Skip to main content

Fungsi Naik, Fungsi Turun dan Titik Stasioner Pada Fungsi Aljabar Dilengkapi Pembahasan 30 Soal Latihan

Fungsi Naik, Fungsi Turun dan Titik Stasioner Pada Fungsi Aljabar Dilengkapi Pembahasan Soal LatihanThe good student, Calon Guru belajar matematika dasar SMA dari Fungsi Naik, Fungsi Turun dan Titik Stasioner Pada Fungsi Aljabar.

Turunan fungsi ajabar sebelumnya kita dapat hubungannya pada Gradien Garis Singgung Kurva.

FUNGSI NAIK DAN FUNGSI TURUN


  1. Jika $f'(x) \gt 0$ maka fungsi $y=f(x)$ naik atau sebaliknya jika $y=f(x)$ naik maka $f'(x) \gt 0$
  2. Jika $f'(x) \lt 0$ maka fungsi $y=f(x)$ turun atau sebaliknya jika $y=f(x)$ turun maka $f'(x) \lt 0$

TITIK STASIONER


Titik stasioner terjadi saat $f'(x) = 0$ dengan kata lain pada suatu titik dimana fungsi tidak naik dan tidak turun maka titik itu disebut titik stasioner.

Titik stasioner ada dua, yaitu titik balik atau titik belok. Titik balik adalah titik dimana fungsi sebelum dan sesudah titik tersebut fungsi mengalami perubahan, dari fungsi naik menjadi fungsi turun atau dari fungsi turun menjadi fungsi naik.

Sedangkan titik belok adalah titik dimana sebelum dan sesudah titik tersebut fungsi tidak mengalami perubahan dari naik menjadi turun atau dari turun menjadi naik. Atau sebelum dan sesudah titik tersebut fungsi dari fungsi naik tetap fungsi naik atau dari fungsi turun tetap fungsi turun.

titik belok positif, titik belok negatif, titik balik maksimum, titik balik negatif

FUNGSI CEKUNG KE ATAS dan CEKUNG KE BAWAH


  1. Fungsi $f(x)$ dikatakan cekung ke atas dalam interval $A$ jika $f''(x) \gt 0$, untuk setiap $x \in A$.
  2. Fungsi $f(x)$ dikatakan cekung ke bawah dalam interval $A$ jika $f''(x) \lt 0$, untuk setiap $x \in A$.
  3. Saat $f''(x) = 0$ untuk $x=a$ maka titik belok adalah $\left(a, f(a) \right)$ dengan syarat:
    • untuk $x \lt a$ fungsi cekung ke atas dan untuk $x \gt a$ fungsi cekung ke bawah, atau
    • untuk $x \lt a$ fungsi cekung ke bawah dan untuk $x \gt a$ fungsi cekung ke atas.
    Dengan kata lain titik belok adalah titik perubahan kecekungan grafik fungsi.

SOAL LATIHAN dan PEMBAHASAN FUNGSI NAIK, FUNGSI TURUN, dan TITIK STASIONER


Untuk menambah pemahaman kita terkait Fungsi Naik, Fungsi Turun dan Titik Stasioner Pada Fungsi Aljabar mari kta coba berlatih dari beberapa soal latihan berikut. Soal latihan kita pilih dari soal latihan pada Modul Matematika SMA Fungsi Naik, Fungsi Turun dan Titik Stasioner Pada Fungsi Aljabar atau soal-soal yang ditanyakan pada media sosial.


1. Soal Latihan Fungsi Naik dan Fungsi Turun

Fungsi $f(x)=3x^{2}-6x+5$ naik dalam interval

$\begin{align} (A)\ & x \lt 1 \\ (B)\ & x \gt 1 \\ (C)\ & x \gt 2 \\ (D)\ & x \lt 12 \\ (E)\ & x \gt -1 \end{align}$

Alternatif Pembahasan:
Show

Syarat suatu fungsi $f(x)$ naik adalah saat $f'(x) \gt 0$

$ \begin{align} f(x) &= 3x^{2}-6x+5\\ f'(x) &= 6x-6 \\ \hline f'(x) & \gt 0 \\ 6x-6 & \gt 0 \\ 6x & \gt 6 \\ \dfrac{6x}{6} & \gt \dfrac{6}{6} \\ x & \gt 1 \end{align} $

Kesimpulan: fungsi $f(x)=3x^{2}-6x+5$ akan naik pada interval $x \gt 1$


$\therefore$ Pilihan yang sesuai adalah $(B)\ x \gt 1$

2. Soal Latihan Fungsi Naik dan Fungsi Turun

Fungsi $f(x)=-4x^{2}+24x-10$ turun dalam interval

$\begin{align} (A)\ & x \lt 2 \\ (B)\ & x \gt 2 \\ (C)\ & x \lt 3 \\ (D)\ & x \gt -2 \\ (E)\ & x \gt 3 \end{align}$

Alternatif Pembahasan:
Show

Syarat suatu fungsi $f(x)$ turun adalah saat $f'(x) \lt 0$

$ \begin{align} f(x) &= -4x^{2}+24x-10 \\ f'(x) &= -8x+24 \\ \hline f'(x) & \lt 0 \\ -8x+24 & \lt 0 \\ -8x & \lt -24 \\ \dfrac{-8x}{-8} & \gt \dfrac{-24}{-8} \\ x & \gt 3 \end{align} $

Kesimpulan: fungsi $f(x)=-4x^{2}+24x-10$ akan turun pada interval $x \gt 3$


$\therefore$ Pilihan yang sesuai adalah $(B)\ x \gt 1$

3. Soal Latihan Fungsi Naik dan Fungsi Turun

Fungsi $f(x)=x^{3} – 9x^{2} + 24x – 12$ naik dalam interval

$\begin{align} (A)\ & x \lt 2\ \text{atau}\ x \gt 4 \\ (B)\ & 2 \lt x \lt 4 \\ (C)\ & x \lt -2\ \text{atau}\ x \gt 4 \\ (D)\ & -2 \lt x \lt 4 \\ (E)\ & -4 \lt x \lt 2 \end{align}$

Alternatif Pembahasan:
Show

Syarat suatu fungsi $f(x)$ naik adalah saat $f'(x) \gt 0$

$ \begin{align} f(x) &= x^{3} – 9x^{2} + 24x – 12 \\ f'(x) &= 3x^{2}-18x+24 \\ \hline f'(x) & \gt 0 \\ 3x^{2}-18x+24 & \gt 0 \\ 3 \left( x-2 \right)\left( x-4 \right) & \gt 0 \\ \hline \text{pembuat nol:}\ & x =2\ \text{atau}\ x =4 \\ \hline x \lt 2\ \text{atau}\ x \gt 4 & \end{align} $

Kesimpulan: fungsi $f(x)=x^{3} – 9x^{2} + 24x – 12$ akan naik pada interval $x \lt 2\ \text{atau}\ x \gt 4$


Jika masih kesulitan menyelesaikan pertidaksamaan kuadrat dengan cepat silahkan disimak caranya: Cara Kreatif Menentukan HP Pertidaksamaan Kuadrat

$\therefore$ Pilihan yang sesuai adalah $(A)\ x \lt 2\ \text{atau}\ x \gt 4$

4. Soal Latihan Fungsi Naik dan Fungsi Turun

Fungsi $f(x)=-x^{3} -3x^{2} + 9x – 5$ naik dalam interval

$\begin{align} (A)\ & 1 \lt x \lt 3 \\ (B)\ & x \lt 1\ \text{atau}\ x \gt 3 \\ (C)\ & -1 \lt x \lt 3 \\ (D)\ & x \lt -1\ \text{atau}\ x \gt 3 \\ (E)\ & -3 \lt x \lt 1 \end{align}$

Alternatif Pembahasan:
Show

Syarat suatu fungsi $f(x)$ naik adalah saat $f'(x) \gt 0$

$ \begin{align} f(x) &= -x^{3} -3x^{2} + 9x – 5 \\ f'(x) &= -3x^{2} -6x+9 \\ \hline f'(x) & \gt 0 \\ -3x^{2} -6x+9 & \gt 0 \\ x^{2} +2x-3 & \lt 0 \\ \left( x+3 \right)\left( x-1 \right) & \lt 0 \\ \hline \text{pembuat nol:}\ & x =-3\ \text{atau}\ x =1 \\ \hline -3 \lt x \lt 1 & \end{align} $

Kesimpulan: fungsi $f(x)=-x^{3} -3x^{2} + 9x – 5$ akan naik pada interval $-3 \lt x \lt 1 $


Jika masih kesulitan menyelesaikan pertidaksamaan kuadrat dengan cepat silahkan disimak caranya: Cara Kreatif Menentukan HP Pertidaksamaan Kuadrat

$\therefore$ Pilihan yang sesuai adalah $(E)\ -3 \lt x \lt 1 $

5. Soal Latihan Fungsi Naik dan Fungsi Turun

Fungsi $f(x)=x^{3} +2x^{2} + 2x – 5$ grafiknya...

