Gk7qp1DNYQGDurixnE7FWT3LyBvSK3asrvqSm057
Bookmark

Cara Operasi Penjumlahan, Pengurangan dan Perkalian Suku Banyak (Polinomial) Dilengkapi Soal Latihan dan Pembahasan

Matematika Dasar SMA: Soal Latihan dan Pembahasan Operasi Penjumlahan, Pengurangan dan Perkalian Suku Banyak (Polinomial)

The good student, bersama Calon Guru kita belajar matematika dasar SMA dari Operasi Penjumlahan, Pengurangan dan Perkalian Suku Banyak (Polinomial). Sebagai contoh soal latihan untuk bahan diskusi, kita pilih dari soal pada Modul Operasi Penjumlahan, Pengurangan dan Perkalian Suku Banyak (Polinomial) Matematika SMA atau pertanyaan-pertanyaan yang ditanyakan di media sosial.


Pengertian Suku Banyak (Polinomial)

Polinomial adalah ekspresi matematika yang terdiri dari variabel, koefisien, dan operasi penjumlahan, pengurangan, perkalian, dan eksponen bilangan bulat non-negatif.

Bentuk umum suku banyak (polinomial) adalah:
$a_{n}x^{n} + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_{1}x^{1} + a_{0},\ a_{n} \neq 0$
Suku Banyak di atas dikatakan suku banyak (polinomial) berderajat $n$, dimana $n$ adalah pangkat tertinggi dari suku banyak (polinomial).

Suku Banyak (polinomial) secara umum dapat ditulis dalam dua bentuk yaitu Suku Banyak (polinomial) dalam sebuah fungsi yaitu $P(x)=a_{n}x^{n} + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_{1}x^{1} + a_{0}$ atau suku banyak (polinomial) dalam sebuah persamaan yaitu $a_{n}x^{n} + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_{1}x^{1} + a_{0}=0$.

Koefisien adalah angka didepan variabel suku banyak. Koefisien dari $x^{n}$ adalah $a_{n}$, koefisien $x^{n-1}$ adalah $a_{n-1}$ da seterusnya. Untuk $a_{0}$ dapat juga disebut dengan konstanta.

Sebagai contoh diberikan suku banyak (polinomial) $5x^{4} + 2x^{3} – 6x^{2} + 8x – 7$,

  • Polinomial tersebut dinamanakan polinomial berderajat $4$.
  • Koefisien dari $x^{4}$ adalah $5$, koefisien dari $x^{3}$ adalah $2$, koefisien $x^{2}$ adalah $-6$, koefisien $x$ adalah $8$ dan konstanta adalah $-7$.

Operasi Aljabar Pada Suku Banyak (Polinomial)

Operasi aljabar pada Suku Banyak (Polinomial) terdiri atas penjumlahan, pengurangan, perkalian dan pembagian. Untuk operasi aljabar pembagian polinomial terdapat beberapa teori baru sehingga pembagian akan kita diskusikan pada cataan tersendiri.

Operasi penjumlahan dan pengurangan polinomial dilakukan dengan cara menjumlah/mengurang koefisien suku-suku yang mempunyai variabel dengan pangkat yang sama. Sederhananya seperti kita melakukan penjumlahan aatu pengurangan aljabar, dimana yang dapat dijumlahkan/dikurangkan adalah yang sama/sejenis.

Sedangkan operasi perkalian polinomial dilakukan dengan cara mengalikan semua suku-suku secara bergantian. Prinsipnya juga sama seperti perkalian aljabar biasa, dan dengan memperhatikan sifat-sifat aljabar yang dapat diterapkan dalam perkalian suku banyak, misalnya sifat perkalian eksponen.

Untuk tambahan penjelasan, kita lihat beberapa contoh soal berikut ini:

Diketahui fungsi polinomial $f(x) = 2x – 4$ dan $g(x) = 3x^{2} + 5x – 6$, hasil dari $f(x)+g(x)$ adalah...

$\begin{align} & f(x)+g(x) \\ & =2x – 4 + 3x^{2} + 5x – 6 \\ & = 3x^{2} + 2x+5x -4-6 \\ & = 3x^{2} + 7x -10 \end{align}$

Diketahui fungsi polinomial $f(x) = 2x – 4$ dan $g(x) = 3x^{2} + 5x – 6$, hasil dari $f(x)-g(x)$ adalah...

$\begin{align} & f(x)-g(x) \\ & =2x – 4 - \left( 3x^{2} + 5x – 6 \right) \\ & =2x – 4 - 3x^{2} - 5x + 6 \\ & = -3x^{2} - 3x - 2 \end{align}$

Diketahui fungsi polinomial $f(x) = 2x – 4$ dan $g(x) = 3x^{2} + 5x – 6$, hasil dari $g(x)-f(x)$ adalah...

