Gk7qp1DNYQGDurixnE7FWT3LyBvSK3asrvqSm057
Bookmark

100+ Soal dan Pembahasan Teori Peluang Matematika SMA (41-80)

belajar matematika SMA dari Soal dan Pembahasan Matematika Dasar Teori Peluang

The good student, catatan calon guru berikut belajar matematika SMA dari Soal dan Pembahasan Matematika Dasar Teori Peluang. Sebelum belajar matematika dasar teori peluang ini, ada baiknya kita sudah sedikit paham tentang kaidah pencacahan (aturan penjumlahan, aturan perkalian, permutasi dan kombinasi), karena ini adalah salah satu syarat perlu, agar lebih baik dalam belajar teori peluang.

Penerapan teori peluang dalam kehidupan sehari-hari juga sangat banyak, diantaranya kita dapat menafsir hasil dari berbagai kejadian yang belum terjadi, meskipun kebenaran hasil tidak pasti tetapi teori peluang menjadi pedoman dalam menarik sebuah kesimpulan.

Mempelajari dan menggunakan aturan-aturan pada teori peluang tidaklah sulit, jika Anda mengikuti step by step pembahasan soal yang kita diskusikan di bawah ini, maka anda dapat memahami soal-soal teori peluang dan menemukan solusinya.

Secara formal (matematis) peluang munculnya suatu peristiwa dalam suatu eksperimen didefinisikan (disepakati) adalah:
Peluang munculnya suatu peristiwa dalam suatu eksperimen (percobaan acak) adalah nilai frekuensi relatif munculnya peristiwa tersebut jika banyaknya eksperimen tak terhingga

Pada beberapa buku disebutkan juga bahwa Peluang adalah suatu nisbah yang digunakan untuk menyatakan besarnya kemungkinan bahwa suatu kejadian akan terjadi. Contohnya ialah peluang bahwa angka tertentu akan muncul bila kita melemparkan sebuah dadu. Nisbah ini dinyatakan dengan bilangan pecahan, yaitu jumlah kemungkinan bahwa kejadian tertentu akan terjadi dibagi dengan jumlah semua kejadian yang mungkin terjadi.

Hitung peluang dinamakan juga probabilitas Nilai probabilitas biasanya diwakili oleh bilangan antara $0$ dan $1$, nilai $0$ menunjukkan bahwa suatu kejadian tidak akan pernah terjadi, sedangkan nilai $1$ menunjukkan bahwa suatu kejadian pasti akan terjadi. Probabilitas dari $7$ dari $10$ biasanya ditulis sebagai $0,7$ atau $70 \%$.

Banyak peneliti dalam bidang sains dan perindustrian menggunakan perhitungan probabilitas berdasarkan hasil-hasil di masa lalu untuk memprediksi masa depan dan perencanaan yang akan datang dilakukan di masa yang akan datang.

Berikut sekedar untuk mengngatkan kita tambahkan beberapa teorema dasar pada teori peluang, yang mungkin berguna untuk menyelesaikan soal-soal yang berkaitan dengan teorema peluang.


Langkah-langkah Menentukan Peluang Suatu Kejadian

  1. Daftar himpunan semua hasil yang mungkin (ruang sampel) dari percobaan $(S)$, kemudian tentukan banyak anggota ruang sampel $n(S)$
  2. Daftar himpunan semua hasil yang diharapkan dari sebuah kejadian $(E)$, kemudian tentukan banyak anggota $n(E)$
  3. Hitung Peluang kejadian $E$
    $P(E)\ = \dfrac{n(E)}{n(S)}$

Kisaran Nilai Peluang

\begin{array} \\ 0 \leq n(E) \leq n(S) & \\ \dfrac{0}{n(S)} \leq \dfrac{n(E)}{n(S)} \leq \dfrac{n(S)}{n(S)} & \\ 0 \leq P(E) \leq 1 & \\ \end{array}


Peluang Kejadian Komplemen

Suatu kejadian $E$ dan kejadian komplemennya $E'$ memenuhi persamaan $P(E)+P(E')=1$ atau $P(E')=1-P(E)$


Frekuensi Harapan Peluang Kejadian

$f_{h}(E)= n\ \cdot P(E) $
dimana:
$\begin{align} f_{h} (E)\ &: \text{Frekuensi harapan kejadian}\ E \\ P(E)\ &: \text{Peluang kejadian}\ E \\ n\ & : \text{Banyak percobaan} \end{align}$

Silahkan disimak juga catatan Teori Peluang Suatu Kejadian dan Cara Menggunakannya Menyelesaikan Soal Matematika yang khusus membahas Frekuensi harapan suatu kejadian, Peluang Kejadian dan Langkah-langkah Menentukan Peluang Suatu Kejadian.