$\begin{align} (A)\ & \text{Turun dalam interval}\ -2 \lt x \lt 3 \\ (B)\ & \text{Naik dalam interval}\ -2 \lt x \lt 3 \\ (C)\ & \text{Selalu naik} \\ (D)\ & \text{Selalu turun} \\ (E)\ & \text{Naik dalam interval}\ x \lt 2 \\ \end{align}$

Alternatif Pembahasan:
Show

Untuk mengetahui kedudukan grafik suatu fungsi $f(x)$, dapat kita periksa dari turunan pertama fungsi tersebut $f'(x)$


$ \begin{align} f(x) &= x^{3} +2x^{2} + 2x – 5 \\ f'(x) &= 3x^{2}+4x+2 \end{align} $

Turunan pertama $f'(x) = 3x^{2}+4x+2$ selalu bernilai positif, dapat kita periksa dengan menghitung nilai diskriminan $D=b^{2}-4ac=-8$ dan $a=3$ (definit positif).

Karena $f'(x)$ selalu bernilai positif sehingga grafik fungsi $f(x)$ selalu naik.


Untuk memeriksa fungsi kuadrat $f(x)= ax^{2}+bx+c$ apakah selalu bernilai positif atau negatif, dapat diperiksa dari nilai $D=b^{2}-4ac$ dan $a$.

  • Jika $D \lt 0$ dan $a \gt 0$ maka fungsi selalu bernilai positif, disebut definit positif.
  • Jika $D \lt 0$ dan $a \lt 0$ maka fungsi selalu bernilai negatif, disebut definit negatif.

$\therefore$ Pilihan yang sesuai adalah $(C)\ \text{Selalu naik} $

6. Soal Latihan Fungsi Naik dan Fungsi Turun

Fungsi $f(x)=-x^{3} + x^{2} -4x +3$ grafiknya...

$\begin{align} (A)\ & \text{Naik dalam interval}\ -3 \lt x \lt 1 \\ (B)\ & \text{Turun dalam interval}\ -3 \lt x \lt 1 \\ (C)\ & \text{Tidak naik dalam interval}\ 2 \lt x \lt 4 \\ (D)\ & \text{Selalu naik} \\ (E)\ & \text{Selalu turun} \end{align}$

Alternatif Pembahasan:
Show

Untuk mengetahui kedudukan grafik suatu fungsi $f(x)$, dapat kita periksa dari turunan pertama fungsi tersebut $f'(x)$


$ \begin{align} f(x) &= -x^{3} + x^{2} -4x +3 \\ f'(x) &= -3x^{2}+2x-4 \end{align} $

Turunan pertama $f'(x) = -3x^{2}+2x-4$ selalu bernilai negatif, dapat kita periksa dengan menghitung nilai diskriminan $D=b^{2}-4ac=-44$ dan $a=-3$ (definit negatif).

Karena $f'(x)$ selalu bernilai negatif sehingga grafik fungsi $f(x)$ selalu turun.


Untuk memeriksa fungsi kuadrat $f(x)= ax^{2}+bx+c$ apakah selalu bernilai positif atau negatif, dapat diperiksa dari nilai $D=b^{2}-4ac$ dan $a$.

  • Jika $D \lt 0$ dan $a \gt 0$ maka fungsi selalu bernilai positif, disebut definit positif.
  • Jika $D \lt 0$ dan $a \lt 0$ maka fungsi selalu bernilai negatif, disebut definit negatif.

$\therefore$ Pilihan yang sesuai adalah $(E)\ \text{Selalu turun}$

7. Soal Latihan Fungsi Naik dan Fungsi Turun

Titik stasioner dari fungsi $f(x)= x^{2} + 4x -3$ adalah...

$\begin{align} (A)\ & \text{Titik minimum}\ \left( -2,-7 \right) \\ (B)\ & \text{Titik maksimum}\ \left( -2,-7 \right) \\ (C)\ & \text{Titik minimum}\ \left( -3,-7 \right) \\ (D)\ & \text{Titik maksimum}\ \left( -3,-7 \right) \\ (E)\ & \text{Titik maksimum}\ \left( -1, 7 \right) \end{align}$

Alternatif Pembahasan:
Show

Untuk mengetahui jenis titik stasioner dari fungsi $f(x)= x^{2} + 4x -3$ yang merupakan fungsi kuadrat dapat juga kita tentukan dengan aturan pada fungsi kuadrat.

Untuk memantapkan kita menggunakan konsep turunan fungsi, titik stasioner dari fungsi $f(x)= x^{2} + 4x -3$ kita tentukan dengan menggunakan konsep turunan fungsi.

$ \begin{align} f(x) &= x^{2} + 4x -3 \\ f'(x) &= 2x+4 \\ \hline f'(x) &= 0 \\ 2x+4 &= 0 \\ 2x &= -4 \\ x &= -2 \\ y &= f(x) \\ y &= f(-2) \\ &= (-2)^{2} + 4(-2) -3 \\ &= 4 -8 -3 = -7 \end{align} $

Titik stasioner fungsi $f(x)= x^{2} + 4x -3$ adalah $\left( -2,-7 \right)$.

Titik stasioner maksimum atau minimum suatu fungsi dapat kita periksa dari saat kapan fungsi naik atau turun.

Fungsi $f(x)= x^{2} + 4x -3$ turun saat $x \lt -2$ dan naik saat $x \gt -2$ sehingga saat $x=-2$ adalah titik balik minimum karena setelah $x=-2$ atau $x \gt -2$ fungsi naik.


Alternatif lain dapat kita gunakan dengan uji turunan kedua seperti berikut ini:

  • Jika $x=a$ pada $f'(a)=0$ sehingga $f''(a) \gt 0$ maka $x=a$ adalah pembuat $f(x)$ minimum atau nilai minimum $f(x)$ adalah $f(a)$.
  • Jika $x=a$ pada $f'(a)=0$ sehingga $f''(a) \lt 0$ maka $x=a$ adalah pembuat $f(x)$ maskimum atau nilai maksimum $f(x)$ adalah $f(a)$.

$ \begin{align} f(x) &= x^{2} + 4x -3 \\ f'(x) &= 2x+4 \\ f''(x) &= 2 \end{align} $

Untuk $x=-2$ kita peroleh $f''(-2) = 2 \gt 0$ sehingga $x=-2$ adalah pembuat $f(x)$ minimum dan nilai minimumnya adalah $f(-2)=-7$.


$\therefore$ Pilihan yang sesuai adalah $(A)\ \text{Titik minimum}\ \left( -2,-7 \right)$

8. Soal Latihan Fungsi Naik dan Fungsi Turun

Titik stasioner dari fungsi $f(x)= -x^{2} -2x +5$ adalah...

