--> Skip to main content

Belajar Induksi Matematika Langkah Demi Langkah Pada Kurikulum 2013

Belajar Induksi Matematika dari Buku Kurikulum 2013Calon Guru belajar bermatematik dari Belajar Induksi Matematika Langkah Demi Langkah Pada Kurikulum 2013. Manfaat belajar induksi matematika antara lain: melatih kemampuan bernalar matematis, melatih kemampuan berargumen yang logis, dan melatih kemampuan komunikasi matematis.

Pada kurikulum 2013 berdasarkan Permendikbud Tahun 2016 Nomor 024 Lampiran 16 yang mengatur tentang Kompetensi Inti dan Kompetensi Dasar Matematika SMA disampaikan kompetensi dasar siswa salah satunya "Menjelaskan metode pembuktian Pernyataan matematis berupa barisan, ketidaksamaan, keterbagiaan dengan induksi matematika". Jadi induksi matematika diharapkan dapat dipahami anak didik sejak SMA kelas XI melalui mata pelajaran matematika wajib.

Dalam berpikir ada dua cara berpikir, ada cara Deduksi dan Induksi. Dalam KBBI dikatakan deduksi/de·duk·si/ /déduksi/ adalah penarikan kesimpulan dari keadaan yang umum; penyimpulan dari yang umum ke yang khusus;.

Sedangkan Induksi dalam KBBI dikatakan induksi/in·duk·si/ adalah metode pemikiran yang bertolak dari kaidah (hal-hal atau peristiwa) khusus untuk menentukan hukum (kaidah) yang umum; penarikan kesimpulan berdasarkan keadaan yang khusus untuk diperlakukan secara umum; penentuan kaidah umum berdasarkan kaidah khusus;.

Dalam matematika cara berfikir Induksi tidak dianjurkan, tetapi yang digunakan adalah Induksi Matematika. Induksi matematika itu pada dasarnya adalah ingin mulai dari beberapa yang khusus lalu akan disimpulkan untuk seluruh bilangan asli.

Pada seri webinar guru belajar paparan bapak Wiworo disampaikan sejarah singkat induksi matematika. Francesco Maurolico (1494-1575) orang pertama yang menggunakan teknik induksi matematika (secara informasl) untuk membuktikan jumlah $n$ bilangan positif ganjil yang pertama dalam buku Arithmeticorum Libri Duo. Blaise Pascal (1653) memberi gambaran jelas tentang teknik induksi matematis. Augustus De Morgan (1838) orang pertama yang menggunakan secara formal dan memberi nama induksi matematis.

Pada buku Matematika SMU Kelas I untuk KBK dan Sistem Semester karangan Bapak Dr.Oki Neswan dan Bapak Dr.Wono Setya Budhi disampaikan bahwa teknik induksi matematika sangat sederhana.

Basis Induksi

Buktikan $P\left ( 1 \right )$ benar.

Langkah Induksi

Buktikan untuk tiap $k$ bilangan asli $P\left ( k \right ) \rightarrow P\left ( k+1 \right )$.

Mengapa kedua langkah di atas cukup untuk membuktikan tak berhingga buah pernyataan $P\left ( n \right )$?. Secara intuitif hal ini dapat dijelaskan sebagai berikut:

Karena $P\left ( 1 \right )$ berlaku pada basis induksi dan $P\left ( 1 \right ) \rightarrow P\left ( 2 \right )$ juga berlaku pada langkah induksi, maka dengan Modus Ponens kita peroleh $P\left ( 2 \right )$ berlaku.
Tapi kita juga tahu bahwa $P\left ( 2 \right ) \rightarrow P\left ( 3 \right )$ benar, sehingga kembali dengan Modus Ponens, $P\left ( 3 \right)$ berlaku atau benar dan seterusnya.

Berapapun nilai $n$, kita dapat membuktikannya dengan meneruskan proses ini sampai kita mencapai $P\left ( n \right )$ berlaku.

Jadi, kita telah membuktikan $P\left ( n \right )$ untuk tiap $n$ anggota bilangan asli, dengan induksi matematika.