Penjumlahan Peluang

  1. Dua kejadian $A$ dan $B$ saling lepas jika tidak ada satupun elemen $A$ sama dengan elemen $B$.
    Untuk dua kejadian saling lepas, peluang salah satu $A$ atau $B$ terjadi ditulis $P(A \cup B)$, dimana $P(A \cup B)=P(A)+P(B)$.
  2. Dua kejadian $A$ dan $B$ tidak saling lepas jika ada elemen $A$ sama dengan elemen $B$.
    Untuk dua kejadian tidak saling lepas, peluang salah satu $A$ atau $B$ terjadi ditulis $P(A \cup B)$, dimana $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.

Perkalian Peluang

  1. Dua kejadian $A$ dan $B$ saling bebas jika munculnya kejadian $A$ tidak mempengaruhi peluang kejadian $B$. Untuk $A$ dan $B$ saling bebas, peluang bahwa $A$ dan $B$ terjadi bersamaan ditulis $P(A \cap B)$, dimana $P(A \cap B)=P(A) \cdot P(B)$.
    Jika dua kejadian $A$ dan $B$ tidak saling bebas maka $P(A \cap B) \neq P(A) \cdot P(B)$.
  2. Jika munculnya kejadian $A$ mempengaruhi peluang munculnya kejadian $B$ atau sebaliknya, $A$ dan $B$ adalah kejadian bersyarat.
    #$P(A|B)$ adalah peluang $A$ dengan syarat $B$ sudah terjadi
    $P(A|B) = \dfrac{P(A \cap B)}{P(B)}$
    #$P(B|A)$ adalah peluang $B$ dengan syarat $A$ sudah terjadi
    $P(B|A) = \dfrac{P(A \cap B)}{P(A)}$

Silahkan disimak juga catatan Teori Peluang Kejadian Majemuk dan Cara Menggunakannya Menyelesaikan Soal Matematika yang khusus membahas Kejadian Majemuk (Kejadian Saling Lepas, Kejadian Saling Bebas dan Kejadian Bersyarat).


Soal dan Pembahasan Matematika SMA Teori Peluang

Catatan matematika tentang soal dan pembahasan Teori Peluang ini kita bagi menjadi tiga catatan, agar dapat dicoba dan dipelajari secara optimal.

Soal-soal latihan teori peluang berikut ini kita pilih secara acak dari soal-soal Ujian Nasional atau seleksi masuk perguruan tinggi negeri atau sekolah kedinasan, silahkan dikerjakan terlebih dahulu secara mandiri sebelum membuka buku atau sumber lain untuk melihat pembahasan soal. Setelah selesai silahkan Periksa Jawaban dan jika hasilnya belum memuaskan, pilih ⟳ Ulangi Tes untuk tes ulang. Ayo Tunjukkan Kemampuan Terbaikmu!

TKA Matematika SMA
Nama Peserta :
Tanggal Tes :
Jumlah Soal :50 soal
Petunjuk Pengerjaan Soal:
Bentuk soal pilihan ganda, pilihlah jawaban yang benar di antara pilihan jawaban yang tersedia. Apabila Kamu merasa terdapat lebih dari satu jawaban yang benar, maka pilihlah yang paling benar.

41. Soal SNMPTN 2011 Kode 591 🔗

Diketahui segilima $ABCDE$, dengan $A(0,2)$, $B(4,0)$, $C(2 \pi + 1,0)$, $D(2 \pi + 1,4)$, dan $E(0,4)$. Titik $P$ dipilih secara acak dari titik di dalam segilima tersebut. Peluang sudut $APB$ berukuran tumpul adalah...
Alternatif Pembahasan:

Titik $P$ dipilih secara acak dari dalam segilima $ABCDE$ sehingga dapat kita simpulkan luas segilima $ABCDE$ merupakan $n(S)$.