$\begin{align} (A)\ & \text{Titik maksimum}\ \left( -1,8 \right) \\ (B)\ & \text{Titik minimum}\ \left( -1,8 \right) \\ (C)\ & \text{Titik maksimum}\ \left( -1,-5 \right) \\ (D)\ & \text{Titik minimum}\ \left( -1,-5 \right) \\ (E)\ & \text{Titik maksimum}\ \left( -1, 6 \right) \end{align}$

Alternatif Pembahasan:
Show

Untuk mengetahui jenis titik stasioner dari fungsi $f(x)= -x^{2} -2x +5$ yang merupakan fungsi kuadrat dapat juga kita tentukan dengan aturan pada fungsi kuadrat.

Untuk memantapkan kita menggunakan konsep turunan fungsi, titik stasioner dari fungsi $f(x)= -x^{2} -2x +5$ kita tentukan dengan menggunakan konsep turunan fungsi.

$ \begin{align} f(x) &= -x^{2} -2x +5 \\ f'(x) &= -2x-2 \\ \hline f'(x) &= 0 \\ -2x-2 &= 0 \\ -2x &= 2 \\ x &= -1 \\ y &= f(x) \\ y &= f(-1) \\ &= -(-1)^{2} -2(-1) +5 \\ &= -1+2+5 = 6 \end{align} $

Titik stasioner fungsi $f(x)= -x^{2} -2x +5$ adalah $\left( -1,6 \right)$.

Titik stasioner maksimum atau minimum suatu fungsi dapat kita periksa dari saat kapan fungsi naik atau turun.

Fungsi $f(x)= -x^{2} -2x +5$ turun saat $x \gt -1$ dan naik saat $x \lt -1$ sehingga saat $x=-1$ adalah titik balik maksimum karena setelah $x=-1$ atau $x \gt -1$ fungsi turun.


Alternatif lain dapat kita gunakan dengan uji turunan kedua seperti berikut ini:

  • Jika $x=a$ pada $f'(a)=0$ sehingga $f''(a) \gt 0$ maka $x=a$ adalah pembuat $f(x)$ minimum atau nilai minimum $f(x)$ adalah $f(a)$.
  • Jika $x=a$ pada $f'(a)=0$ sehingga $f''(a) \lt 0$ maka $x=a$ adalah pembuat $f(x)$ maskimum atau nilai maksimum $f(x)$ adalah $f(a)$.

$ \begin{align} f(x) &= -x^{2} -2x +5 \\ f'(x) &= -2x-2 \\ f''(x) &= -2 \end{align} $

Untuk $x=-1$ kita peroleh $f''(-1) = -2 \lt 0$ sehingga $x=-1$ adalah pembuat $f(x)$ maksimum dan nilai maksimumnya adalah $f(-1)=6$.


$\therefore$ Pilihan yang sesuai adalah $(E)\ \text{Titik maksimum}\ \left( -1, 6 \right)$

9. Soal Latihan Fungsi Naik dan Fungsi Turun

Titik stasioner dari fungsi $f(x)= x^{3} – 3x^{2} – 24x$ adalah...

$\begin{align} (A)\ & \text{Titik minimum}\ \left( -2,28 \right) \\ (B)\ & \text{Titik maksimum}\ \left( 4,-80 \right) \\ (C)\ & \text{Titik maksimum}\ \left( -2,28 \right) \\ (D)\ & \text{Titik minimum}\ \left( -4,-7 \right) \\ (E)\ & \text{Titik maksimum}\ \left( 4, 24 \right) \end{align}$

Alternatif Pembahasan:
Show

Untuk mengetahui jenis titik stasioner dari fungsi $f(x)= x^{3} – 3x^{2} – 24x$ dapat kita gunakan dengan uji turunan kedua seperti berikut ini:

  • Jika $x=a$ pada $f'(a)=0$ sehingga $f''(a) \gt 0$ maka $x=a$ adalah pembuat $f(x)$ minimum atau nilai minimum $f(x)$ adalah $f(a)$.
  • Jika $x=a$ pada $f'(a)=0$ sehingga $f''(a) \lt 0$ maka $x=a$ adalah pembuat $f(x)$ maskimum atau nilai maksimum $f(x)$ adalah $f(a)$.

$ \begin{align} f(x) &= x^{3} – 3x^{2} – 24x \\ f'(x) &= 3x^{2}-6x-24 \\ \hline f'(x) &= 0 \\ 3x^{2}-6x-24 &= 0 \\ x^{2}-2x-8 &= 0 \\ \left( x-4 \right) \left( x+2 \right) &= 0 \\ x=4\ \text{atau}\ x=-2 & \\ y &= f(x) \\ y &= f(4) \\ &= (4)^{3} – 3(4)^{2} – 24(4) \\ &= 64-48-96 = -80 \\ \hline y &= f(-2) \\ &= (-2)^{3} – 3(-2)^{2} – 24(-2) \\ &= -8-12+48 = 28 \\ \end{align} $

Titik stasioner fungsi $f(x)= x^{3} – 3x^{2} – 24x$ adalah $\left( 4,-80 \right)$ dan $\left( -2,28 \right)$.


$ \begin{align} f(x) &= x^{3} – 3x^{2} – 24x \\ f'(x) &= 3x^{2}-6x-24 \\ f''(x) &= 6x-6 \end{align} $

Untuk $x=-2$ kita peroleh $f''(-2) = 6(-2)-6=-18 \lt 0$ sehingga $x=-2$ adalah pembuat $f(x)$ maksimum dan nilai maksimumnya adalah $f(-2)=28$.


$\therefore$ Pilihan yang sesuai adalah $(C)\ \text{Titik maksimum}\ \left( -2,28 \right)$

10. Soal Latihan Fungsi Naik dan Fungsi Turun

Titik stasioner dari fungsi $f(x)= x^{3} + 6x^{2} – 7$ adalah...

$\begin{align} (A)\ & \text{Titik maksimum}\ \left( 0,7 \right) \\ (B)\ & \text{Titik minimum}\ \left( -4,-25 \right) \\ (C)\ & \text{Titik maksimum}\ \left( 0,25 \right) \\ (D)\ & \text{Titik minimum}\ \left( -4,-7 \right) \\ (E)\ & \text{Titik maksimum}\ \left( -4, 25 \right) \end{align}$

Alternatif Pembahasan:
Show

Untuk mengetahui jenis titik stasioner dari fungsi $f(x)= x^{3} + 6x^{2} – 7$ dapat kita gunakan dengan uji turunan kedua seperti berikut ini:

  • Jika $x=a$ pada $f'(a)=0$ sehingga $f''(a) \gt 0$ maka $x=a$ adalah pembuat $f(x)$ minimum atau nilai minimum $f(x)$ adalah $f(a)$.
  • Jika $x=a$ pada $f'(a)=0$ sehingga $f''(a) \lt 0$ maka $x=a$ adalah pembuat $f(x)$ maskimum atau nilai maksimum $f(x)$ adalah $f(a)$.

$ \begin{align} f(x) &= x^{3} + 6x^{2} – 7 \\ f'(x) &= 3x^{2}-12x \\ \hline f'(x) &= 0 \\ 3x^{2}-12x &= 0 \\ x^{2}-4x &= 0 \\ \left( x \right) \left( x-4 \right) &= 0 \\ x=0\ \text{atau}\ x=4 & \\ y &= f(x) \\ y &= f(0) \\ &= (0)^{3} + 6(0)^{2} – 7 \\ &= 0+0-7 = -7 \\ \hline y &= f(4) \\ &= (-4)^{3} + 6(4)^{2} – 7 \\ &= -64+96-7 = 25 \\ \end{align} $

Titik stasioner fungsi $f(x)= x^{3} + 6x^{2} – 7$ adalah $\left( 0,-7 \right)$ dan $\left( -4,25 \right)$.


$ \begin{align} f(x) &= x^{3} + 6x^{2} – 7 \\ f'(x) &= 3x^{2}+12x \\ f''(x) &= 6x+12 \end{align} $

Untuk $x=-4$ kita peroleh $f''(-4) = 6(-4)+12=-12 \lt 0$ sehingga $x=-4$ adalah pembuat $f(x)$ maksimum dan nilai maksimumnya adalah $f(-4)=25$.


