Diskusi Matematika Seleksi Akademik Masuk Asrama YASOP SMAN 2 Balige 2007

Diskusi Matematika kita berikut ini soalnya kita coba dari Soal Seleksi Akademik masuk Asrama Yayasan Soposurung SMAN 2 Balige Tahun 2007. Siswa-siswi yang tinggal di Asrama Yayasan Soposurung Balige yang dikenal dengan sebutan "Anak YASOP" bersekolah di SMAN 2 Balige. YASOP menjadi salah satu yayasan yang konsisten dalam memajukan pendidikan di Indonesia kuhususnya Sumatera Utara, sehingga tidak heran jika banyak anak-anak SMP kelas IX dari berbagai daerah ingin masuk dan bergabung bersama keluarga besar YASOP.

Soal Seleksi Akademik masuk Asrama Yayasan Soposurung SMAN 2 Balige tiap tahun yang diujikan juga terus berkembang seiring dengan mengikuti perkembangan kurikulum dan teknologi. Tetapi aturan-aturan dasar atau sifat-sifat dalam mengerjakan soal, sifat dan aturannya selalu sama, terkhusus dalam pelajaran matematika. Sehingga soal-soal yang sudah diujikan panitia Seleksi Akademik masuk Asrama Yayasan Soposurung pada tahun-tahun lalu sangat baik dijadikan latihan dasar sebagai latihan dalam bernalar.

Mari kita diskusikan beberapa soal:
1. Hasil dari $\dfrac{3}{2x}+\dfrac{4}{x+2}$ adalah...
$\begin{align}
(A).\ & \dfrac{8x+2}{2x(x+2)} \\
(B).\ & \dfrac{9x+2}{2x(x+2)} \\
(C).\ & \dfrac{11x+6}{2x(x+2)} \\
(D).\ & \dfrac{11x+7}{2x(x+2)}
\end{align}$
Alternatif Pembahasan:

Hint

$\begin{align}
& \dfrac{3}{2x}+\dfrac{4}{x+2} \\
& = \dfrac{3(x+2)+4(2x)}{2x(x+2)} \\
& = \dfrac{3x+6+8x }{2x(x+2)} \\
& = \dfrac{11x+6 }{2x(x+2)}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C).\ \dfrac{11x+6}{2x(x+2)}$

2. Dari suatu barisan aritmatika diketahui $U_{3}=5$, $U_{7}=13$ dan $b=2$. Rumus suku ke-$n$ barisan bilangan tersebut adalah...
$\begin{align}
(A).\ & U_{n}=2n+1 \\
(B).\ & U_{n}=2n-1 \\
(C).\ & U_{n}=3n-1 \\
(D).\ & U_{n}=n^{2}-1
\end{align}$
Alternatif Pembahasan:

Hint

Pada soal disampaikan bahwa barisan aritmatika dimana $U_{3}=5$ maka $a+2b=5$ dan $U_{7}=13$ maka $a+6b=13$
Untuk $b=2$ dan $a+2b=5$ kita peroleh $a+2(2)=5$ atau $a=1$.

Suku ke-$n$ adalah...
$\begin{align}
U_{n}& = a+(n-1)b \\
& = 1+(n-1)2 \\
& = 1+2n-2 \\
& = 2n-1
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(B).\ U_{n}=2n-1$

3. Keliling persegi panjang $48\ cm$. Berapakah panjang diagonal persegi panjang tersebut sehingga luas persegi panjang maksimum?
$\begin{align}
(A).\ & 24\ cm \\
(B).\ & 22\ cm \\
(C).\ & 12 \sqrt{2}\ cm \\
(D).\ & 12\ cm
\end{align}$
Alternatif Pembahasan:

Hint

Disampaikan pada soal bahwa keliling persegi panjang $48\ cm$
$\begin{align}
K & = 2(p+l) \\
48 & = 2(p+l) \\
24 & = p+l
\end{align}$
Luas persegi panjang adalah $L= pl$ dan $p+l=24$.
Luas maksimum persegi panjang diperoleh pada saat $p=l$.
Karena $p=l$ maka $p=l=12$ sehingga persegi panjang adalah sebuah persegi dengan panjang sisi $12\ cm$.
Panjang diagonal persegi adalah $12 \sqrt{2}$

$\therefore$ Pilihan yang sesuai adalah $(B).\ 12 \sqrt{2}\ cm$

4. Dari $44$ siswa dalam kelas, terdapat $30$ siswa gemar pelajaran matematika dan $26$ siswa gemar pelajaran fisika. Jika $3$ siswa tidak gemar kedua pelajaran tersebut, mana banyaknya siswa yang gemar dengan kedua pelajaran tersebut adalah...
$\begin{align}
(A).\ & 12\ {siswa} \\
(B).\ & 15\ {siswa} \\
(C).\ & 18\ {siswa} \\
(D).\ & 22\ {siswa}
\end{align}$
Alternatif Pembahasan:

Hint

Jika informasi pada soal kita sajikan dalam bentuk diagram venn, bentuknya kira-kira seperti berikut ini;

  • $30$ siswa senang $M$ dan $x$ diantaranya juga senang $F$, jadi yang hanya senang $M$ adalah $30-x$.
  • $26$ siswa senang $F$ dan $x$ diantaranya juga senang $M$, jadi yang hanya senang $F$ adalah $26-x$.
  • Siswa senang $M$ dan $F$ adalah $x$
$\begin{align}
n(M \cup F) & =n(M)+n(F)-n(M \cap F) \\
44-3 & =30-x +x + 26-x +x-x \\
41 & =56-x \\
x & =56-41 \\
x & =15
\end{align}$
Banyak siswa senang $S$ dan $B$ adalah $15$

$\therefore$ Pilihan yang sesuai adalah $(B).\ 15\ {siswa}$

5. Diketahui $^{2}\textrm{log}\ 3=x$ dan $^{2}\textrm{log}\ 4=y$.
Nilai $^{2}\textrm{log}\ 36$ adalah
$\begin{align}
(A).\ & 2x+y \\
(B).\ & x+2y \\
(C).\ & 2xy \\
(D).\ & x^{2}y
\end{align}$
Alternatif Pembahasan:

Hint

Dengan menggunakan sifat-sifat logaritma kita peroleh:
$\begin{align}
^{a}\textrm{log}\ (bc) & = ^{a}\textrm{log}\ b + ^{a}\textrm{log}\ c \\
^{2}\textrm{log}\ (36) & = ^{2}\textrm{log}\ 9 + ^{2}\textrm{log}\ 4 \\
& = ^{2}\textrm{log}\ 3^{2} + y \\
& =2 \times ^{2}\textrm{log}\ 3 + y \\
& =2 x + y
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(A).\ 2x+y$

6. Suku ke-$n$ dari barisan $1,\ 3,\ 6,\ 10,\ 15,\ 21,\ \cdots$ adalah...
$\begin{align}
(A).\ & n(n+1) \\
(B).\ & \dfrac{n(n+1)}{2} \\
(C).\ & n(n+2) \\
(D).\ & \dfrac{n(n+2)}{2}
\end{align}$
Alternatif Pembahasan:

Hint

Barisan $1,\ 3,\ 6,\ 10,\ 15,\ 21,\ \cdots$ barisan aritmatika tingkat dua;
jika kita manipulasi bentuknya menjadi
$u_{1}=\dfrac{1 \times 2}{2}=1$
$u_{2}=\dfrac{2 \times 3}{2}=3$
$u_{3}=\dfrac{3 \times 4}{2}=6$
$u_{4}=\dfrac{4 \times 5}{2}=10$
$\vdots$
$u_{2}=\dfrac{20 \times 21}{2}=210$
$u_{n}=\dfrac{n \times (n+1)}{2}=3$

$\therefore$ Pilihan yang sesuai adalah $(B).\ \dfrac{n(n+1)}{2}$

7. Perhatikan gambar
Besar sudut $AOB$ adalah...
$\begin{align}
(A).\ & 70^{\circ} \\
(B).\ & 120^{\circ} \\
(C).\ & 140^{\circ} \\
(D).\ & 160^{\circ}
\end{align}$
Alternatif Pembahasan:

Hint

Gambar diatas kita beri sudut bantuan yaitu sudut bertolak belakang dengan $2x^{\circ}$ dan $7x^{\circ}$, gambar kurang lebih seperti berikut ini:

Jika kita perhatikan gambar, dapat kita ambil kesimpulan bahwa:
$2x^{\circ}+7x^{\circ}=90^{\circ}$
$9x^{\circ}=90^{\circ}$
$x^{\circ}=10^{\circ}$

Sudut $AOB=90^{\circ}+7x^{\circ}$
$AOB=90^{\circ}+70^{\circ}$
$AOB=160^{\circ}$

$\therefore$ Pilihan yang sesuai adalah $(C).\ 160^{\circ} $

8. Kue dalam kaleng dibagikan kepada $6$ orang anak, masing-masing mendapat $30$ kue dan tidak bersisa. Bila kue tersebut dibagikan kepada $10$ orang anak, masing-masing akan mendapat kue sebanyak...
$\begin{align}
(A).\ & 50 \\
(B).\ & 36 \\
(C).\ & 20 \\
(D).\ & 18
\end{align}$
Alternatif Pembahasan:

Hint

Kue dibagikan kepada $6$ orang anak dan masing-masing mendapatkan $30$ kue dan kue tidak bersisa, artinya kue adalah kelipatan $30$ dengan kata lain banyak kue adalah $6 \times 30=180$.

Bila kue tersebut dibagikan kepada $10$ orang anak maka masing-masing akan mendapatkan $\dfrac{180}{10}=18$ kue.

$\therefore$ Pilihan yang sesuai adalah $(D).\ 18 $

9. Grafik fungsi $f(x)=x^{2}-2x-8$ dengan daerah asal $\left\{x| -3 \leq x \leq 5,\ x \in R \right\}$ adalah...
Alternatif Pembahasan:

Hint

Dengan menggunakan aturan-aturan pada fungsi kuadrat kita peroleh:

Titik Puncak Fungsi kuadrat $f(x)=x^{2}-2x-8$
$x_{p}=-\dfrac{b}{2a}=-\dfrac{-2}{2(1)}=1$
$y_{p}=-\dfrac{b^{2}-4ac}{4a}=-\dfrac{4-4(1)(-8)}{4(1)}=-9$
Titik puncak adalah $(1,-9)$

Titik potong terhadap sumbu-$x$ maka $y=0$
$x^{2}-2x-8=0$
$(x-4)(x+2)=0$
$x=4\ \text{atau}\ x=-2$
Titik potong terhadap sumbu-$x$ adalah $(4,0)$ dan $(-2,0)$.

$\therefore$ Pilihan yang sesuai adalah $(C)$

10. Diketahui fungsi $f(x)=2x^{2}-2x-12$, nilai dari $f\left(\dfrac{1}{2} \right)=\cdots$
$\begin{align}
(A).\ & -10\dfrac{1}{2} \\
(B).\ & -12\dfrac{1}{2} \\
(C).\ & -14\dfrac{1}{2} \\
(D).\ & -16\dfrac{1}{2}
\end{align}$
Alternatif Pembahasan:

Hint

Nilai fungsi kuadrat fungsi $f(x)$ untuk $x=\dfrac{1}{2}$ adalah:
$\begin{align}
f(x) & =2x^{2}-2x-12\\
f\left(\dfrac{1}{2} \right) & = 2\left(\dfrac{1}{2} \right)^{2}-2\left(\dfrac{1}{2} \right)-12 \\
& = 2\left(\dfrac{1}{4} \right)-1-12\\
& = \dfrac{1}{2} -13\\
& = -12\dfrac{1}{2}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(B).\ -12\dfrac{1}{2}$