Titik  $P$  dipilih secara acak dari titik di dalam segilima tersebut. Peluang sudut  $APB$  berukuran tumpul adalah...
$\begin{align}
n(S)\ & = \left[ ABCDE \right] \\ & = \left[ OCDE \right] - \left[ OBA \right] \\ & = \left( 4 \right) \left( 2\pi+1 \right) - \dfrac{1}{2} \cdot 2 \cdot 4 \\ & = 8 \pi+ 4 - 4 = 8 \pi
\end{align}$

Jika kita anggap $AB$ adalah diameter lingkaran dengan jari-jari $r=\dfrac{1}{2}AB$
$\begin{align}
r\ & = \dfrac{1}{2}\sqrt{OA^{2}+OB^{2}} \\ & = \dfrac{1}{2}\sqrt{2^{2}+4^{2}} \\ & = \dfrac{1}{2}\sqrt{20}=\sqrt{5}
\end{align}$
Jika titik $P$ tepat berada pada lingkaran maka kita peroleh sudut $\angle APB=90^{\circ}$.
Titik  $P$  dipilih secara acak dari titik di dalam segilima tersebut. Peluang sudut  $APB$  berukuran tumpul adalah...

Dari apa yang kita peroleh pada gambar di atas, titik $P$ tepat berada pada lingkaran sudut $\angle APB=90^{\circ}$. Agar besar sudut $APB \gt 90^{\circ}$ maka titik $P$ harus berada dalam lingkaran.

Jika titik $P$ berada dalam lingkaran maka $APB \gt 90^{\circ}$, sehingga dapat kita simpulkan $n(E)$ adalah luas setengah lingkaran dengan jari-jari $\sqrt{5}$.
$\begin{align}
n (E)\ & = \dfrac{1}{2} \cdot \pi\ r^{2} \\ & = \dfrac{1}{2} \cdot \pi\ \left( \sqrt{5} \right)^{2} \\ & = \dfrac{5}{2} \pi
\end{align}$

Peluang sudut $APB \gt 90^{\circ}$ adalah:
$\begin{align}
P (E)\ & = \dfrac{n(E)}{n(S)} \\ & = \dfrac{\dfrac{5}{2} \pi}{8 \pi} = \dfrac{5}{16}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D)\ \frac{5}{16}$

42. Soal SNMPTN 2011 Kode 659 🔗

Ada $5$ orang, $2$ diantaranya adik kakak, duduk secara acak pada $5$ kursi yang berderet. Peluang adik kakak duduk berdampingan adalah...
Alternatif Pembahasan:

$(S):$ Lima orang duduk berderet secara bebas,
$\begin{array}{c|c|c|c|cc}
A_{1} & A_{2} & A_{3} & A_{4} & A_{5}\\ \hline
(5) & (4) & (3) & (2) & (1) \end{array} $
Banyak posisi duduk adalah $n(S)=5! =120$

$(E):$ Dua orang (kakak adik) selalu duduk berdampingan, untuk membuat kakak adik selalu duduk berdampingan maka kakak adik kita angggap "$1$". Karena kakak adik sudah kita anggap "$1$", maka banyak yang akan duduk menjadi "$4$" orang,
$\begin{array}{c|c|c|cc}
A_{1} & A_{2} & A_{3} & A_{4} \\ \hline
(4) & (3) & (2) & (1) \end{array} $
Posisi duduk di atas dikalikan dengan $2!$ karena kakak adik dalam posisi berdekatan masih dapat bertukar tempat duduk sebanyak $2!$ cara.
Banyak posisi duduk adalah $n(E)=4! \times 2! = 48$,

Peluang adik kakak duduk berdampingan,
$ \begin{align} P(E) & = \dfrac{n(E)}{n(S)} \\ & = \dfrac{48}{120} = \dfrac{2}{5}
\end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ \frac{2}{5}$

43. Soal SNMPTN 2011 Kode 523 🔗

Dari $10$ orang, terdiri atas $6$ laki-laki dan $4$ wanita, akan dipilih $3$ orang untuk menjadi ketua, sekretaris, dan bendahara suatu organisasi. Peluang terpilih ketua laki-laki atau sekretaris wanita adalah...
Alternatif Pembahasan:

$(S):$ Sepuluh orang akan menjadi ketua, sekretaris dan bendahara,
$\begin{array}{c|c|cc}
ketua & sekretaris & bendahara \\ \hline
(10) & (9) & (8) \end{array} $
Banyak susunan pengurus organisasi adalah $10 \cdot 9 \cdot 8 = 720$