$\therefore$ Pilihan yang sesuai adalah $(E)\ \text{Titik maksimum}\ \left( -4, 25 \right)$

11. Soal Latihan Fungsi Naik dan Fungsi Turun

Diketahui fungsi $f(x)= 2x^{3} + 3x^{2} – 12x+10$. Nilai stasioner fungsi tersebut adalah...

$\begin{align} (A)\ & \text{Nilai maksimum}\ -30 \\ (B)\ & \text{Nilai maksimum}\ 1 \\ (C)\ & \text{Nilai minimum}\ 3 \\ (D)\ & \text{Nilai minimum}\ -30 \\ (E)\ & \text{Nilai maksimum}\ 3 \end{align}$

Alternatif Pembahasan:
Show

Untuk mengetahui jenis titik stasioner dari fungsi $f(x)= 2x^{3} + 3x^{2} – 12x+10$ dapat kita gunakan dengan uji turunan kedua seperti berikut ini:

  • Jika $x=a$ pada $f'(a)=0$ sehingga $f''(a) \gt 0$ maka $x=a$ adalah pembuat $f(x)$ minimum atau nilai minimum $f(x)$ adalah $f(a)$.
  • Jika $x=a$ pada $f'(a)=0$ sehingga $f''(a) \lt 0$ maka $x=a$ adalah pembuat $f(x)$ maskimum atau nilai maksimum $f(x)$ adalah $f(a)$.

$ \begin{align} f(x) &= 2x^{3} + 3x^{2} – 12x+10 \\ f'(x) &= 6x^{2}+6x-12 \\ \hline f'(x) &= 0 \\ 6x^{2}+6x-12 &= 0 \\ x^{2}+ x- 2 &= 0 \\ \left( x+2 \right) \left( x-1 \right) &= 0 \\ x=-2\ \text{atau}\ x=1 & \\ y &= f(x) \\ y &= f(-2) \\ &= 2(-2)^{3} + 3(-2)^{2} – 12(-2)+10 \\ &= -16 +12 + 24+10 = 30 \\ \hline y &= f(1) \\ &= 2(1)^{3} + 3(1)^{2} – 12(1)+10 \\ &= 2 + 3 -12 +10 = 3 \\ \end{align} $

Titik stasioner fungsi $f(x)= 2x^{3} + 3x^{2} – 12x+10$ adalah $\left( 1,3 \right)$ dan $\left( -2,30 \right)$.


$ \begin{align} f(x) &= 2x^{3} + 3x^{2} – 12x+10 \\ f'(x) &= 6x^{2}+6x-12 \\ f''(x) &= 12x + 6 \end{align} $

Untuk $x=1$ kita peroleh $f''(1) = 12(1)+6=18 \gt 0$ sehingga $x=1$ adalah pembuat $f(x)$ minimum dan nilai minimumnya adalah $f(1)=3$.
Sedangkan untuk $x=-2$ kita peroleh $f''(-2) = 12(-2)+6=-18 \lt 0$ sehingga $x=-2$ adalah pembuat $f(x)$ maksimum dan nilai maksimumnya adalah $f(-2)=30$.


$\therefore$ Pilihan yang sesuai adalah $(C)\ \text{Nilai minimum}\ 3$

12. Soal Latihan Fungsi Naik dan Fungsi Turun

Nilai Maksimum dari $f(x)= x^{2} -6x+5$ dalam interval $0 \leq x \leq 5$ adalah...

$\begin{align} (A)\ & 5 \\ (B)\ & 0 \\ (C)\ & -4 \\ (D)\ & 4 \\ (E)\ & 3 \end{align}$

Alternatif Pembahasan:
Show

Untuk menghitung nilai maksimum dari $f(x)= x^{2} -6x+5$ dalam interval $0 \leq x \leq 5$ dapat kita peroleh dengan menguji beberapa nilai $x$ ke fungsi $f(x)= x^{2} -6x+5$.

$ \begin{align} f(x) &= x^{2} -6x+5 \\ \hline f(0) &= (0)^{2} -6(0)+5 \\ &= 0 -6+5=5 \\ \hline f(1) &= (1)^{2} -6(1)+5 \\ &= 1 -6+5=0 \\ \hline f(2) &= (2)^{2} -6(2)+5 \\ &= 4 -12+5=-3 \\ \hline f(3) &= (3)^{2} -6(3)+5 \\ &= 9 -18+5=-4 \\ \hline f(4) &= (4)^{2} -6(4)+5 \\ &= 16 -24+5=-3 \\ \hline f(5) &= (5)^{2} -6(5)+5 \\ &= 25 -30+5=0 \end{align} $


$\therefore$ Pilihan yang sesuai adalah $(A)\ 5$

13. Soal SBMPTN 2014 Kode 677 |*Soal Lengkap

Jika $m$ dan $n$ bilangan real dan fungsi $f(x)=mx^{3}+2x^{2}-nx+5$ memenuhi $f'(1)=f'(-5)=0$, maka $3m-n=\cdots$
$\begin{align} (A)\ & -6 \\ (B)\ & -4 \\ (C)\ & -2 \\ (D)\ & 2 \\ (E)\ & 4
\end{align}$
Alternatif Pembahasan:
Show

$\begin{align} f(x) &= mx^{3}+2x^{2}-nx+5 \\ f'(x) &= 3mx^{2}+4x -n \\ f'(1) &= 3m(1)^{2}+4(1) -n \\ 0 &= 3m +4-n \ \ \cdots(1)\\ f'(-5) &= 3m(-5)^{2}+4(-5) -n \\ 0 &= 75m-20-n \cdots(2)\\ \end{align}$

Dari kedua persamaan di atas kita peroleh;
$\begin{array}{c|c|cc}
3m+4-n = 0 & \\ 75m-20-n = 0 & (-)\\ \hline
-72m = 24 \\ m = \dfrac{24}{-72}=-\dfrac{1}{3} \\ n = 3\\ \hline
3m-n =3 \left( -\dfrac{1}{3} \right) - 3 \\ 3m-n =-1-3=-4
\end{array} $

$ \therefore $ Pilihan yang sesuai adalah $(B)\ -4$

14. Soal Latihan Fungsi Naik dan Fungsi Turun

Nilai minimum dari $f(x)= 2x^{3} -9x^{2}+12x$ dalam interval $0 \leq x \leq 3$ adalah...

$\begin{align} (A)\ & 0 \\ (B)\ & 5 \\ (C)\ & 4 \\ (D)\ & 9 \\ (E)\ & -3 \end{align}$

Alternatif Pembahasan:
Show

Untuk menghitung nilai minimum dari $f(x)= 2x^{3} -9x^{2}+12x$ dalam interval $0 \leq x \leq 3$ dapat kita peroleh dengan menguji beberapa nilai $x$ ke fungsi $f(x)= 2x^{3} -9x^{2}+12x$.


$ \begin{align} f(x) &= 2x^{3} -9x^{2}+12x \\ \hline f(0) &= 2(0)^{3} -9(0)^{2}+12(0) \\ &= 0 -0+0=0 \\ \hline f(1) &= 2(1)^{3} -9(1)^{2}+12(1) \\ &= 2 -9+12=5 \\ \hline f(2) &= 2(2)^{3} -9(2)^{2}+12(2) \\ &= 16 -36+24=4 \\ \hline f(3) &= 2(3)^{3} -9(3)^{2}+12(3) \\ &= 54 -81+36=9 \end{align} $


$\therefore$ Pilihan yang sesuai adalah $(A)\ 0$

15. Soal Latihan Fungsi Naik dan Fungsi Turun

Nilai maksimum dari $f(x)= x^{3} -12x^{2}+6$ dalam interval $1 \leq x \leq 3$ adalah...