11. Bila $log\ 3^{4}=b$ maka nilai dari $log\ 3^{12}$ adalah...
$\begin{align}
(A).\ & b \\
(B).\ & 2b \\
(C).\ & 3b \\
(D).\ & 4b
\end{align}$
Alternatif Pembahasan:

Hint

Dengan menggunakan sifat-sifat logaritma kita peroleh:
$\begin{align}
log\ a^{n} & = n \times log\ a \\
log\ 3^{4} & = 4 \times log\ 3 \\
b & = 4 \times log\ 3 \\
\dfrac{b}{4} & = log\ 3 \\
\end{align}$
$\begin{align}
log\ a^{n} & = n \times log\ a \\
log\ 3^{12} & = 12 \times log\ 3 \\
b & = 12 \times \dfrac{b}{4} \\
& = 3b
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C).\ 3b$

12. Gambar di bawah menunjukkan sketsa seseorang melihat puncak menara $R$ dari titik $P$ dan titik $Q$. Sudut elevasi puncak menara terhadap mata pengamat di titik $P$ adalah $30^{\circ}$ dan jarak $PQ=100\ m$. Berapakah tinggi menara $(OR)$?
($sin\ 30^{\circ}=\dfrac{1}{2}$; $cos\ 30^{\circ}=\dfrac{1}{2}\sqrt{3}$; $tan\ 30^{\circ}=\dfrac{1}{3}\sqrt{3}$)
$\begin{align}
(A).\ & 25\sqrt{3} \\
(B).\ & 33\sqrt{3} \\
(C).\ & 50\sqrt{3} \\
(D).\ & 100\sqrt{3}
\end{align}$
Alternatif Pembahasan:

Hint

Dengan menggunakan perbandingan trigonometri sederhana dan informasi pada gambar, maka kita peroleh:

Dari segitiga $PQR$
$\begin{align}
cos\ 30^{\circ} & =\dfrac{PR}{PQ} \\
\dfrac{1}{2}\sqrt{3} & =\dfrac{PR}{100} \\
50\sqrt{3} & =PR \\
\end{align}$

Dari segitiga $POR$
$\begin{align}
sin\ 30^{\circ} & =\dfrac{OR}{PR} \\
\dfrac{1}{2} & =\dfrac{OR}{50\sqrt{3}} \\
25\sqrt{3} & =OR
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(A).\ 25\sqrt{3}$

13. Perhatikan gambar di bawah ini!
Notasi pembentuk himpunan untuk titik-titik $P$ yang berada di daerah arsiran berwarna merah adalah...
$\begin{align}
(A).\ & \left\{(x,y)| x \geq -4\ \text{dan}\ x-3y \geq 5,\ x,y \in R \right\}\cap \left\{P|OP \leq 5 \right\} \\
(B).\ & \left\{(x,y)| x \geq -4\ \text{dan}\ x-3y \leq 5,\ x,y \in R \right\}\cap \left\{P|OP \leq 5 \right\} \\
(C).\ & \left\{(x,y)| x \geq -3\ \text{dan}\ x-3y \geq 5,\ x,y \in R \right\}\cap \left\{P|OP \leq 5 \right\} \\
(D).\ & \left\{(x,y)| x \geq -3\ \text{dan}\ x-3y \leq 5,\ x,y \in R \right\}\cap \left\{P|OP \leq 5 \right\}
\end{align}$
Alternatif Pembahasan:

Hint

Kita coba selesaikan apa yang dimaksud oleh soal step by step;

  • Untuk lingkaran; Jika semua arsiran berwarna merah di dalam lingkaran notasinya adalah $\left\{P|OP \leq 5 \right\}$
  • Untuk garis $x=-4$ Jika semua arsiran disebelah kanan garis notasinya adalah $\left\{(x,y)| x \geq -4,\ x,y \in R \right\}$
  • Untuk garis $x-3y=5$ Jika semua arsiran diatas garis notasinya adalah $\left\{(x,y)| x-3y \leq 5,\ x,y \in R \right\}$
Gambar pada soal adalah irisan dari ketiga pertidaksamaan $\left\{P|OP \leq 5 \right\}$, $\left\{(x,y)| x \geq -4,\ x,y \in R \right\}$, dan $\left\{(x,y)| x-3y \leq 5,\ x,y \in R \right\}$.

Alternatif penyelesaian adalah dengan cara uji titik pada daerah yang diarsir kepada pertidaksamaan pada pilihan jawaban;
Misal dipilih titik $(-4,-3)$
Jika kita substitusi nilai $x=-4$ dan $y=-3$ ke pertidaksamaan pada pilihan maka hanya pilihan $(B)$ yang benar semuanya. Di bangku SMA materi ini diperdalam pada materi Program Linear.

$\therefore$ Pilihan yang sesuai adalah $(B).\ \left\{(x,y)| x \geq -4\ \text{dan}\ x-3y \leq 5,\ x,y \in R \right\}\cap \left\{P|OP \leq 5 \right\}$

14. Di suatu terminal, bus jurusan $M$ berangkat setiap $15$ menit, dan bus jurusan $N$ setiap $20$ menit. Bila pada pukul $11.30$ bus jurusan $M$ dan $N$ berangkat bersama-sama, pada pukul berapa lagi kedua bus tersebut akan berangkat bersama-sama untuk yang kedua kalinya?
$\begin{align}
(A).\ & \text{pukul}\ 11.45 \\
(B).\ & \text{pukul}\ 12.15 \\
(C).\ & \text{pukul}\ 12.30 \\
(D).\ & \text{pukul}\ 13.30
\end{align}$
Alternatif Pembahasan:

Hint

Kedua bus berangkat dengan waktu yang berbeda, konsep yang kita pakai untuk mengerjakan masalah seperti ini adalah KPK (Kelipatan Persekutuan Terkecil), yaitu KPK $15$ dan $20$
$15,\ 30,\ 45,\ [60],\ 75,\ 90,\ 115,\ [120]$
$20,\ 40,\ [60],\ 80,\ 100,\ [120]$
Bus akan berangkat bersama-sama untuk pertama kali adalah $60$ menit setelah pukul $11.30$
Bus akan berangkat bersama-sama untuk kedua kali adalah $120$ menit setelah pukul $11.30$ yaitu $13.30$;