$(A):$ pengurus organisasi ketua laki-laki,
$\begin{array}{c|c|cc}
ketua & sekretaris & bendahara \\ \hline
(6) & (9) & (8) \end{array} $
Banyak susunan pengurus organisasi $n(A)=6 \cdot 9 \cdot 8 = 432$

$(B):$ pengurus organisasi sekretaris wanita,
$\begin{array}{c|c|cc}
ketua & sekretaris & bendahara \\ \hline
(9) & (4) & (8) \end{array} $
Banyak susunan pengurus organisasi $n(B)=9 \cdot 4 \cdot 8 = 288$

$(A \cap B):$ pengurus organisasi ketua laki-laki dan sekretaris wanita,
$\begin{array}{c|c|cc}
ketua & sekretaris & bendahara \\ \hline
(6) & (4) & (8) \end{array} $
Banyak susunan pengurus organisasi $n(A \cap B)=6 \cdot 4 \cdot 8 = 192$

Peluang ketua laki-laki atau sekretaris perempuan,
$\begin{align}
P (A \cup B)\ & = P(A)+P(B)- P(A \cap B)\\ & = \dfrac{n(A)}{n(S)}+\dfrac{n(B)}{n(S)}- \dfrac{n(A \cap B)}{n(S)}\\ & = \dfrac{432}{720}+\dfrac{288}{720}- \dfrac{192}{720}\\ & = \dfrac{528}{720}= \dfrac{11}{15}
\end{align}$

$\therefore$ Pilihan yang sesuai $(D)\ \frac{11}{15}$

44. Soal SNMPTN 2012 Kode 631 🔗

Di dalam kotak terdapat $3$ bola biru, $4$ bola merah, dan $2$ putih. Jika diambil $7$ bola tanpa pengembalian, maka peluang banyak bola merah yang terambil dua kali banyak bola putih yang terambil adalah...
Alternatif Pembahasan:

Pada soal disampaikan $7$ bola diambil sekaligus dari $9$ bola, sehingga:
$\begin{align}
n(S) & = C(9,7) \\ C(n,r) & =\dfrac{n!}{r!(n-r)!} \\ C(9,7) & = \dfrac{9!}{7!(9-7)!} \\ & = \dfrac{9!}{7!(2)!} \\ & = \dfrac{9 \cdot 8 \cdot 7!}{7!(2)!} =36
\end{align}$

Kejadian yang diharapkan terjadi adalah banyak bola merah yang terambil dua kali banyak bola putih, sehingga banyak bola yang mungkin terambil adalah $2$ putih, $4$ merah dan $1$ biru.
$\begin{align}
n(E) & = C(2,2) \cdot C(4,4) \cdot C(3,1) \\ & = 1 \cdot 1 \cdot 3 \\ & = 1
\end{align}$

Peluang banyak bola merah yang terambil dua kali banyak bola putih,
$ \begin{align} P(E) & = \dfrac{n(E)}{n(S)} \\ & = \dfrac{3}{36} = \dfrac{1}{12}
\end{align}$

$\therefore$ Pilihan yang sesuai $(B)\ \frac{1}{12}$

45. Soal SBMPTN 2013 Kode 338 🔗

Enam anak, $3$ laki-laki dan $3$ perempuan, duduk berjajar. Peluang $3$ perempuan duduk berdampingan adalah...
Alternatif Pembahasan:

$(S):$ Enam orang duduk berderet secara bebas,
$\begin{array}{c|c|c|c|c|cc}
A_{1} & A_{2} & A_{3} & A_{4} & A_{5} & A_{6}\\ \hline
(6) & (5) & (4) & (3) & (2) & (1) \end{array} $
Banyak posisi duduk adalah $n(S)=6! =720$

$(E):$ Tiga orang (perempuan) selalu duduk berdampingan, untuk membuat perempuan selalu duduk berdampingan maka perempuan kita angggap "$1$". Karena perempuan sudah kita anggap "$1$", maka banyak yang akan duduk menjadi "$4$" orang,
$\begin{array}{c|c|c|cc}
A_{1} & A_{2} & A_{3} & A_{4} \\ \hline
(4) & (3) & (2) & (1) \end{array} $
Posisi duduk di atas dikalikan dengan $3!$ karena perempuan dalam posisi berdekatan masih dapat bertukar tempat duduk sebanyak $3!$ cara.
Banyak posisi duduk adalah $n(E)=4! \times 3! = 144$,

Peluang perempuan duduk berdampingan,
$ \begin{align} P(E) & = \dfrac{n(E)}{n(S)} \\ & = \dfrac{144}{720} = \dfrac{1}{5}
\end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ \frac{1}{5}$

46. Soal SNMPTN 2012 Kode 832 🔗

Diberikan suku banyak $p(x)=x^{2}+bx+a$. Jika $a$ dan $b$ dipilih secara acak dari selang $\left[0,3 \right]$, maka peluang persamaan suku banyak tersebut tidak mempunyai akar adalah...
Alternatif Pembahasan:

Pada soal disampaikan peluang persamaan suku banyak tersebut tidak mempunyai akar, kita sepakati yang dimaksud disini tidak memiliki akar adalah tidak memiliki akar real.