$\begin{align} (A)\ & 22 \\ (B)\ & -5 \\ (C)\ & -10 \\ (D)\ & -3 \\ (E)\ & 10 \end{align}$

Alternatif Pembahasan:
Show

Untuk menghitung nilai minimum dari $f(x)= x^{3} -12x^{2}+6$ dalam interval $1 \leq x \leq 3$ dapat kita peroleh dengan menguji beberapa nilai $x$ ke fungsi $f(x)= x^{3} -12x^{2}+6$.


$ \begin{align} f(x) &= x^{3} -12x^{2}+6 \\ \hline f(1) &= (1)^{3} -12(1)^{2}+6 \\ &= 1 -12+6=-5 \\ \hline f(2) &= (2)^{3} -12(2)^{2}+6 \\ &= 8 -48+6=-34 \\ \hline f(3) &= (3)^{3} -12(3)^{2}+6 \\ &= 27 -108+6=-75 \\ \end{align} $


$\therefore$ Pilihan yang sesuai adalah $(D)\ -3$

16. Soal Latihan Fungsi Naik dan Fungsi Turun

Diketahui fungsi $f(x)= \dfrac{x+1}{x^{2}+x+1}$. Salah satu titik stasionernya adalah...

$\begin{align} (A)\ & \left(1, \dfrac{2}{3} \right) \\ (B)\ & \left( 0, 1 \right) \\ (C)\ & \left( -2, 3 \right) \\ (D)\ & \left( 2, \dfrac{3}{7} \right) \\ (E)\ & \left( -1, 0 \right) \end{align}$

Alternatif Pembahasan:
Show

Untuk mengetahui titik stasioner dari fungsi $f(x)= \dfrac{x+1}{x^{2}+x+1}$ dapat kita gunakan dengan turunan pertama seperti berikut ini:

$ \begin{align} f(x) &= \dfrac{x+1}{x^{2}+x+1} \\ f'(x) &= \dfrac{\left(1 \right)\left( x^{2}+x+1 \right)-\left( x+1\right)\left(2x+1 \right)}{\left(x^{2}+x+1 \right)^{2}} \\ &= \dfrac{x^{2}+x+1 -\left( 2x^{2}+3x+1 \right)}{\left(x^{2}+x+1 \right)^{2}} \\ &= \dfrac{-x^{2}-2x}{\left(x^{2}+x+1 \right)^{2}} \end{align} $


$ \begin{align} f'(x) &= 0 \\ \dfrac{-x^{2}-2x}{\left(x^{2}+x+1 \right)^{2}} &= 0 \\ -x^{2}-2x &= 0 \\ x^{2}+2x &= 0 \\ \left( x \right) \left( x+2 \right) &= 0 \\ x=0\ \text{atau}\ x=-2 & \\ y &= f(x) \\ y &= f(0) \\ &= \dfrac{0+1}{(0)^{2}+(0)+1} \\ &= \dfrac{1}{1} = 1 \\ \hline y &= f(-2) \\ &= \dfrac{-2+1}{(-2)^{2}+(-2)+1} \\ &= \dfrac{-1}{3} \end{align} $

Titik stasioner fungsi $f(x)= \dfrac{x+1}{x^{2}+x+1}$ adalah $\left( 0,1 \right)$ dan $\left( -2,\dfrac{-1}{3} \right)$.


$\therefore$ Pilihan yang sesuai adalah $(B)\ \left( 0, 1 \right) $

17. Soal Latihan Fungsi Naik dan Fungsi Turun

Diketahui fungsi $y= x-\sqrt{2x-p}$. Jika nilai minimum dari fungsi tersebut adalah $2$, maka nilai $p=\cdots$

$\begin{align} (A)\ & 6 \\ (B)\ & 5 \\ (C)\ & 4 \\ (D)\ & 3 \\ (E)\ & 2 \end{align}$

Alternatif Pembahasan:
Show

Diketahui nilai minimum dari fungsi $y= x-\sqrt{2x-p}$ adalah $2$. Untuk mendapatkan nilai minimum tersebut dapat kita gunakan dengan turunan pertama seperti berikut ini:

$ \begin{align} y &= x-\sqrt{2x-p} \\ y' &= 1- \dfrac{1}{2\sqrt{2x-p}} \cdot \left( 2 \right) \\ &= 1- \dfrac{1}{\sqrt{2x-p}} \end{align} $


$ \begin{align} y' &= 0 \\ 1- \dfrac{1}{\sqrt{2x-p}} &= 0 \\ 1 &= \dfrac{1}{\sqrt{2x-p}} \\ \sqrt{2x-p} &= 1 \\ 2x-p &= 1 \\ 2x & =1+p \\ x & = \dfrac{1+p}{2} \end{align} $


Untuk $x = \dfrac{1+p}{2}$ diketahui nilai minimum $y= x-\sqrt{2x-p}$ adalah $2$ sehingga dapat kita peroleh:
$ \begin{align} y &= 2 \\ \dfrac{1+p}{2}-\sqrt{2\left(\dfrac{1+p}{2} \right)-p} &= 2 \\ \dfrac{1+p}{2}-\sqrt{ 1+p -p} &= 2 \\ \dfrac{1+p}{2}-1 &= 2 \\ \dfrac{1+p}{2} &= 3 \\ 1+p &= 6 \\ p & = 5 \end{align} $


$\therefore$ Pilihan yang sesuai adalah $(B)\ 5$

18. Soal Latihan Fungsi Naik dan Fungsi Turun

Jika fungsi $f(x)= x^{3}+px^{2}-9x$ mencapai nilai maksimum stasioner pada $x=-3$, maka nilai $p$ adalah...

$\begin{align} (A)\ & 1 \\ (B)\ & 2 \\ (C)\ & 3 \\ (D)\ & 4 \\ (E)\ & 5 \end{align}$

Alternatif Pembahasan:
Show

Diketahui nilai maksimum dari fungsi $f(x)= x^{3}+px^{2}-9x$ saat $x=-3$. Untuk mendapatkan nilai maksimum tersebut dapat kita gunakan dengan turunan pertama seperti berikut ini:

$ \begin{align} f(x) &= x^{3}+px^{2}-9x \\ f'(x) &= 3x^{2}+2px -9 \end{align} $


$ \begin{align} f'(x) &= 0 \\ 3x^{2}+2px -9 &= 0 \end{align} $


Diketahui nilai maksimum $y= x^{3}+px^{2}-9x$ saat $x=-3$ sehingga $x=-3$ adalah salah satu akar dari $3x^{2}+2px -9 = 0$.
$ \begin{align} 3x^{2}+2px -9 &= 0 \\ 3(-3)^{2}+2p(-3) -9 &= 0 \\ 27-6p -9 &= 0 \\ -6p &= -18 \\ p &= 3 \end{align} $


$\therefore$ Pilihan yang sesuai adalah $(C)\ 3$

19. Soal Latihan Fungsi Naik dan Fungsi Turun

Grafik fungsi $f(x)= x^{3}-6x^{2}+15x-9$ cekung ke atas dalam interval...

$\begin{align} (A)\ & x \lt 2 \\ (B)\ & x \gt 2 \\ (C)\ & x \lt 3 \\ (D)\ & x \gt 3 \\ (E)\ & x \gt 5 \end{align}$

Alternatif Pembahasan:
Show

Untuk mengetahui kecekungan grafik fungsi $f(x)= x^{3}-6x^{2}+15x-9$, dapat kita periksa dari turunan kedua fungsi tersebut seperti berikut ini:

  • Fungsi $f(x)$ dikatakan cekung ke atas dalam interval $A$ jika $f''(x) \gt 0$, untuk setiap $x \in A$.
  • Fungsi $f(x)$ dikatakan cekung ke bawah dalam interval $A$ jika $f''(x) \lt 0$, untuk setiap $x \in A$.