$\therefore$ Pilihan yang sesuai adalah $(D).\ 13.30$

15. Diagram panah dibawah ini yang merupakan pemetaan adalah...
Alternatif Pembahasan:

Hint

Pemetaan atau fungsi adalah relasi himpunan dimana semua anggota daerah asal (domain) mempunyai pasangan tepat satu pada daerah kawan (kodomain).
Gambar diagram panah yang memenuhi syarat pemetaan atau fungsi adalah diagram panah pilihan $(D)$

$\therefore$ Pilihan yang sesuai adalah $(D)$

16. Bentuk $\left(x-\dfrac{1}{x} \right)^{2}$ dapat dijabarkan menjadi...
$\begin{align}
(A).\ & x^{2}+\dfrac{1}{x^{2}}-2 \\
(B).\ & x^{2}+\dfrac{1}{x^{2}}+2 \\
(C).\ & x^{2}-\dfrac{1}{x^{2}}+2 \\
(D).\ & x^{2}-\dfrac{1}{x^{2}}-2
\end{align}$
Alternatif Pembahasan:

Hint

$\begin{align}
\left(x-\dfrac{1}{x} \right)^{2} & = x^{2}-2(x)\left(\dfrac{1}{x} \right)+\left(\dfrac{1}{x} \right)^{2} \\
& = x^{2}-2+\dfrac{1}{x^{2}} \\
& = x^{2}+\dfrac{1}{x^{2}}-2
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(A).\ x^{2}+\dfrac{1}{x^{2}}-2$

17. Titik ekstrim pada grafik fungsi kuadrat berikut ini adalah...
$\begin{align}
(A).\ & (-5,-49) \\
(B).\ & (-5,-48) \\
(C).\ & (-5,-45) \\
(D).\ & (-5,-44)
\end{align}$
Alternatif Pembahasan:

Hint

Dengan menggunakan aturan-aturan pada fungsi kuadrat kita peroleh:

Fungsi kuadrat melalui titik $(-12,0)$, $(2,0)$, dan $(0,-24)$
$y=a\left (x -x_{1}\right)\left (x -x_{2}\right)$
$y=a\left (x -(-12)\right)\left (x -2\right)$
$-24=a\left (0 +12\right)\left (0 -2\right)$
$-24=-24a$
$a=1$

$y=a\left (x -(-12)\right)\left (x -2\right)$
$y=1\left (x +12 \right)\left (x -2\right)$
$y=x^{2}+10x-24$

Titik Puncak Fungsi kuadrat $y=x^{2}+10x-24$
$x_{p}=-\dfrac{b}{2a}=-\dfrac{10}{2(1)}=-5$
$y_{p}=-\dfrac{b^{2}-4ac}{4a}=-\dfrac{100-4(1)(-24)}{4(1)}$
$y_{p}=-\dfrac{196}{4}=-44$
Titik puncak adalah $(-5,-44)$

$\therefore$ Pilihan yang sesuai adalah $(D).\ (-5,-44)$

18. Bentuk baku dari $0,000009$ adalah...
$\begin{align}
(A).\ & 9 \times 10^{-6} \\
(B).\ & 9 \times 10^{-5} \\
(C).\ & 0,9 \times 10^{-6} \\
(D).\ & 0,9 \times 10^{-5} \\
\end{align}$
Alternatif Pembahasan:

Hint

Penulisan bilangan berpangkat dalam bentuk baku (notasi ilmiah) yang sudah diakui tingkat internasional adalah $a \times 10^{n}$ dimana $1 \lt a \lt 10 $.

Untuk $0,000009=9 \times 10^{-6}$

$\therefore$ Pilihan yang sesuai adalah $(A).\ 9 \times 10^{-6}$

19.
Grafik di atas adalah himpunan penyelesaian dari sistem pertidaksamaan...
$\begin{align}
(A).\ & x \gt -2,\ 2y+x \gt 4,\ y+x \leq 2 \\
(B).\ & x \gt -2,\ 2y+x \lt 4,\ y+x \geq 2 \\
(C).\ & x \gt -2,\ 2y-x \gt 4,\ y \leq -x + 2 \\
(D).\ & x \gt -2,\ 2y-x \lt 4,\ y \leq -x + 2
\end{align}$
Alternatif Pembahasan:

Hint

Kita coba selesaikan apa yang dimaksud oleh soal step by step;

  • Untuk garis $x=-2$; Jika arsiran disebelah kanan notasinya adalah $x \geq -2$, tetapi karena digambar dengan garis putus-putus, artinya nilai $x$ tidak berlaku untuk $x=2$ sehingga pertidaksamaan notasinya adalah $x \gt -2$
  • Untuk garis $2y-x=4$ Jika arsiran disebelah atas garis notasinya adalah $2y-x \geq 4$ tetapi karena digambar dengan garis putus-putus, artinya nilai $2y-x$ tidak berlaku untuk $2y-x=4$ sehingga pertidaksamaan notasinya adalah $2y-x \gt 4$
  • Untuk garis $x+y=2$ Jika arsiran diatas garis notasinya adalah $x+y \leq 2$
Gambar pada soal adalah irisan dari ketiga pertidaksamaan $x \gt -2$ , $2y-x \gt 4$, dan $x+y \leq 2$.

Alternatif penyelesaian adalah dengan cara uji titik yang dipilih dari daerah yang diarsir kepada pertidaksamaan pada pilihan jawaban;
Misal dipilih titik $(-1,2)$
Jika kita substitusi nilai $x=-1$ dan $y=2$ ke pertidaksamaan pada pilihan maka hanya pilihan $(C)$ yang benar semuanya. Di bangku SMA materi ini diperdalam pada materi Program Linear.