$\begin{align} & g(x)-f(x) \\ & =3x^{2} + 5x – 6 - \left( 2x – 4 \right) \\ & =3x^{2} + 5x – 6 - 2x +4 \\ & =3x^{2} + 3x - 2 \end{align}$

Diketahui fungsi polinomial $f(x) = 2x – 4$ dan $g(x) = 3x^{2} + 5x – 6$, hasil dari $f^{2}(x)+g(x)$ adalah...

$\begin{align} & f^{2}(x)+g(x) \\ & =\left( 2x – 4 \right)^{2} + 3x^{2} + 5x – 6 \\ & =4x^{2}-16x+16 + 3x^{2} + 5x – 6 \\ & =4x^{2}+3x^{2} -16x+5x+16-6 \\ & =7x^{2} - 11x +10 \end{align}$

Diketahui fungsi polinomial $f(x) = 2x – 4$ dan $g(x) = 3x^{2} + 5x – 6$, hasil dari $f(x) \times g(x)$ adalah...

$\begin{align} & f(x) \times g(x) \\ & = \left( 2x – 4 \right) \left( 3x^{2} + 5x – 6 \right) \\ & = 6x^{3} + 10x^{2} - 12x - 12x^{2} -20x + 24 \\ & = 6x^{3} - 2x^{2} - 32x + 24 \end{align}$


Contoh Soal dan Pembahasan Suku Banyak (Polinomial)

Untuk menambah pemahaman kita terkait Operasi Penjumlahan, Pengurangan dan Perkalian Suku Banyak (Polinomial) ini, mari kita simak beberapa soal latihan di bawah ini. Soal latihan kita pilih dari soal latihan pada Modul Suku Banyak (Polinomial) Matematika SMA.

Soal latihan Suku Banyak (Polinomial) ini, silahkan dikerjakan terlebih dahulu secara mandiri sebelum membuka buku atau sumber lain untuk melihat pembahasan soal. Setelah selesai silahkan Periksa Jawaban dan jika hasilnya belum memuaskan, pilih ⟳ Ulangi Tes untuk tes ulang. Ayo Tunjukkan Kemampuan Terbaikmu!

Uji Kompetensi Polinomial
Nama Peserta :
Tanggal Tes :
Jumlah Soal :10 soal
Petunjuk Pengerjaan Soal:
Bentuk soal pilihan ganda, pilihlah jawaban yang benar di antara pilihan jawaban yang tersedia. Apabila Kamu merasa terdapat lebih dari satu jawaban yang benar, maka pilihlah yang paling benar.

1. Soal Latihan Polinomial

Tentukanlah bentuk sederhana dari $\left(3x – 2 \right) \left(2x + 5 \right)^{2}$
Alternatif Pembahasan:

$\begin{align} & \left(3x – 2 \right) \left(2x + 5 \right)^{2} \\ & = \left(3x – 2 \right) \left(4x^{2} + 20x + 25 \right) \\ & =3x \cdot 4x^{2} + 3x \cdot 20x + 3x \cdot 25 - 2 \cdot 4x^{2} -2 \cdot 20x - 2 \cdot 25 \\ & =12x^{3} + 60x^{2} + 75x - 8x^{2} - 40x - 50 \\ & =12x^{3} + 52x^{2} + 35x - 50 \end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(D)\ 12x^{3} + 52x^{2} + 35x - 50$

2. Soal Latihan Polinomial

Tentukanlah bentuk sederhana dari $\left( x-3 \right)^{2} \left( x+ 1 \right)-\left( x-3 \right) \left( x^{2}-3x+2 \right)$
Alternatif Pembahasan:

$\begin{align} & \left( x-3 \right)^{2} \left( x+ 1 \right)-\left( x-3 \right) \left( x^{2}-3x+2 \right) \\ & = \left( x-3 \right) \left[ \left( x-3 \right)\left( x+ 1 \right)- \left( x^{2}-3x+2 \right) \right] \\ & = \left( x-3 \right) \left[ x^{2}+x-3x-3 - x^{2}+3x-2 \right] \\ & = \left( x-3 \right) \left[ x-5 \right] \\ & = x^{2} - 5x - 3x + 15 \\ & = x^{2} - 8x + 15 \end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(C)\ x^{2} - 8x + 15$

3. Soal Latihan Polinomial

Jika $\dfrac{10x+4}{x^{2}-x-2} = \dfrac{a}{x-2} + \dfrac{b}{x+1}$ maka nilai $a-b$ adalah...
Alternatif Pembahasan:

$\begin{align} \dfrac{10x+4}{x^{2}-x-2} &= \dfrac{a}{x-2} + \dfrac{b}{x+1} \\ \dfrac{10x+4}{\left( x+1 \right)\left( x-2 \right)} &= \dfrac{a\left( x+1 \right)+b\left( x-2 \right)}{\left( x+1 \right)\left( x-2 \right)} \\ \dfrac{10x+4}{\left( x+1 \right)\left( x-2 \right)} &= \dfrac{ax+a +bx-2b}{\left( x+1 \right)\left( x-2 \right)} \\ \dfrac{10x+4}{\left( x+1 \right)\left( x-2 \right)} &= \dfrac{ax +bx+a-2b}{\left( x+1 \right)\left( x-2 \right)} \\ \dfrac{10x+4}{\left( x+1 \right)\left( x-2 \right)} &= \dfrac{\left(a+b \right)x+\left( a-2b \right)}{\left( x+1 \right)\left( x-2 \right)} \end{align}$

dari kesamaan dua suku banyak di atas dapat kita peroleh: $\begin{align} a+b &= 10 \\ a-2b &= 4\ \ (-) \\ \hline 3b &= 6 \\ b &= 2 \longrightarrow a=8 \end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(E)\ 6$

4. Soal Latihan Polinomial

Uraian dari bentuk $\left(3x – 4\right)^{2} – \left(4x + 2\right)^{2}$ adalah...
Alternatif Pembahasan:

$\begin{align} & \left(3x – 4\right)^{2} – \left(4x + 2\right)^{2} \\ & = \left(9x^{2} – 24x + 16 \right) – \left(16x^{2} + 16x +4 \right) \\ & = 9x^{2} – 24x + 16 – 16x^{2} - 16x - 4 \\ & = -7x^{2} - 40x+12 \end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(B)\ -7x^{2} - 40x+12$

5. Soal Latihan Polinomial

Uraian dari $\left( x^{2}-3 \right) \left(2x + 4\right) \left(2x - 5\right) $ adalah...
Alternatif Pembahasan:

$\begin{align} & \left( x^{2}-3 \right) \left(2x + 4\right) \left(2x - 5\right) \\ & = \left( x^{2}-3 \right) \left(4x^{2} -10x +8x -20 \right) \\ & = \left( x^{2}-3 \right) \left(4x^{2} -2x -20 \right) \\ & = 4x^{4} - 2x^{3} - 20x^{2} - 12x^{2} + 6x + 60 \\ & = 4x^{4} - 2x^{3} - 32x^{2} + 6x + 60 \end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(C)\ 4x^{4} - 2x^{3} - 32x^{2} + 6x + 60$

6. Soal Latihan Polinomial

Uraian dari bentuk $\left( 2x-3 \right)^{2} \left(3x + 2\right)$ adalah...
Alternatif Pembahasan:

$\begin{align} & \left( 2x-3 \right)^{2} \left(3x + 2\right) \\ & = \left( 4x^{2}-12x+9 \right) \left(3x + 2\right) \\ & = 12x^{3}+8x^{2}-36x^{2}-24x+27x+18 \\ & = 12x^{3} -28x^{2}+3x+18 \end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(C)\ 12x^{3} -28x^{2}+3x+18$

7. Soal Latihan Polinomial

Uraian dari bentuk $\left( x^{2}+x-2 \right) \left( 2x^{2}-x+3 \right)$ adalah...
Alternatif Pembahasan:

$\begin{align} & \left( x^{2}+x-2 \right) \left( 2x^{2}-x+3 \right) \\ & = 2x^{4} -x^{3} +3x^{2}+2x^{3}-x^{2}+3x-4x^{2}+2x-6 \\ & = 2x^{4} -x^{3}+2x^{3} +3x^{2} -x^{2} -4x^{2}+3x+2x-6 \\ & = 2x^{4}+x^{3}-2x^{2} +5x-6 \end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(B)\ 2x^{4} + x^{3} - 2x^{2}+5x - 6$

8. Soal Latihan Polinomial

$\left( x+2 \right)^{2} \left( 2x+3 \right) - \left( x+2 \right)^{2} \left( 7x-2 \right) $ sama nilainya dengan...
Alternatif Pembahasan:

$\begin{align} & \left( x+2 \right)^{2} \left( 2x+3 \right) - \left( x+2 \right)^{2} \left( 7x-2 \right) \\ & = \left( x+2 \right)^{2} \left[ \left( 2x+3 \right) - \left( 7x-2 \right) \right] \\ & = \left( x^{2}+4x+4 \right) \left[ 2x+3 - 7x+2 \right] \\ & = \left( x^{2}+4x+4 \right) \left[ -5x+5 \right] \\ & = -5x^{3}+5x^{2}-20x^{2}+20x-20x+20 \\ & = -5x^{3}-15x^{2} +20 \end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(E)\ -5x^{3} -15x^{2} + 20$