Contoh:
Dengan Induksi Matematika Buktikan Bahwa $1+2+3+\cdots +n=\frac{1}{2}n\left ( n+1 \right )$

Misalkan $P\left ( n \right )$ adalah proposisi berikut;
$P\left ( n \right ):$$1+2+3+\cdots +n=\frac{1}{2}n\left ( n+1 \right )$
Pada langkah Basis Induksi, untuk $n=1$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 1 \right )$:$1=\frac{1}{2}\left ( 1 \right )\left ( 1+1 \right )$
$P\left ( 1 \right )$:$1=1$
$\therefore P\left ( 1 \right )$ berlaku atau benar.

kita coba untuk $n=2$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 2 \right )$:$1+2=\frac{1}{2}\left ( 2 \right )\left ( 2+1 \right )$
$P\left ( 2 \right )$:$3=3$
$\therefore P\left ( 2 \right )$ berlaku atau benar.

kita coba untuk $n=3$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 3 \right )$:$1+2+3=\frac{1}{2}\left ( 3 \right )\left ( 3+1 \right )$
$P\left ( 3 \right )$:$6=6$
$\therefore P\left ( 3 \right )$ berlaku atau benar.

Karena pernyataan $P\left ( n \right )$ benar untuk $n=1,2,3$, selanjutnya, kita anggap pernyataan $P\left ( n \right )$ benar untuk $n=k$, sehingga berlaku
$1+2+3+\cdots +k$=$\frac{1}{2}k\left ( k+1 \right )$

Selanjutnya, kita masuk pada langkah induksi.
Akan ditunjukkan pernyataan $P\left ( n \right )$ benar untuk $n=k+1$, yaitu:
$1+2+3+\cdots +n=\frac{1}{2}n\left ( n+1 \right )$
$1+2+3+\cdots +k+\left (k+1 \right )$$= \frac{1}{2}\left ( k+1 \right )\left ( k+1+1 \right )$
$1+2+3+\cdots +k+\left (k+1 \right )$$= \frac{1}{2}\left ( k+1 \right )\left ( k+2 \right )$

Dengan memanfaatkan keberlakuan sebelumnya saat $n=k$, kita peroleh persamaan;
$1+2+3+\cdots +k+\left ( k+1 \right )$
$=$$1+2+3+\cdots +k$$+\left ( k+1 \right )$
$=$$\frac{1}{2}k\left ( k+1 \right )$$+\left ( k+1 \right )$
$=\left( k+1 \right )\left [\frac{1}{2}k+1\right ]$
$=\left( k+1 \right )\frac{1}{2} \left (k+2\right )$
$=\dfrac{1}{2} \left( k+1 \right ) \left (k+2\right )$
sampai pada tahap ini kita telah memperoleh bukti untuk $n=k+1$ bahwa $P\left ( n \right )$ juga benar.

$\therefore$ Karena untuk $n=1,2,3$, $n=k$, dan $n=k+1$ bahwa $P\left ( n \right )$ benar maka
$1+2+3+\cdots +n=\frac{1}{2}n\left ( n+1 \right )$ adalah berlaku atau benar (terbukti).

Soal latihan metode pembuktian pernyataan matematis berupa barisan dengan induksi matematika:
Dengan induksi matematika buktikan bahwa
$1^{2}+2^{2}+3^{2}+\cdots +n^{2}$=$\frac{1}{6}n\left ( n+1 \right )\left (2n+1 \right)$
Alternatif Pembahasan:
Show

Langkah I
Misalkan $P\left ( n \right )$ adalah proposisi berikut;
$P\left ( n \right )$:$1^{2}+2^{2}+3^{2}+\cdots +n^{2}$=$\frac{1}{6}n\left ( n+1 \right )\left (2n+1 \right)$

Pada langkah Basis Induksi, untuk $n=1$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 1 \right )$:$1^{2}=\frac{1}{6}\left ( 1 \right )\left ( 1+1 \right )\left (2+1 \right)$
$P\left ( 1 \right )$:$1=1$
$\therefore P\left ( 1 \right )$ berlaku atau benar.

kita coba untuk $n=2$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 2 \right )$:$1^{2}+2^{2}$=$\frac{1}{6}\left ( 2 \right )\left ( 2+1 \right )\left (4+1 \right)$
$P\left ( 2 \right )$:$5=5$
$\therefore P\left ( 2 \right )$ berlaku atau benar.