$\therefore$ Pilihan yang sesuai adalah $(C).\ x \gt -2,\ 2y-x \gt 4,\ y \leq -x + 2$

20. Sebuah kapal dari pelabuhan $A$ berlayar ke arah Utara menuju pelabuhan $B$ dengan menempuh jarak $3.000\ km$. Setelah tiba di pelabuhan $B$ kapal berlayar lagi ke arah Timur menuju pelabuhan $C$ dengan menepuh jarak $4.000\ km$. Bila kapal akan kembali ke pelabuhan $A$ langsung dari pelabuhan $C$ jarak yang akan ditempuh...
$\begin{align}
(A).\ & 3.000\ km \\
(B).\ & 4.000\ km \\
(C).\ & 5.000\ km \\
(D).\ & 7.000\ km
\end{align}$
Alternatif Pembahasan:

Hint

Jika kita gambar rute kapal kurang lebih seperti berikut ini;

Jika kita perhatikan rute perjalan di atas dari $A$ ke $B$ dan ke $C$ membentuk segitiga $ABC$ siku-siku di $B$. Dengan menggunakan trypel pythagoras kita bisa hitung $CA$ yaitu
$\begin{align}
CA^{2} & =AB^{2}+BC^{2} \\
CA^{2} & =3.000^{2}+4.000^{2} \\
CA^{2} & =9.000.000+16.000.000 \\
CA^{2} & =25.000.000 \\
CA & =5.000
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C).\ 5.000$

21. Hasil pengurangan $\dfrac{3}{a-b}-\dfrac{2}{a+b}$ adalah..
$\begin{align}
(A).\ & \dfrac{a-5b}{a^{2}-b^{2}} \\
(B).\ & \dfrac{a-5b}{(a-b)^{2}} \\
(C).\ & \dfrac{a+5b}{a^{2}+b^{2}} \\
(D).\ & \dfrac{a-5b}{(a+b)^{2}}
\end{align}$
Alternatif Pembahasan:

Hint

$\begin{align}
& \dfrac{3}{a-b}-\dfrac{2}{a+b} \\
& = \dfrac{3(a+b)}{(a-b)(a+b)}-\dfrac{2(a-b)}{(a-b)(a+b)} \\
& = \dfrac{3a+3b-2a+2b }{(a-b)(a+b)} \\
& = \dfrac{a-5b }{a^{2}-b^{2}}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(A).\ \dfrac{a-5b}{a^{2}-b^{2}}$

22.
Dari gambar bangun-bangun di atas, bangun yang tidak memiliki sumbu simetri adalah gambar...
$\begin{align}
(A).\ & i\ \text{dan}\ iv \\
(B).\ & ii\ \text{dan}\ iii \\
(C).\ & i\ \text{dan}\ ii \\
(D).\ & ii\ \text{dan}\ iv
\end{align}$
Alternatif Pembahasan:

Hint

Sumbu simetri adalah garis yang tepat membelah bangun datar menjadi dua bagian yang sama besarnya. Yang tidak mempunyai sumbu simetri adalah gambar $(i)$ dan $(iv)$.

$\therefore$ Pilihan yang sesuai adalah $(A).\ i\ \text{dan}\ iv$

23. Pemilik sebuah toko mendapat kiriman $100$ karung beras Bulog, yang masing-masing pada karungnya tertera tulisan bruto $114\ kg$, tara $2\ kg$. Neto kiriman yang diterima pemilik toko adalah...
$\begin{align}
(A).\ & 200\ \text{kuintal} \\
(B).\ & 116\ \text{kuintal} \\
(C).\ & 114\ \text{kuintal} \\
(D).\ & 112\ \text{kuintal}
\end{align}$
Alternatif Pembahasan:

Hint

Jika dihubungkan dengan berat maka pengertian Bruto, Neto dan Tara adalah sebagai berikut;

  • Bruto adalah berat kotor yaitu berat suatu barang beserta dengan tempatnya (berat termasuk bungkusnya).
  • Neto adalah berat isi yang sebenarnya (tidak termasuk bungkusnya).
  • Tara adalah potongan berat yaitu berat tempat suatu barang (berat bungkusnya).
$Neto=Bruto-Tara$
$Neto=114-2=112$

Neto untuk $100$ karung adalah $112 \times 100\ kg=11.200\ kg$

$\therefore$ Pilihan yang sesuai adalah $(D).\ 112\ \text{kuintal}$

24.
$AOB$ adalah garis tengah. Jika besar $\angle ABC=63^{\circ}$ dan besar $\angle ABD=49^{\circ}$ maka besar $\angle CAD=\cdots$ adalah...
$\begin{align}
(A).\ & 27^{\circ} \\
(B).\ & 41^{\circ} \\
(C).\ & 68^{\circ} \\
(D).\ & 90^{\circ}
\end{align}$
Alternatif Pembahasan:

Hint

Dari gambar, dapat kita simpulkan bahwa $\angle ADB=\angle ACB=90^{\circ}$ karena kedua sudut tersebut menghadap diameter lingkaran.
Dari segitiga $ABC$
$\angle ABC+\angle ABD+\angle CAB=180^{\circ}$
$63^{\circ}+90^{\circ}+\angle CAB=180^{\circ}$
$\angle CAB=180^{\circ}-63^{\circ}-90^{\circ}$
$\angle CAB=180^{\circ}-153^{\circ}$
$\angle CAB=27^{\circ}$

Dari segitiga $ABD$
$\angle ABD+\angle ADB+\angle BAD=180^{\circ}$
$49^{\circ}+90^{\circ}+\angle BAD=180^{\circ}$
$\angle BAD=180^{\circ}-49^{\circ}-90^{\circ}$
$\angle BAD=180^{\circ}-139^{\circ}$
$\angle BAD=41^{\circ}$

Dari segitiga $ABC$
$\angle CAD=\angle BAD+\angle BAC$
$\angle CAD=41^{\circ}+27^{\circ}$
$\angle CAD=68^{\circ}$