$ \begin{align} f(x) &= x^{3}-6x^{2}+15x-9 \\ f'(x) &= 3x^{2}-12x+15 \\ f''(x) &= 6x -12 \end{align} $

Agar grafik $f(x)$ cekung ke atas maka batasan nilai $x$ adalah:

$ \begin{align} f''(x) & \gt 0 \\ 6x-12 & \gt 0 \\ 6x & \gt 12 \\ x & \gt 2 \\ \end{align} $


$\therefore$ Pilihan yang sesuai adalah $(B)\ x \gt 2$

20. Soal Latihan Fungsi Naik dan Fungsi Turun

Grafik fungsi $f(x)= x^{4}-4x^{3}-18x^{2}+24x-9$ cekung ke bawah dalam interval...

$\begin{align} (A)\ & x \lt -3\ \text{atau}\ x \gt 1 \\ (B)\ & -3 \lt x \lt 1 \\ (C)\ & x \lt -1\ \text{atau}\ x \gt 1 \\ (D)\ & -1 \lt x \lt 3 \\ (E)\ & -2 \lt x \lt 3 \end{align}$

Alternatif Pembahasan:
Show

Untuk mengetahui kecekungan grafik fungsi $f(x)= x^{4}-4x^{3}-18x^{2}+24x-9$, dapat kita periksa dari turunan kedua fungsi tersebut seperti berikut ini:

  • Fungsi $f(x)$ dikatakan cekung ke atas dalam interval $A$ jika $f''(x) \gt 0$, untuk setiap $x \in A$.
  • Fungsi $f(x)$ dikatakan cekung ke bawah dalam interval $A$ jika $f''(x) \lt 0$, untuk setiap $x \in A$.

$ \begin{align} f(x) &= x^{4}-4x^{3}-18x^{2}+24x-9 \\ f'(x) &= 4x^{3}-12x^{2}-36x +24 \\ f''(x) &= 12x^{2}-24x -36 \end{align} $

Agar grafik $f(x)$ cekung ke bawah maka batasan nilai $x$ adalah:

$ \begin{align} f''(x) & \lt 0 \\ 12x^{2}-24x -36 & \lt 0 \\ x^{2}-2x -3 & \lt 0 \\ \left( x-3 \right)\left(x+1 \right) & \lt 0 \\ \hline \text{pembuat nol:}\ & x =3\ \text{atau}\ x =-1 \\ \hline -1 \lt x \lt 3 & \end{align} $

Kesimpulan: fungsi $f(x)= x^{4}-4x^{3}-18x^{2}+24x-9$ cekung ke bawah dalam interval $-1 \lt x \lt 3$


Jika masih kesulitan menyelesaikan pertidaksamaan kuadrat dengan cepat silahkan disimak caranya: Cara Kreatif Menentukan HP Pertidaksamaan Kuadrat

$\therefore$ Pilihan yang sesuai adalah $(D)\ -1 \lt x \lt 3$

21. Soal Latihan Fungsi Naik dan Fungsi Turun

Grafik fungsi $f(x)= x^{4}-12x^{3}+54x^{2}-60x+25$ memenuhi...

$\begin{align} (A)\ & \text{Cekung ke atas dalam interval}\ x \gt 3 \\ (B)\ & \text{Cekung ke bawah dalam interval}\ x \gt 3 \\ (C)\ & \text{Selalu cekung ke bawah} \\ (D)\ & \text{Tidak pernah cekung ke bawah} \\ (E)\ & \text{Memiliki titik belok di}\ x=3 \end{align}$

Alternatif Pembahasan:
Show

Untuk mengetahui kecekungan grafik fungsi $f(x)= x^{4}-12x^{3}+54x^{2}-60x+25$, dapat kita periksa dari turunan kedua fungsi tersebut seperti berikut ini:

  • Fungsi $f(x)$ dikatakan cekung ke atas dalam interval $A$ jika $f''(x) \gt 0$, untuk setiap $x \in A$.
  • Fungsi $f(x)$ dikatakan cekung ke bawah dalam interval $A$ jika $f''(x) \lt 0$, untuk setiap $x \in A$.

$ \begin{align} f(x) &= x^{4}-12x^{3}+54x^{2}-60x+25 \\ f'(x) &= 4x^{3}-36x^{2}+108x -60 \\ f''(x) &= 12x^{2}-72x +108 \\ &= 12 \left(x^{2}-6x +9 \right) \\ &= 12 \left(x-3 \right)^{2} \end{align} $

Dari hasil di atas kita peroleh $f''(x) = 12 \left(x-3 \right)^{2}$ sehingga $f''(x) \gt 0$ atau $f''(x)$ selalu bernilai positif maka grafik $f(x)= x^{4}-12x^{3}+54x^{2}-60x+25$ Tidak pernah cekung ke bawah.


Untuk pilihan $(E)\ \text{Memiliki titik belok di}\ x=3$ salah, karena setelah dan sebelum $x=3$ kecekungan grafik tidak berubah. Kita ketahui bahwa titik belok adalah titik dimana ada perubahan kecekungan grafik.


$\therefore$ Pilihan yang sesuai adalah $(D)\ \text{Tidak pernah cekung ke bawah}$

22. Soal Latihan Fungsi Naik dan Fungsi Turun

Titik belok fungsi $f(x)= x^{3}+6x^{2}+9x+ 5$ adalah...

$\begin{align} (A)\ & \left( -2,4 \right) \\ (B)\ & \left( -2,3 \right) \\ (C)\ & \left( 2,-5 \right) \\ (D)\ & \left( 2,3 \right) \\ (E)\ & \left( 2,6 \right) \end{align}$

Alternatif Pembahasan:
Show

Untuk titik belok $f(x)= x^{3}+6x^{2}+9x+ 5$ dapat kita periksa dari turunan kedua fungsi tersebut seperti berikut ini:

$ \begin{align} f(x) &= x^{3}+6x^{2}+9x+ 5 \\ f'(x) &= 3x^{2}+12x +9 \\ f''(x) &= 6x+12 \\ \hline f''(x) &= 0 \\ 6x+12 &= 0 \\ 6x &= -12 \\ x &= -2 \\ \hline f(x) &= x^{3}+6x^{2}+9x+ 5 \\ f(-2) &= (-2)^{3}+6(-2)^{2}+9(-2)+ 5 \\ &= -8+24-18+ 5 \\ &= 3 \end{align} $
Dari hasil di atas kita periksa $\left( -2,3 \right)$ apakah merupakan titik belok.


Untuk $x \lt -2$ misal $x=-3$ kita peroleh:
$ \begin{align} f''(x) &= 6x+12 \\ f''(-3) &= 6(-3)+12 \\ f''(-3) &= -6 \lt 0 \\ \text{fungsi}\ f(x)\ & \text{cekung ke bawah} \end{align} $


Untuk $x \gt -2$ misal $x=0$ kita peroleh:
$ \begin{align} f''(x) &= 6x+12 \\ f''(0) &= 6(0)+12 \\ f''(0) &= 12 \gt 0 \\ \text{fungsi}\ f(x)\ & \text{cekung ke atas} \end{align} $

Dari hasil di atas kita peroleh bahwa $\left( -2,3 \right)$ merupakan titik belok.


$\therefore$ Pilihan yang sesuai adalah $(B)\ \left( -2,3 \right)$

23. Soal Latihan Fungsi Naik dan Fungsi Turun

Titik belok fungsi $f(x)= x^{4}-6x^{2}+5x+4$ adalah...

$\begin{align} (A)\ & \left( -1,-6 \right) \\ (B)\ & \left( 1,3 \right) \\ (C)\ & \left( 2,6 \right) \\ (D)\ & \left( -2,-14 \right) \\ (E)\ & \left( 0,5 \right) \end{align}$

Alternatif Pembahasan:
Show

Untuk titik belok $f(x)= x^{4}-6x^{2}+5x+4$ dapat kita periksa dari turunan kedua fungsi tersebut seperti berikut ini:

$ \begin{align} f(x) &= x^{4}-6x^{2}+5x+4 \\ f'(x) &= 4x^{3}-12x+5 \\ f''(x) &= 12x^{2}-12 \\ \hline f''(x) &= 0 \\ 12x^{2}-12 &= 0 \\ x^{2}-1 &= 0 \\ \left(x-1 \right)\left(x+1 \right) &= 0 \\ x=1\ \text{atau}\ x=-1 & \\ \hline f(x) &= x^{4}-6x^{2}+5x+4 \\ f(1) &= (1)^{4}-6(1)^{2}+5(1)+4 \\ &= 1-6+5+4=4 \\ \hline f(x) &= x^{4}-6x^{2}+5x+4 \\ f(-1) &= (-1)^{4}-6(-1)^{2}+5(-1)+4 \\ &= 1-6-5+4=-6 \end{align} $
Dari hasil di atas kita periksa $\left( -1,-6 \right)$ atau $\left( 1,4 \right)$ apakah merupakan titik belok.