Suku banyak $p(x)=x^{2}+bx+a$ dan $a,b$ dipilih secara acak dari selang $\left[0,3 \right]$, jika kita misalkan pada koordinat cartesius $x=b$ dan $y=a$ maka ruang sampel $a,b$ dipilih secara acak dari selang $\left[0,3 \right]$ adalah seperti gambar berikut ini:

maka peluang persamaan suku banyak tersebut tidak mempunyai akar adalah...
Ruang sampel adalah daerah seperti gambar di atas, sehingga $n(s)=3 \cdot 3 =9$ dalam satuan luas.

Kejadian yang diharapkan adalah persamaan suku banyak $p(x)=x^{2}+bx+a$ tidak mempunyai akar real, sehingga syarat yang harus dipenuhi adalah:
$\begin{align}
D & \lt 0 \\ b^{2}-4ac & \lt 0 \\ b^{2}-4(1)(a) & \lt 0 \\ b^{2}-4a & \lt 0 \\ b^{2} & \lt 4a \\ \dfrac{1}{4}b^{2} & \lt a
\end{align}$

Seperti pemisalan diawal, $x=b$ dan $y=a$ sehingga $\dfrac{1}{4}b^{2} \lt a$ jika kita gambarkan dalam koordinat kartesius menjadi $\dfrac{1}{4}x^{2} \lt y$ daerahnya seperti berikut:
maka peluang persamaan suku banyak tersebut tidak mempunyai akar adalah...

Jika kita menggabungkan gambar yang pertama $n(S)$ dan gambar yang kedua maka kita peroleh luas daerah $n(E)$, seperti berikut:
maka peluang persamaan suku banyak tersebut tidak mempunyai akar adalah...

Kejadian yang diharapkan terjadi adalah irisan gambar pertama dan kedua:
$\begin{align}
n(E) & = 9 - \int \limits_{0}^{3} \dfrac{1}{4}x^{2}\ dx \\ & = 9 - \left[ \dfrac{1}{12}x^{3} \right]_{0}^{3} \\ & = 9 - \left[ \dfrac{1}{12}(3)^{3}-\dfrac{1}{12}(0)^{3} \right] \\ & = 9 - \dfrac{9}{4} = \dfrac{27}{4}
\end{align}$

Peluang persamaan suku banyak $p(x)=x^{2}+bx+a$ tidak mempunyai akar real,
$ \begin{align} P(E) & = \dfrac{n(E)}{n(S)} \\ & = \dfrac{\dfrac{27}{4}}{9} = \dfrac{27}{36} = \dfrac{3}{4}
\end{align}$

$\therefore$ Pilihan yang sesuai $(B)\ \frac{3}{4}$

47. Soal SBMPTN 2013 Kode 433 🔗

Jika $L(a)$ adalah luas daerah yang dibatasi oleh sumbu-$x$ dan parabola $y=ax+x^{2}$, $0 \lt a \lt 1 $, maka peluang nlai $a$ sehingga $L(a) \geq \dfrac{1}{48}$ adalah...
Alternatif Pembahasan:

Luas daerah yang dibatasi oleh sumbu-$x$ dan parabola $y=ax+x^{2}$ adalah $L(a)$ dipengaruhi perubahan nilai $a$.