Langkah II
Karena pernyataan $P\left ( n \right )$ benar untuk $n=1,2,3$, selanjutnya, kita anggap pernyataan $P\left ( n \right )$ benar untuk $n=k$, sehingga berlaku:
$1^{2}+2^{2}+3^{2}+\cdots +k^{2}$=$\frac{1}{6}k\left ( k+1 \right )\left (2k+1 \right)$

Langkah III
Selanjutnya, kita masuk pada langkah induksi.
Akan kita buktikan berikutnya untuk $n=k+1$ bahwa $P\left ( n \right )$ juga benar, yaitu:
$1^{2}+2^{2}+3^{2}+\cdots +n^{2}$=$\frac{1}{6}n\left ( n+1 \right )\left (2n+1 \right)$
$1^{2}+2^{2}+3^{2}+\cdots +k^{2}+\left ( k+1 \right )^{2}$=$\frac{1}{6}\left ( k+1 \right )\left ( k+1+1 \right )\left (2\left [ k+1 \right ]+1 \right)$
$1^{2}+2^{2}+3^{2}+\cdots +k^{2}+\left ( k+1 \right )^{2}$=$\frac{1}{6}\left ( k+1 \right )\left ( k+2 \right )\left (2k+3 \right)$

Dengan memanfaatkan keberlakuan sebelumnya saat $n=k$, kita peroleh persamaan;
$1^{2}+2^{2}+3^{2}+\cdots +k^{2}+\left ( k+1 \right )^{2}$
=$1^{2}+2^{2}+3^{2}+\cdots +k^{2}$$+\left ( k+1 \right )^{2}$
=$\frac{1}{6}\left ( k \right )\left ( k+1 \right )\left (2k+1 \right)$$+\left ( k+1 \right )^{2}$
=$\left ( k+1 \right )\left [\frac{1}{6}\left ( k\right ) \left (2k+1 \right)+\left ( k+1 \right )\right ]$
=$\left ( k+1 \right )\frac{1}{6}\left [\left ( k\right ) \left (2k+1 \right)+6\left ( k+1 \right )\right ]$
=$\frac{1}{6} \left ( k+1 \right )\left [\left (2k^2+k \right)+\left ( 6k+6 \right )\right ]$
=$\frac{1}{6} \left ( k+1 \right )\left [2k^2+k+6k+6\right ]$
=$\frac{1}{6} \left ( k+1 \right )\left (2k^2+7k+6\right )$
=$\frac{1}{6}\left ( k+1 \right )\left ( k+2 \right )\left (2k+3 \right)$
sampai pada tahap ini kita telah memperoleh bukti untuk $n=k+1$ bahwa $P\left ( n \right )$ juga benar.

$\therefore$ Karena untuk $n=1$, $n=k$, dan $n=k+1$ bahwa $P\left ( n \right )$ benar maka
$1^{2}+2^{2}+3^{2}+\cdots +n^{2}$=$\frac{1}{6}n\left ( n+1 \right )\left (2n+1 \right)$ adalah benar (terbukti)


Soal latihan metode pembuktian pernyataan matematis berupa keterbagiaan dengan induksi matematika:
Dengan induksi matematika buktikan bahwa
$n^{3}-n$ selalu Habis Dibagi (HD) oleh $6$ untuk setiap $n$ bilangan asli
Alternatif Pembahasan:
Show

Langkah I
Misalkan $P\left ( n \right )$ adalah proposisi berikut;
$P\left ( n \right )$:$n^{3}-n$

Pada langkah Basis Induksi, untuk $n=1$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 1 \right )$:$1^{3}-1$
$P\left ( 1 \right )$:$0$ HD $6$
$\therefore P\left ( 1 \right )$ berlaku atau benar.

kita coba untuk $n=2$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 2 \right )$:$2^{3}-2$
$P\left ( 2 \right )$:$6$ HD $6$
$\therefore P\left ( 2 \right )$ berlaku atau benar.