$\therefore$ Pilihan yang sesuai adalah $(C).\ 68^{\circ}$

25.
Diketahui $AC=15\ cm$, $EC=5\ cm$, $AD=6\ cm$, dan $BC=3\ cm$. Panjang AB adalah...
$\begin{align}
(A).\ & 5\sqrt{6} \\
(B).\ & 6\sqrt{5} \\
(C).\ & 10\sqrt{18} \\
(D).\ & 18\sqrt{10}
\end{align}$
Alternatif Pembahasan:

Hint

Dari gambar informasi yang bisa kita ambil adalah

  • $AC=15$ dan $EC=5$ maka $AE=10$
  • Dengan menggunakan trypel pythagoras pada $AE=10$ dan $AD=6$ maka $ED=8$
  • Dengan menggunakan teorema pythagoras pada $BC=3$ dan $EC=5$ maka $EB=4$
  • Masis dengan menggunakan teorema pythagoras pada $AD=6$ dan $BD=DE+EB=8+4=12$ maka
    $AB=\sqrt{6^{2}+12^{2}}$
    $AB=\sqrt{36+144}$
    $AB=\sqrt{180}=6\sqrt{5}$
$\therefore$ Pilihan yang sesuai adalah $(B).\ 6\sqrt{5}$

26. Koordinat titik $P(4,2)$, $Q(9,4)$ dan $R(6,8)$ merupakan titik-titik sudut $PQR$. Koordinat bayangan ketiga titik tersebut oleh dilatasi $[0,2]$ berturut-turut adalah...
$\begin{align}
(A).\ & (0,4),\ (0,8),\ \text{dan}\ (0,16) \\
(B).\ & (4,4),\ (9,8),\ \text{dan}\ (6,16) \\
(C).\ & (6,4),\ (11,6),\ \text{dan}\ (8,10) \\
(D).\ & (8,4),\ (18,8),\ \text{dan}\ (12,16)
\end{align}$
Alternatif Pembahasan:

Hint

  • Bayangan titik $A(x,y)$ oleh dilatasi $[0,k]$ adalah $A'(kx,ky)$
  • Bayangan titik $P(4,2)$ oleh dilatasi $[0,2]$ adalah $A'(8,4)$
  • Bayangan titik $Q(9,4)$ dan oleh dilatasi $[0,2]$ adalah $A'(18,8)$
  • Bayangan titik $R(6,8)$ dan oleh dilatasi $[0,2]$ adalah $A'(12,16)$
$\therefore$ Pilihan yang sesuai adalah $(D).\ (8,4),\ (18,8),\ \text{dan}\ (12,16)$

27. Jadwal latihan tiga tim bola voli untuk bermain di lapngan yang sama adalah tim pertama latihan $4$ hari sekali, tim kedua latihan $5$ hari sekali, dan tim ketiga $6$ hari sekali.
Jika tanggal 1 Desember 2000 ketiga tim mengadakan latihan bersama, maka mereka akan latihan bersma lagi pada tanggal...
$\begin{align}
(A).\ & 28\ \text{Januari}\ 2001 \\
(B).\ & 29\ \text{Januari}\ 2001 \\
(C).\ & 30\ \text{Januari}\ 2001 \\
(D).\ & 31\ \text{Januari}\ 2001
\end{align}$
Alternatif Pembahasan:

Hint

Konsep yang kita pakai untuk mengerjakan masalah seperti ini adalah KPK (Kelipatan Persekutuan Terkecil), yaitu KPK $4$, $5$ dan $6$.

  • $4=2^{2}$
  • $5=5$
  • $6=2 \times 3$
  • KPK $4$, $5$ dan $6$ adalah $2^{2} \times 5 \times 3 =60$
Ketiga tim akan latihan bersama $60$ hari lagi setelah tanggal 1 Desember 2000, yaitu tanggal 30 Januari 2001.

$\therefore$ Pilihan yang sesuai adalah $(C).\ 30\ \text{Januari}\ 2001$


28. Rumus suku ke-$n$ dari barisan bilangan $0,\ 4,\ 10,\ 18,\ \cdots$ adalah...
$\begin{align}
(A).\ & \dfrac{1}{2}n(n+1) \\
(B).\ & 2n(n+1) \\
(C).\ & (n-1)(n+2) \\
(D).\ & (n+1)(n+2)
\end{align}$
Alternatif Pembahasan:

Hint

Barisan $0,\ 4,\ 10,\ 18,\ \cdots$ barisan aritmatika tingkat dua;
jika kita manipulasi bentuknya menjadi
$u_{1}= 0 \times 1=0$
$u_{2}= 1 \times 4=4$
$u_{3}= 2 \times 5=10$
$u_{4}= 3 \times 6=18$
$u_{5}= 4 \times 7=28$
$\vdots$
$u_{20}=19 \times 22$
$u_{n}=(n-1) \times (n+2)$

$\therefore$ Pilihan yang sesuai adalah $(C).\ (n-1) (n+2)$

29. Mean dari data yang disajikan dalam tabel di bawah ini...
Nilai Frekuensi
4 4
5 2
6 6
7 5
8 3
$\begin{align}
(A).\ & 6,02 \\
(B).\ & 6,03 \\
(C).\ & 6,05 \\
(D).\ & 6,50
\end{align}$
Alternatif Pembahasan:

Hint

Nilai $(x_{i})$ Frekuensi $(f_{i})$ $(x_{i})(f_{i})$
4 4 16
5 2 10
6 6 36
7 5 35
8 3 24
Jumlah20 121
$\text{Mean}=\dfrac{\text{Jumlah}\ (x_{i})(f_{i})}{\text{Jumlah}\ (f_{i})}$
$\text{Mean}=\dfrac{\text{121}}{\text{20}}$
$\text{Mean}=6\dfrac{\text{1}}{\text{20}}=6,05$

$\therefore$ Pilihan yang sesuai adalah $(C).\ 6,05$

30.
Kecepatan rata-rata dari sebuah mobil yang ditunjukkan grafik perjalanan diatas adalah...
$\begin{align}
(A).\ & 32 \dfrac{km}{jam} \\
(B).\ & 60 \dfrac{km}{jam} \\
(C).\ & 72 \dfrac{km}{jam} \\
(D).\ & 88 \dfrac{km}{jam}
\end{align}$
Alternatif Pembahasan:

Hint

Dari grafik dapat kita lihat bahwa:

  • saat waktu $10$ menit jarak yang ditempuh adalah $12$ km.
  • saat waktu $20$ menit jarak yang ditempuh adalah $24$ km.
  • saat waktu $30$ menit jarak yang ditempuh adalah $36$ km.
  • saat waktu $40$ menit jarak yang ditempuh adalah $48$ km.
  • saat waktu $50$ menit jarak yang ditempuh adalah $60$ km.
Artinya kecepatan rata-rata mobil tetap karena setiap $10$ menit jarak tempuhnya adalah $12$ km.
Kecepatan rata-rata adalah
$\begin{align}
V & = \dfrac{jarak}{waktu} \\
& = \dfrac{12\ km}{10\ menit} \\
& = \dfrac{12\ km}{\dfrac{10}{60}\ jam} \\
& = 12 \times \dfrac{60}{10} \dfrac{km}{jam} \\
& = 72 \dfrac{km}{jam}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C).\ 72 \dfrac{km}{jam}$

31. Hasil $^{2}\textrm{log}\ 1024\ - ^{3}\textrm{log}\ 729=\cdots$
$\begin{align}
(A).\ & 2 \\
(B).\ & 3 \\
(C).\ & 4 \\
(D).\ & 5
\end{align}$
Alternatif Pembahasan:

Hint

Dengan menggunakan sifat-sifat logaritma kita peroleh:
$\begin{align}
^{a}\textrm{log}\ a^{n} & = n \\
^{2}\textrm{log}\ 1024 & = ^{2}\textrm{log}\ 2^{10} \\
& =10 \\
^{3}\textrm{log}\ 729 & = ^{3}\textrm{log}\ 3^{6} \\
&=6
\end{align}$
Hasil $^{2}\textrm{log}\ 1024 - ^{3}\textrm{log}\ 729=10-6=4$

$\therefore$ Pilihan yang sesuai adalah $(C).\ 4$

32.
Luas tembereng yang diarsir adalah...
$\begin{align}
(A).\ & 126\ cm^{2} \\
(B).\ & 128\ cm^{2} \\
(C).\ & 132\ cm^{2} \\
(D).\ & 154\ cm^{2}
\end{align}$
Alternatif Pembahasan:

Hint

Jika kita perhatikan Luas tembereng yang diarsir adalah luas seperempat lingkaran dikurang luas segitiga $AOB$, yaitu:
Luas seperempat lingkaran dengan $r=21$ dan $\pi=\dfrac{22}{7}$
$\begin{align}
L & = \dfrac{1}{4} \pi\ r^{2} \\
& = \dfrac{1}{4} \times \dfrac{22}{7} \times 21^{2} \\
& = \dfrac{1}{2} \times \dfrac{11}{7} \times 21 \times 21 \\
& = \dfrac{1}{2} \times \dfrac{11}{1} \times 3 \times 21 \\
& = \dfrac{21}{2} \times 33
\end{align}$

Luas segitiga dengan $a=21$ dan $t=21$ adalah $\dfrac{1}{2} (21)(21)=\dfrac{21}{2} \times 21$
Luas tembereng adalah
$\dfrac{21}{2} \times 33 - \dfrac{21}{2} \times 21$
$=\dfrac{21}{2}(33-21)$
$=\dfrac{21}{2}(12)$
$=\dfrac{21}{1}(6)=126$

$\therefore$ Pilihan yang sesuai adalah $(A).\ 126\ cm^{2}$

33. Kolam renang berukuran panjang $50\ m$ dan lebar $16\ m$. Kedalaman air pada ujung yang dangkal $1\ m$ terus melandai hingga pada ujungnya yang dalam $3\ m$ seperti tampak pada gambar di bawah ini...
Volume air di dalam kolam adalah...
$\begin{align}
(A).\ & 800\ m^{3} \\
(B).\ & 1.600\ m^{3} \\
(C).\ & 2.400\ m^{3} \\
(D).\ & 3.200\ m^{3}
\end{align}$
Alternatif Pembahasan:

Hint

Jika kita perhatikan gambar, kolam berbentuk seperti sebuah prisma sehingga volume bisa kita hitung dengan luas alas kali tinggi, dimana tingginya sudah diketahui yaitu $16\ m$.

Luas alas berupa segiempat $(1\ m \times 50\ m)$ dan segitiga $(\dfrac{1}{2} \times 50\ m \times 2\ m)$. Sehingga luas alas total adalah $50\ m^{2} + 50\ m^{2} =100\ m^{2}$.

Volume kolam adalah $100\ m^{2} \times 16\ m =1600\ m^{3}$.

$\therefore$ Pilihan yang sesuai adalah $(B).\ 1600\ m^{3}$

34.
Empat macam rangkaian enam bujur sangkar di atas, yang merupakan jaring-jaring kubus adalah...
$\begin{align}
(A).\ & (1)\ \text{dan}\ (2) \\
(B).\ & (1)\ \text{dan}\ (3) \\
(C).\ & (1)\ \text{dan}\ (4) \\
(D).\ & (2)\ \text{dan}\ (3)
\end{align}$
Alternatif Pembahasan:

Hint

Jika dicoba merangkai jaring-jaring diatas menjadi sebuah kubus yang memungkinkan adalah jaring-jaring nomor $(1)$ dan $(3)$.

$\therefore$ Pilihan yang sesuai adalah $(B).\ (1)\ \text{dan}\ (3)$

35. Perhatikan gambar di bawah ini!
Diketahui persegi $ABCD$ dan persegipanjang $PQRS$. Jika keliling persegi panjang sama dengan dua kali keliling persegi, maka panjang sisi persegi adalah...
$\begin{align}
(A).\ & 12\ cm \\
(B).\ & 9\ cm \\
(C).\ & 8\ cm \\
(D).\ & 6\ cm
\end{align}$
Alternatif Pembahasan:

Hint

Kita misalkan panjang sisi persegi $ABCD$ adalah $x$ sehingga kelilingnya adalah $4x$.

