Skip to main content

Matematika Dasar SMA: Pak, Berapakah Sin 18 Derajat?

Pak, Berapakah Sin 18 Derajat?
Pak, berapakah $sin\ 18^{\circ} ?$. Pertanyaan ini yang menjadi dasar Calon Guru belajar matematika dasar kali ini. Pertanyaan ini mengingatkanku pada bapak Benny Yong beberapa tahun yang lalu, yang pertama kali memperkenalkan bagaimana menghitung $sin\ 18^{\circ}$.

Selain menghitung $sin\ 18^{\circ}$, bapak Benny Yong juga memperkenalkan beberapa istilah dalam matematika, ada Eksplorasi, Telescoping, Harmonic Means (HM), Arithmetic Means (AM), Geometric Means (GM), Quadratic Means (QM), Pertidaksamaan Cauchy, Pertidaksamaan Renata dan lain sebagainya.

Sebelum kita coba menghitung nilai $sin\ 18^{\circ} $. Kita sudah mengetahui kisaran nilai adalah $0\ <\ sin\ 18\ <\ 1 $ dan beberapa data pendukung, antara lain;
  • $sin\ a=cos\ \left ( 90-a \right ) $
  • $sin\ \left ( a+b \right )=sin\ a\ cos\ b\ +\ Sin\ b\ cos\ a $
  • $cos\left ( a+b \right )=cos\ a\ cos\ b\ -\ sin\ a\ sin\ b $
  • $sin^{2}a+cos^{2}a=1 $
Sekarang kita coba mulai menghitung;
$sin\ 18$ mempunyai hubungan (sudut berelasi) dengan $sin\ 36,\ sin\ 54,\ cos\ 36,\ dan\ cos\ 54$.
Dari beberapa sudut berelasi diatas kita gunakan beberapa, yaitu $cos\ 36,\ dan\ sin\ 54$
$cos\ 36=cos\ \left (18+18 \right )$
$cos\ 36=cos^{2}18-sin^{2}18 $
$cos\ 36=\left (1-sin^{2}18 \right )-sin^{2}18 $
$cos\ 36=1-2sin^{2}18$

$sin\ 54=\left ( 18+36 \right ) $
$sin\ 54=sin\ 18\ cos\ 36\ +\ Sin\ 36\ cos\ 18$
$sin\ 54=sin18 \left(1-2sin^{2}18 \right)+\left(2sin18\cos18\right)cos18$
$sin\ 54=sin\ 18\ -2sin^{3}18 +\ 2sin\ 18\ cos^{2} 18$
$sin\ 54=sin\ 18\ -2sin^{3}18 +\ 2sin\ 18\ \left (1-sin^{2}18 \right )$
$sin\ 54=sin\ 18\ -2sin^{3}18 +\ 2sin\ 18\ -2sin^{3}18$
$sin\ 54=3sin\ 18\ -4sin^{3}18$

Berikut kita samakan;
$cos\ 36=sin\ 54$
$1-2sin^{2}18=3sin\ 18\ -4sin^{3}18$

Untuk mempermudah penulisan, kita misalkan saja $sin\ 18\ =\ p$
$1-2sin^{2}18=3sin\ 18\ -4sin^{3}18$
$1-2p^{2}=3p -4p^{3}$
$4p^{3}-2p^{2}-3p+1=0$
$\left (4p^{2}+2p-1 \right )\left (p-1 \right )=0$

Untuk $\left (p-1 \right )=0$ Tidak Memenuhi (TM) karena dari persamaan ini kita peroleh nilai $p=1$ dan $sin\ 18=1$, seperti yang kita tahu bahwa ini tidak sesuai dengan kisaran nilai $sin\ 18$.

Sekarang kita hanya konsentrasi kepada $\left (4p^{2}+2p-1 \right )=0$
Untuk mendapatkan nilai p, kita menggunakan rumus abc,
$p_{12}=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}$
$p_{12}=\frac{-2\pm \sqrt{2^{2}-4\cdot 4\cdot \left (-1 \right )}}{2\left (4 \right )}$
$p_{12}=\frac{-2\pm \sqrt{4+16}}{8}$
$p_{12}=\frac{-2\pm 2\sqrt{5}}{8}$
$p_{12}=\frac{-2\pm 2\sqrt{5}}{8}$
$p_{12}=-\frac{1}{4}\pm \frac{1}{4}\sqrt{5}$

Dari persamaan diatas kita peroleh dua nilai $p$
$p_{1}=-\frac{1}{4} + \frac{1}{4}\sqrt{5}$
$p_{2}=-\frac{1}{4} - \frac{1}{4}\sqrt{5}$

Dari dua nilai diatas, nilai $p_{1}=-\frac{1}{4} + \frac{1}{4}\sqrt{5}$ bernilai positif sedangkan $p_{2}=-\frac{1}{4} - \frac{1}{4}\sqrt{5}$ bernilai negatif, dan $sin\ 18^{\circ} $ berada pada kuadran yang pertama sehingga nilai $sin\ 18^{\circ} -\frac{1}{4} + \frac{1}{4}\sqrt{5}$.

Untuk segala sesuatu hal yang perlu kita diskusikan terkait Matematika Dasar SMA: Pak, Berapakah Sin 18 Derajat? silahkan disampaikan 🙏 CMIIW😊.

Jangan Lupa Untuk Berbagi 🙏 Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊

Video pilihan khusus untuk Anda 💗 Belajar Mengenal dan Memahami Soal TPS (Tes Potensi Skolastik) UTBK SBMPTN 2019

youtube image
Comment Policy: Tanggapan atau pertanyaan terkait "Matematika Dasar SMA: Pak, Berapakah Sin 18 Derajat?" silahkan disampaikan 😊 dan terima kasih 🙏 support Anda untuk defantri.com
Buka Komentar
Tutup Komentar