Langkah II
Karena pernyataan $P\left ( n \right )$ benar untuk $n=1,2,3$, selanjutnya, kita anggap pernyataan $P\left ( n \right )$ benar untuk $n=k$, sehingga berlaku:
$k^{3}-k$ HD $6$ atau dengan kata lain bahwa $k^{3}-k$ sebuah bilangan kelipatan $6$

Langkah III
Selanjutnya, kita masuk pada langkah induksi.
Akan kita buktikan berikutnya untuk $n=k+1$ bahwa $P\left ( n \right )$ juga benar,
untuk $n=k+1$ maka $n^{3}-n$
$=\left ( k+1 \right )^{3}-\left ( k+1 \right )$
$=\left ( k+1 \right ) \left[ \left ( k+1 \right )^{2}-1 \right]$
$=\left ( k+1 \right ) \left[ k^{2}+2k\right]$
$=\left ( k+1 \right ) \left ( k \right )\left ( k+2 \right )$
$=\left ( k \right ) \left ( k+1 \right )\left ( k+2 \right )$
untuk $k$ bilangan asli maka $\left ( k \right )$, $\left ( k+1 \right )$, dan $\left ( k+2 \right )$ adalah tiga bilangan asli berurutan.

Karena perkalian tiga bilangan asli berurutan selalu habis dibagi $6$ maka $\left ( k \right ) \left ( k+1 \right )\left ( k+2 \right )$ HD $6$. Sampai pada tahap ini kita telah memperoleh bukti untuk $n=k+1$ bahwa $P\left ( n \right )$ juga benar.

$\therefore$ Karena untuk $n=1$, $n=k$, dan $n=k+1$ bahwa $P\left ( n \right )$ benar, maka $n^{3}-n$ selalu Habis Dibagi oleh $6$ untuk setiap $n$ bilangan asli.


Soal latihan metode pembuktian pernyataan matematis berupa ketidaksamaan dengan induksi matematika:
Dengan induksi matematika buktikan pernyataan matematis ketidaksamaan
$\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+\cdots+\dfrac{1}{n^{2}} \leq 2-\dfrac{1}{n}$
Alternatif Pembahasan:
Show

Misalkan $P\left ( n \right )$ adalah proposisi berikut;


$P\left ( n \right ): \dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+\cdots+\dfrac{1}{n^{2}} \leq 2-\dfrac{1}{n}$

Pada langkah Basis Induksi, untuk $n=1$ pada $P\left ( n \right )$ kita peroleh
$\begin{align}
P\left ( 1 \right ) : \dfrac{1}{1^{2}} & \leq 2-\dfrac{1}{1} \\
P\left ( 1 \right ) : 1 & \leq 1 \\
\therefore P\left ( 1 \right )\ & \text{berlaku atau benar}.
\end{align}$

kita coba untuk $n=2$ pada $P\left ( n \right )$ kita peroleh
$\begin{align}
P\left ( 2 \right ):\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}} & \leq 2-\dfrac{1}{2} \\
P\left ( 2 \right ) : 1\frac{1}{4} & \leq 1\frac{3}{4} \\
\therefore P\left ( 2 \right )\ & \text{berlaku atau benar}.
\end{align}$

kita coba untuk $n=3$ pada $P\left ( n \right )$ kita peroleh
$\begin{align}
P\left ( 3 \right ):\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}} & \leq 2-\dfrac{1}{3} \\
P\left ( 3 \right ) : 1\frac{13}{36} & \leq 1\frac{2}{3} \\
P\left ( 3 \right ) : 1\frac{13}{36} & \leq 1\frac{24}{36} \\
\therefore P\left ( 3 \right )\ & \text{berlaku atau benar}.
\end{align}$

Karena pernyataan $P\left ( n \right )$ benar untuk $n=1,2,3$, selanjutnya, kita anggap pernyataan $P\left ( n \right )$ benar untuk $n=k$, sehingga berlaku:
$\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+\cdots+\dfrac{1}{k^{2}} \leq 2-\dfrac{1}{k}$

Selanjutnya, kita masuk pada langkah induksi.
Akan ditunjukkan pernyataan $P\left ( n \right )$ benar untuk $n=k+1$, sehingga berlaku:
$\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+\cdots+\dfrac{1}{k^{2}}+\dfrac{1}{(k+1)^{2}} \leq 2-\dfrac{1}{k+1}$
Tetapi sebelum kita masuk pada tahapan induksi matematika, kita dapat melakukan Eksplorasi aljabar: yaitu:
$\begin{align}
k\left (k+1 \right ) & \leq \left ( k+1 \right )\left ( k+1 \right ) \\
\frac{1}{k\left (k+1 \right )} & \geq \frac{1}{\left ( k+1 \right )\left ( k+1 \right )} \\
\frac{1}{k\left (k+1 \right )} & = \frac{1}{k}-\frac{1}{\left ( k+1 \right )}
\end{align}$

Pada ketidaksamaan $\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\cdots+\dfrac{1}{k^{2}} \leq 2-\dfrac{1}{k}$ ruas kiri dan ruas kanan sama-sama kita tambahkan $\dfrac{1}{\left ( k+1 \right )^{2}}$.