Keliling $PQRS$ adalah $2 \times 9+2 \times 15=48$

Jika keliling persegi panjang sama dengan dua kali keliling persegi, maka
$\begin{align}
2(4x) & = 48 \\
8x & = 48 \\
x & = \dfrac{48}{8} \\
x & = 6
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D).\ 6\ cm$

36. Dari gambar di bawah huruf-huruf yang hanya memiliki simetri lipat saja adalah huruf nomor...
$\begin{align}
(A).\ & (I)\ \text{dan}\ (II) \\
(B).\ & (I)\ \text{dan}\ (III) \\
(C).\ & (II)\ \text{dan}\ (III) \\
(D).\ & (I)\ \text{dan}\ (IV)
\end{align}$
Alternatif Pembahasan:

Hint

Dari gambar yang ditampilkan, huruf-huruf yang hanya memiliki simetri lipat adalah huruf $K$ dan $E$, karena huruf $H$ dan $O$ juga memiliki simetri putar.

$\therefore$ Pilihan yang sesuai adalah $(C).\ (II)\ \text{dan}\ (III)$

37. TAbel berikut menunjukkan nilai ulangan Matematika dari sekelompok siswa:
Nilai Frekuensi
4 3
5 8
6 10
7 11
8 2
Median dari nilai ulangan Matematika tersebut adalah...
$\begin{align}
(A).\ & 6 \\
(B).\ & 6,375 \\
(C).\ & 6,5 \\
(D).\ & 7
\end{align}$
Alternatif Pembahasan:

Hint

Median adalah nilai tengah setelah diurutkan dari yang terkecil sampai yang terbesar.
Jumlah frekuensi adalah $3+8+10+11+6+2=40$, sehingga median adalah datum ke-$\dfrac{40+1}{2}=20,5$.
Datum ke-$20$ adalah $6$ dan datum ke-$21$ adalah $6$ sehingga mediannya datum ke-$20,5$ adalah $\dfrac{6+6}{2}=6$

$\therefore$ Pilihan yang sesuai adalah $(A).\ 6$

38. Gradien garis singgung yang mempunyai persamaan $7x-4y+9=0$ adalah...
$\begin{align}
(A).\ & -\dfrac{9}{7} \\
(B).\ & \dfrac{4}{7} \\
(C).\ & \dfrac{7}{4} \\
(D).\ & \dfrac{9}{4}
\end{align}$
Alternatif Pembahasan:

Hint

Persamaan garis umumnya dituliskan dalam bentuk $ax+by=c$ atau $y=mx+n$, kedua bentuk itu sebenarnya sama jika kita lakukan sedikit manipulasi aljabar.

Saat $ax+by=c$ atau $ax+by+c=0$ maka gradiennya adalah $m=-\dfrac{a}{b}$
Saat $y=ax+b$ maka gradiennya adalah $m=a$

Persamaan $7x-4y+9=0$ maka gradiennya adalah $m=-\dfrac{7}{-4}=\dfrac{7}{4}$

$\therefore$ Pilihan yang sesuai adalah $(C).\ \dfrac{7}{4}$

39. Ketika berada di atas gedung, Wira melihat sebuah mobil yang berada di tempat parkir dengan sudut depresi $30^{\circ}$. Jika tinggi gedung $20\ m$, jarak mobil dengan gedung adalah...
$\begin{align}
(A).\ & 20\sqrt{3}\ \text{meter} \\
(B).\ & 20\ \text{meter} \\
(C).\ & 10\sqrt{3}\ \text{meter} \\
(D).\ & 10\ meter
\end{align}$
Alternatif Pembahasan:

Hint

Dengan menggunakan perbandingan trigonometri, dan gambar posisi Wira dengan mobil kurang lebih seperti berikut ini;

Dari gambar posisi Wira diatas (*tinggi Wira kita abaikan karena tidak ada disinggung), bisa kita simpulkan;
$\begin{align}
tan\ 60^{\circ} & =\dfrac{jarak}{tinggi} \\
\sqrt{3} & =\dfrac{jarak}{20} \\
20\sqrt{3} & =jarak \\
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(A).\ 20\sqrt{3}\ \text{meter}$

40. Bentuk baku dari $0,00003468$ dengan pembulatan sampai satu tempat desimal adalah...
$\begin{align}
(A).\ & 3,5 \times 10^{-5} \\
(B).\ & 3,4 \times 10^{-5} \\
(C).\ & 3,5 \times 10^{-6} \\
(D).\ & 3,4 \times 10^{-6} \\
\end{align}$
Alternatif Pembahasan:

Hint

Penulisan bilangan berpangkat dalam bentuk baku (notasi ilmiah) yang sudah diakui tingkat internasional adalah $a \times 10^{n}$ dimana $1 \lt a \lt 10 $.

Untuk $0,00003468=3,468 \times 10^{-5}$.
Pembulatan sampai satu tempat desimal adalah $3,5 \times 10^{-5}$

$\therefore$ Pilihan yang sesuai adalah $(A).\ 3,5 \times 10^{-5}$


Silahkan dowload soal Matematika Soal Seleksi Akademik masuk Asrama Yayasan Soposurung SMAN 2 Balige Tahun 2007.

Semoga Bermanfaat, soal-soal dan pembahasan Matematika Soal Seleksi Akademik masuk Asrama Yayasan Soposurung SMAN 2 Balige Tahun 2007 di atas masih jauh dari sempurna, jadi jika ada masukan yang sifatnya membangun terkait masalah alternatif penyelesaian atau request pembahasan soal, silahkan disampaikan, kami dengan senang hati segera menanggapinya 😊😊

Video pilihan khusus untuk Anda 😊 Cara Pilar (Pintar Bernalar) Pembagian Pecahan Tanpa Diubah Jadi Perkalian;

You Might Also Like: