim}\dfrac{ ax }{sin\ bx} = \dfrac{a}{b}$.
$\begin{align}
\underset{x \to 0}{lim} \dfrac{x^{a}\ sin^{4}x}{sin^{6}x} & =1 \\
\underset{x \to 0}{lim} \dfrac{x^{a}\ sin^{4}x}{sin^{2}x \cdot sin^{4}x} & =1 \\
\underset{x \to 0}{lim} \dfrac{x^{a} }{sin^{2}x} & =1
\end{align}$
Agar nilai limit fungsi di atas benar adalah $1$, maka nilai $a=2$

$\therefore$ Pilihan yang sesuai $(B)\ 2$

31. Soal UM STIS 2011 (*Soal Lengkap)

Nilai dari $\underset{x \to \frac{\pi}{4}}{lim} \dfrac{1-2\ sin\ x\ cos\ x}{sin\ x-cos\ x}$ adalah...
$\begin{align}
(A)\ & \dfrac{1}{2} \\
(B)\ & \dfrac{1}{2} \sqrt{2} \\
(C)\ & 1 \\
(D)\ & 0 \\
(E)\ & -1
\end{align}$
Alternatif Pembahasan:

Catatan calon guru yang mungkin kita perlukan tentang Limit Trigonometri yaitu $sin^{2}x+cos^{2}x=1$.

$\begin{align}
& \underset{x \to \frac{\pi}{4}}{lim} \dfrac{1-2\ sin\ x\ cos\ x}{sin\ x-cos\ x} \\
& = \underset{x \to \frac{\pi}{4}}{lim} \dfrac{sin^{2}x+cos^{2}x-2\ sin\ x\ cos\ x}{sin\ x-cos\ x} \\
& = \underset{x \to \frac{\pi}{4}}{lim} \dfrac{\left( sin\ x-cos\ x \right)^{2}}{sin\ x-cos\ x} \\
& = \underset{x \to \frac{\pi}{4}}{lim} \left( sin\ x-cos\ x \right)\\
& = \dfrac{1}{2}\sqrt{2}-\dfrac{1}{2}\sqrt{2} \\
& = 0
\end{align}$

$\therefore$ Pilihan yang sesuai $(D)\ 0$


Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras
Beberapa pembahasan soal Matematika Dasar Limit Fungsi Trigonometri (*Soal Dari Berbagai Sumber) di atas adalah coretan kreatif siswa pada
  • lembar jawaban penilaian harian matematika,
  • lembar jawaban penilaian akhir semester matematika,
  • presentasi hasil diskusi matematika atau
  • pembahasan quiz matematika di kelas.
Jadi saran, kritik atau masukan yang sifatnya membangun terkait masalah alternatif penyelesaian soal Limit Fungsi Trigonometri sangat diharapkan๐Ÿ˜ŠCMIIW

Jangan Lupa Untuk Berbagi ๐Ÿ™Share is Caring ๐Ÿ‘€ dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE๐Ÿ˜Š

Matematika dapat mempengaruhi karakter kita, mari kita simak penjelasannya pada video berikut;
youtube image

Comment Policy: Silahkan tuliskan komentar atau pertanyaan yang berhubungan dengan "Bank Soal Matematika Dasar Limit Fungsi Trigonometri (*Soal dan Pembahasan)" ๐Ÿ˜Š and thank you for your concern in support of blog
Buka Komentar
Tutup Komentar