Sehingga ketidaksamaan menjadi $\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\cdots+\dfrac{1}{k^{2}}+$$\dfrac{1}{\left ( k+1 \right )^{2}}$$\leq 2-\dfrac{1}{k}$+$\dfrac{1}{\left ( k+1 \right )^{2}}$

Begitu juga pada ketidaksamaan $\dfrac{1}{\left ( k+1 \right )\left ( k+1 \right )} \leq \dfrac{1}{k\left (k+1 \right )}$ yang kita temukan pada tahap eksplorasi, ruas kiri dan ruas kanan sama-sama kita tambahkan $2-\dfrac{1}{k}$ sehingga ketidaksamaan menjadi seperti berikut ini:
$\begin{align}
\dfrac{1}{\left ( k+1 \right )\left ( k+1 \right )} & \leq \dfrac{1}{k\left (k+1 \right )} \\
2-\dfrac{1}{k}+\dfrac{1}{\left ( k+1 \right )\left ( k+1 \right )} & \leq 2-\dfrac{1}{k}+\dfrac{1}{k\left (k+1 \right )} \\
2-\dfrac{1}{k}+\frac{1}{\left ( k+1 \right )^{2}} &\leq 2-\dfrac{1}{k}+\frac{1}{k}-\frac{1}{\left ( k+1 \right )} \\
2-\frac{1}{k}+\frac{1}{\left ( k+1 \right )^{2}} &\leq 2-\dfrac{1}{\left ( k+1 \right )}
\end{align} $
Dengan menggunakan sifat ketidaksamaan jika $a \leq b$ dan $b \leq c$ maka $a \leq c$ pada ketidaksamaan yang kita peroleh yaitu:
$\begin{align}
\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\cdots+\dfrac{1}{k^{2}}+\dfrac{1}{\left ( k+1 \right )^{2}} & \leq 2-\frac{1}{k}+\frac{1}{\left ( k+1 \right )^{2}} \\
2-\frac{1}{k}+\frac{1}{\left ( k+1 \right )^{2}} &\leq 2-\dfrac{1}{\left ( k+1 \right )}
\end{align} $
Dapat kita simpulkan
$\begin{align}
\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\cdots+\dfrac{1}{k^{2}}+\dfrac{1}{\left ( k+1 \right )^{2}} &\leq 2-\dfrac{1}{\left ( k+1 \right )}
\end{align} $
Sampai pada tahap ini kita telah memperoleh bukti untuk $n=k+1$ bahwa $P\left ( n \right )$ juga benar.

$\therefore$ Karena untuk $n=1,2,3$, $n=k$, dan $n=k+1$ bahwa $P\left ( n \right )$ benar maka
$\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+\cdots+\dfrac{1}{n^{2}} \leq 2-\dfrac{1}{n}$ adalah berlaku atau benar (terbukti).


Sebagai tambahan dalam menggunakan Induksi Matematika dapat disimak pada catatan berikut:
  • Cara Mudah Memahami Induksi Matematika Pada Barisan, Ketidaksamaan dan Keterbagiaan File Disini
  • Matematika Dasar Induksi Matematika (*Soal Dari Buku Siswa Matematika Kurikulum 2013) File Disini

Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras

Untuk segala sesuatu hal yang perlu kita diskusikan terkait Belajar Induksi Matematika Langkah Demi Langkah Pada Kurikulum 2013 silahkan disampaikan 🙏 CMIIW😊.

Jangan Lupa Untuk Berbagi 🙏 Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊

Video pilihan khusus untuk Anda 💗 Cara alternatif dalam pembagian pecahan, sangat kreatif;
youtube image

Comment Policy: Tanggapan atau pertanyaan terkait "Belajar Induksi Matematika Langkah Demi Langkah Pada Kurikulum 2013" silahkan disampaikan 😊 dan terima kasih 🙏 support Anda untuk defantri.com
Buka Komentar
Tutup Komentar