9. Soal Latihan Polinomial

Dari kesamaan $\dfrac{a}{x-3} + \dfrac{b}{x+3}=\dfrac{5x+3}{x^{2}-9}$ nilai $a$ dan $b$ berturut-turut adalah...
Alternatif Pembahasan:

$\begin{align} \dfrac{a}{x-3} + \dfrac{b}{x+3} &= \dfrac{5x+3}{x^{2}-9} \\ \dfrac{a \left(x+3 \right)+b\left(x-3 \right) }{\left(x+3 \right)\left(x-3 \right)} &= \dfrac{5x+3}{\left(x-3 \right)\left(x+3 \right)} \\ \dfrac{ax+3a +bx-3b }{\left(x+3 \right)\left(x-3 \right)} &= \dfrac{5x+3}{\left(x-3 \right)\left(x+3 \right)} \\ \dfrac{ax+bx+3a -3b }{\left(x+3 \right)\left(x-3 \right)} &= \dfrac{5x+3}{\left(x-3 \right)\left(x+3 \right)} \\ \dfrac{ \left(a +b \right)x+ 3a -3b }{\left(x+3 \right)\left(x-3 \right)} &= \dfrac{5x+3}{\left(x-3 \right)\left(x+3 \right)} \end{align}$

dari kesamaan dua suku banyak di atas dapat kita peroleh: $\begin{align} a+b &= 5 \\ 3a-3b &= 3 \\ \hline a+b &= 5 \\ a- b &= 1\ \ (-) \\ \hline 2b &= 4 \\ b &= 2 \longrightarrow a=3 \end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(E)\ 3\ \text{dan}\ 2$

10. Soal Latihan Polinomial

$\dfrac{-18x-1}{\left(2x-3 \right)\left( 3x-1 \right)}= \dfrac{p}{2x-3}+\dfrac{q}{3x-1}$ berlaku untuk setiap $x \in R$, $x \neq \frac{3}{2}$, $x \neq \frac{1}{3}$. Nilai $p$ dan $q$ adalah...
Alternatif Pembahasan:

$\begin{align} \dfrac{-18x-1}{\left(2x-3 \right)\left( 3x-1 \right)} &= \dfrac{p}{2x-3}+\dfrac{q}{3x-1} \\ \dfrac{-18x-1}{\left(2x-3 \right)\left( 3x-1 \right)} &= \dfrac{p\left( 3x-1 \right)+q\left(2x-3 \right)}{\left(2x-3 \right)\left( 3x-1 \right)} \\ \dfrac{-18x-1}{\left(2x-3 \right)\left( 3x-1 \right)} &= \dfrac{3px-p +2qx-3q}{\left(2x-3 \right)\left( 3x-1 \right)} \\ \dfrac{-18x-1}{\left(2x-3 \right)\left( 3x-1 \right)} &= \dfrac{(3p+2q)x-(p+3q)}{\left(2x-3 \right)\left( 3x-1 \right)} \\ \end{align}$

dari kesamaan dua suku banyak di atas dapat kita peroleh: $\begin{align} 3p+2q &= -18 \\ p+3q &= 1 \\ \hline 3p+2q &= -18 \\ 3p+9q &= 3\ \, \, (-) \\ \hline -7q &= -21 \\ q &= 3 \longrightarrow p=-8 \end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(C)\ 3\ \text{dan}\ -8$


Beberapa pembahasan Soal Matematika Dasar Operasi Penjumlahan, Pengurangan dan Perkalian Suku Banyak (Polinomial) di atas adalah coretan kreatif siswa pada:

  • lembar jawaban penilaian harian matematika,
  • lembar jawaban penilaian akhir semester matematika,
  • presentasi hasil diskusi matematika atau
  • pembahasan quiz matematika di kelas.

Catatan Belajar Cara Operasi Penjumlahan, Pengurangan dan Perkalian Suku Banyak (Polinomial) Dilengkapi Soal Latihan dan Pembahasan di atas sifatnya "dokumen hidup" yang senantiasa diperbaiki atau diperbaharui sesuai dengan dinamika kebutuhan dan perubahan zaman. Catatan tambahan dari Anda untuk admin diharapkan dapat meningkatkan kualitas catatan ini 🙏 CMIIW.

JADIKAN HARI INI LUAR BIASA!
Ayo Share (Berbagi) Satu Hal Baik.
Jangan jadikan sekolah hanya untuk mencari nilai, tetapi bagaimana sekolah itu menjadikanmu bernilai.
close