Untuk $x \lt -1$ misal $x=-2$ kita peroleh:
$ \begin{align} f''(x) &= 12x^{2}-12 \\ f''(-2) &= 12(2)^{2}-12 \\ f''(-2) &= 36 \gt 0 \\ \text{fungsi}\ f(x)\ & \text{cekung ke atas} \end{align} $


Untuk $x \gt -1$ misal $x=0$ kita peroleh:
$ \begin{align} f''(x) &= 12x^{2}-12 \\ f''(0) &= 12(0)^{2}-12 \\ f''(0) &= -12 \lt 0 \\ \text{fungsi}\ f(x)\ & \text{cekung ke bawah} \end{align} $

Dari hasil di atas kita peroleh bahwa $\left( -1,-6 \right)$ merupakan titik belok.


$\therefore$ Pilihan yang sesuai adalah $(A)\ \left( -1,-6 \right)$

24. Soal Latihan Fungsi Naik dan Fungsi Turun

Fungsi $f(x)= 3x^{5} – 10x^{4} + 10x^{3} – 60x – 40$ memiliki titik belok...

$\begin{align} (A)\ & \left( 0,-40 \right) \\ (B)\ & \left( 1,23 \right) \\ (C)\ & \left( -1,-123 \right) \\ (D)\ & \left( 2,-35 \right) \\ (E)\ & \left( 0,-40 \right)\ \text{dan}\ \left( 1,23 \right) \end{align}$

Alternatif Pembahasan:
Show

Untuk titik belok $f(x)= 3x^{5} – 10x^{4} + 10x^{3} – 60x – 40$ dapat kita periksa dari turunan kedua fungsi tersebut seperti berikut ini:

$ \begin{align} f(x) &= 3x^{5} – 10x^{4} + 10x^{3} – 60x – 40 \\ f'(x) &= 15x^{4} – 40x^{3} + 30x^{2} – 60 \\ f''(x) &= 60x^{3}-120x^{2}+60x \\ \hline f''(x) &= 0 \\ 60x^{3}-120x^{2}+60x &= 0 \\ x^{3}-2x^{2}+x &= 0 \\ \left(x \right)\left( x^{2}-2x+1 \right) &= 0 \\ \left(x \right)\left(x-1 \right)\left(x-1 \right) &= 0 \\ x=0\ \text{atau}\ x=1 & \\ \hline f(x) &= 3x^{5} – 10x^{4} + 10x^{3} – 60x – 40 \\ f(1) &= 3(1)^{5} – 10(1)^{4} + 10(1)^{3} – 60(1) – 40 \\ &= 3-10+10-60-40=-97 \\ \hline f(x) &= 3x^{5} – 10x^{4} + 10x^{3} – 60x – 40 \\ f(0) &= 3(2)^{5} – 10(0)^{4} + 10(0)^{3} – 60(0) – 40 \\ &= 0-0+0-0-40=-40 \\ \end{align} $
Dari hasil di atas kita periksa $\left( 1,97 \right)$ atau $\left( 0,-40 \right)$ apakah merupakan titik belok.


Untuk $x \lt 0$ misal $x=-1$ kita peroleh:
$ \begin{align} f''(x) &= 60x^{3}-120x^{2}+60x \\ f''(-1) &= 60(-1)^{3}-120(-1)^{2}+60(-1) \\ f''(-2) &= -240 \lt 0 \\ \text{fungsi}\ f(x)\ & \text{cekung ke bawah} \end{align} $


Untuk $x \gt 0$ misal $x=0,5$ kita peroleh:
$ \begin{align} f''(x) &= 60x^{3}-120x^{2}+60x \\ f''(0,5) &= 60(0,5)^{3}-120(0,5)^{2}+60(0,5) \\ f''(0,5) &= 7,5 \gt 0 \\ \text{fungsi}\ f(x)\ & \text{cekung ke atas} \end{align} $

Dari hasil di atas kita peroleh bahwa $\left( 0,-40 \right)$ merupakan titik belok. Silahkan dibuktikan bahwa $\left( 1,97 \right)$ bukan merupakan titik belok.


$\therefore$ Pilihan yang sesuai adalah $(A)\ \left( 0,-40 \right)$

25. Soal Latihan Fungsi Naik dan Fungsi Turun

Jika titik belok dari fungsi $f(x)= x^{3} +bx^{2} + 9x – a$ adalah $\left(-2,7\right)$, maka nilai $a=\cdots$

$\begin{align} (A)\ & -9 \\ (B)\ & -7 \\ (C)\ & 5 \\ (D)\ & 8 \\ (E)\ & 10 \end{align}$

Alternatif Pembahasan:
Show

Untuk titik belok $\left(-2,7\right)$ pada fungsi $f(x)= x^{3} +bx^{2} + 9x – a$ dapat kita periksa dari turunan kedua fungsi tersebut seperti berikut ini:

$ \begin{align} f(x) &= x^{3} +bx^{2} + 9x – a \\ f'(x) &= 3x^{2} +2bx + 9 \\ f''(x) &= 6x +2b \\ \hline f''(x) &= 0 \\ 6x +2b &= 0 \\ 6x &= -2b \\ x &= \dfrac{-2b}{6} \\ (-2) &= \dfrac{-2b}{6} \\ 6 &= b \\ \hline f(x) &= x^{3} +bx^{2} + 9x – a \\ f(-2) &= (-2)^{3} +b(-2)^{2} + 9(-2) – a \\ 7 &= -8 +(6)(4) -18 – a \\ -9 &= a \end{align} $


$\therefore$ Pilihan yang sesuai adalah $(A)\ -9$

26. Soal Latihan Fungsi Naik dan Fungsi Turun

Grafik fungsi $f(x)=\left(4-x \right)^{3} – \left(4-x \right)^{2}$ akan naik dalam interval...

$\begin{align} (A)\ & x \lt 3\frac{1}{3}\ \text{atau}\ x \gt 4 \\ (B)\ & \gt 4 \\ (C)\ & 3\frac{1}{3} \lt x \lt 4 \\ (D)\ & x \lt 4 \\ (E)\ & 0 \lt x \lt 4 \end{align}$

Alternatif Pembahasan:
Show

Syarat suatu fungsi $f(x)$ naik adalah saat $f'(x) \gt 0$

$ \begin{align} f(x) &= \left(4-x \right)^{3} – \left(4-x \right)^{2} \\ f'(x) &= 3\left(4-x \right)^{2}\left( -1 \right) – 2\left(4-x \right) \left( -1 \right) \\ &= -3\left( x^{2}-8x+16 \right) + 2\left(4-x \right) \\ &= -3x^{2}+24x-48 + 8-2x \\ &= -3x^{2}+22x-40 \\ \hline f'(x) & \gt 0 \\ -3x^{2}+22x-40 & \gt 0 \\ 3x^{2}-22x+40 & \lt 0 \\ \left( 3x-10 \right)\left( x-4 \right) & \lt 0 \\ \hline \text{pembuat nol:}\ & x =\frac{3}{10}\ \text{atau}\ x =4 \\ \hline 3\frac{1}{3} \lt x \lt 4 & \end{align} $

Kesimpulan: fungsi $f(x)=\left(4-x \right)^{3} – \left(4-x \right)^{2}$ akan naik pada interval $3\frac{1}{3} \lt x \lt 4$


Jika masih kesulitan menyelesaikan pertidaksamaan kuadrat dengan cepat silahkan disimak caranya: Cara Kreatif Menentukan HP Pertidaksamaan Kuadrat

$\therefore$ Pilihan yang sesuai adalah $(C)\ 3\frac{1}{3} \lt x \lt 4$

27. Soal Latihan Fungsi Naik dan Fungsi Turun

Fungsi $f(x)=\left(x-8 \right) \left( x^{2}+2x+1 \right)$ turun dalam interval...

$\begin{align} (A)\ & -5 \lt x \lt 1 \\ (B)\ & -1 \lt x \lt 5 \\ (C)\ & -5 \lt x \lt 3 \\ (D)\ & x \lt -1\ \text{atau}\ x \gt 1 \\ (E)\ & x \lt -5\ \text{atau}\ x \gt 1 \end{align}$

Alternatif Pembahasan:
Show

Syarat suatu fungsi $f(x)$ turun adalah saat $f'(x) \lt 0$

$ \begin{align} f(x) &= \left(x-8 \right) \left( x^{2}+2x+1 \right) \\ f'(x) &= \left( 1 \right) \left( x^{2}+2x+1 \right)+\left( x-8 \right) \left( 2x +2 \right) \\ &= x^{2}+2x+1 + 2x^{2} +2x-16x-16 \\ &= 3x^{2}-12x -15 \\ \hline f'(x) & \lt 0 \\ 3x^{2}-12x -15 & \lt 0 \\ x^{2}-4x - 5 & \lt 0 \\ \left( x-5 \right)\left( x+1 \right) & \lt 0 \\ \hline \text{pembuat nol:}\ & x =5\ \text{atau}\ x =-1 \\ \hline -1 \lt x \lt 5 & \end{align} $

Kesimpulan: fungsi $f(x)=\left(x-8 \right) \left( x^{2}+2x+1 \right)$ akan turun pada interval $-1 \lt x \lt 5$


Jika masih kesulitan menyelesaikan pertidaksamaan kuadrat dengan cepat silahkan disimak caranya: Cara Kreatif Menentukan HP Pertidaksamaan Kuadrat

$\therefore$ Pilihan yang sesuai adalah $(B)\ -1 \lt x \lt 5$

28. Soal Latihan Fungsi Naik dan Fungsi Turun

Nilai maksimum dari $f(x)= 6x^{2}-x^{3}$ dalam interval $-1 \leq x \leq 5$ adalah...

$\begin{align} (A)\ & 54 \\ (B)\ & 52 \\ (C)\ & 36 \\ (D)\ & 32 \\ (E)\ & 27 \end{align}$

Alternatif Pembahasan:
Show

Untuk menghitung nilai minimum dari $f(x)= 6x^{2}-x^{3}$ dalam interval $-1 \leq x \leq 5$ dapat kita peroleh dengan menguji beberapa nilai $x$ ke fungsi $f(x)= 6x^{2}-x^{3}$.


$ \begin{align} f(x) &= 6x^{2}-x^{3} \\ \hline f(-1) &= 6(-1)^{2}-(-1)^{3} \\ &= 6+1 =7 \\ \hline f(0) &= 6(0)^{2}-(0)^{3} \\ &= 0+0 =0 \\ \hline f(1) &= 6(1)^{2}-(1)^{3} \\ &= 6-1 =5 \\ \hline f(2) &= 6(2)^{2}-(2)^{3} \\ &= 24-8 =16 \\ \hline f(3) &= 6(3)^{2}-(3)^{3} \\ &= 54-27 =27 \\ \hline f(4) &= 6(4)^{2}-(4)^{3} \\ &= 96-64 =32 \\ \hline f(5) &= 6(5)^{2}-(5)^{3} \\ &= 150-125 =25 \\ \end{align} $


$\therefore$ Pilihan yang sesuai adalah $(D)\ 32$

29. Soal Latihan Fungsi Naik dan Fungsi Turun

Jika titik belok $y= x^{3} +ax^{2} + bx – 3$ adalah $\left(-1,-4 \right)$, maka nilai $b=\cdots$

$\begin{align} (A)\ & -1 \\ (B)\ & 0 \\ (C)\ & 1 \\ (D)\ & 2 \\ (E)\ & 3 \end{align}$

Alternatif Pembahasan:
Show

Untuk titik belok $\left(-1,-4 \right)$ pada fungsi $y= x^{3} +ax^{2} + bx – 3$ dapat kita periksa dari turunan kedua fungsi tersebut seperti berikut ini:

$ \begin{align} f(x) &= x^{3} +ax^{2} + bx – 3 \\ f'(x) &= 3x^{2} +2ax + b \\ f''(x) &= 6x +2a \\ \hline f''(x) &= 0 \\ 6x +2a &= 0 \\ 6x &= -2a \\ x &= \dfrac{-2a}{6} \\ (-1) &= \dfrac{-2a}{6} \\ 3 &= a \\ \hline f(x) &= x^{3} +ax^{2} + bx – 3 \\ f(-1) &= (-1)^{3} +a(-1)^{2} + b(-1) – 3 \\ -4 &= -1 +(3)(1) -b – 3 \\ 3 &= b \end{align} $


$\therefore$ Pilihan yang sesuai adalah $(E)\ 3$

30. Soal Latihan Fungsi Naik dan Fungsi Turun

Jika nilai maksimum fungsi $y= x+\sqrt{p-2x}$ adalah $4$, maka $p=\cdots$

$\begin{align} (A)\ & 3 \\ (B)\ & 4 \\ (C)\ & 5 \\ (D)\ & 7 \\ (E)\ & 8 \end{align}$

Alternatif Pembahasan:
Show

Diketahui nilai maksimum dari fungsi $y= x+\sqrt{p-2x}$ adalah $4$. Untuk mendapatkan nilai minimum tersebut dapat kita gunakan dengan turunan pertama seperti berikut ini:

$ \begin{align} y &= x+\sqrt{p-2x} \\ y' &= 1+ \dfrac{1}{2\sqrt{p-2x}} \cdot \left( -2 \right) \\ &= 1 - \dfrac{1}{\sqrt{p-2x}} \end{align} $


$ \begin{align} y' &= 0 \\ 1 - \dfrac{1}{\sqrt{p-2x}} &= 0 \\ 1 &= \dfrac{1}{\sqrt{p-2x}} \\ \sqrt{p-2x} &= 1 \\ p-2x &= 1 \\ 2x & = p-1 \\ x & = \dfrac{p-1}{2} \end{align} $


Untuk $x = \dfrac{p-1}{2}$ diketahui nilai minimum $y= x+\sqrt{p-2x}$ adalah $4$ sehingga dapat kita peroleh:
$ \begin{align} y &= 4 \\ \dfrac{p-1}{2}+\sqrt{p-2\left( \dfrac{p-1}{2} \right)} &= 4 \\ \dfrac{p-1}{2}+\sqrt{p- \left( p-1 \right)} &= 4 \\ \dfrac{p-1}{2}+\sqrt{1} &= 4 \\ \dfrac{p-1}{2} &= 3 \\ p-1 &= 6 \\ p & = 7 \end{align} $


$\therefore$ Pilihan yang sesuai adalah $(D)\ 7$

Untuk segala sesuatu hal yang perlu kita diskusikan terkait Fungsi Naik, Fungsi Turun dan Titik Stasioner Pada Fungsi Aljabar Dilengkapi Pembahasan Soal Latihan silahkan disampaikan 🙏 CMIIW😊.

Jangan Lupa Untuk Berbagi 🙏 Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊

Comment Policy: Tanggapan atau pertanyaan terkait "Fungsi Naik, Fungsi Turun dan Titik Stasioner Pada Fungsi Aljabar Dilengkapi Pembahasan 30 Soal Latihan" silahkan disampaikan 😊 dan terima kasih 🙏 support Anda untuk defantri.com
Buka Komentar
Tutup Komentar