Perubahan nilai $a$ pada $y=ax+x^{2}$ juga mengakibatkan perubahan titik potong kurva $y=ax+x^{2}$ terhadap sumbu-$x$, ilustrasinya dapat kita gambarkan seperti berikut ini;

maka Peluang nlai a sehingga  L(a) lebih dari atau sama dengan 1/48 adalah
Karena nilai $0 \lt a \lt 1 $ pada $y=ax+x^{2}$ juga mengakibatkan perubahan titik potong kurva $y=ax+x^{2}$ terhadap sumbu-$x$, sehingga untuk menentukan peluang nilai $a$ dapat kita pakai $n(S)$ adalah nilai $0 \lt a \lt 1 $ atau $-1 \lt a \lt 0 $

Jika $L(a)=\dfrac{1}{48}$ maka
$\begin{align}
L(a) & = \left| \int \limits_{-a}^{0} x^{2}+ax\ dx \right| \\ \dfrac{1}{48} & = \left| \left[ \dfrac{1}{3}x^{3}+\dfrac{1}{2}ax^{2} \right]_{-a}^{0} \right| \\ \dfrac{1}{6 \cdot 8} & = \left| \left[ \dfrac{1}{3}(0)^{3}+\dfrac{1}{2}a(0)^{2} \right]-\left[ \dfrac{1}{3}(-a)^{3}+\dfrac{1}{2}a(-a)^{2} \right] \right| \\ \dfrac{1}{6} \cdot \dfrac{1}{8} & = \left| \left[ 0 \right]-\left[ -\dfrac{1}{3}(a)^{3}+\dfrac{1}{2}(a)^{3} \right] \right| \\ \dfrac{1}{6} \cdot \left( \dfrac{1}{2} \right)^{3} & = \dfrac{1}{6} \cdot (a)^{3} \rightarrow a = \dfrac{1}{2}
\end{align}$

Nilai $ a= \dfrac{1}{2}$ diperoleh $L(a)=\dfrac{1}{48}$, sehingga untuk nilai $a \geq \dfrac{1}{2}$ kita peroleh $L(a) \geq \dfrac{1}{48}$ ilustrasinya dapat kita gambarkan seperti berikut ini;
maka Peluang nlai a sehingga  L(a) lebih dari atau sama dengan 1/48 adalah

Pada soal diharapkan luas $L(a) \geq \dfrac{1}{48}$ sehingga berdasarkan ilustrasi gambar di atas jika nilai $a$ pada $y=ax+x^{2}$ adalah $1 \lt a \leq \dfrac{1}{2}$ maka luas $L(a) \geq \dfrac{1}{48}$ sehingga $n(E)$ adalah $ -1 \lt x \leq -\dfrac{1}{2}$ atau $\dfrac{1}{2} \lt a \leq 1$

Peluang nlai $a$ sehingga $L(a) \geq \dfrac{1}{48}$,
$ \begin{align} P(E) & = \dfrac{n(E)}{n(S)} \\ & = \dfrac{\dfrac{1}{2} \leq a \lt 1}{0 \lt a \lt 1} \\ & = \dfrac{1-\frac{1}{2}}{1-0} = \dfrac{1}{2}
\end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ \frac{1}{2}$

48. Soal SMPTN 2013 Kode 437 🔗

Jika $L(a)$ adalah luas daerah yang dibatasi oleh sumbu-$x$ dan parabola $y=2ax-x^{2}$, $0 \lt a \lt 1 $, maka peluang nlai $a$ sehingga $\dfrac{1}{48} \leq L(a) \leq \dfrac{9}{16}$ adalah...
Alternatif Pembahasan:

Luas daerah yang dibatasi oleh sumbu-$x$ dan parabola $y=2ax-x^{2}$ adalah $L(a)$ dipengaruhi perubahan nilai $a$.

Perubahan nilai $a$ pada $y=2ax-x^{2}$ juga mengakibatkan perubahan titik potong kurva $y=2ax-x^{2}$ terhadap sumbu-$x$, ilustrasinya dapat kita gambarkan seperti berikut ini;

maka Peluang nlai a sehingga  L(a) lebih dari atau sama dengan 1/48 dan kurang dari atau sama dengan 9/16

Karena nilai $0 \lt a \lt 1 $ pada $y=2ax-x^{2}$ juga mengakibatkan perubahan titik potong kurva $y=2ax-x^{2}$ terhadap sumbu-$x$, sehingga untuk menentukan peluang nilai $a$ dapat kita pakai $n(S)$ adalah nilai $0 \lt x \lt 2 $ atau $0 \lt a \lt 1 $

Jika $L(a)=\dfrac{1}{48}$ maka:
$\begin{align}
L(a) & = \int \limits_{0}^{2a} 2ax-x^{2}\ dx \\ \dfrac{1}{48} & = \left[ ax^{2}-\dfrac{1}{3}x^{3} \right]_{0}^{2a} \\ \dfrac{1}{48} & = \left[ a(2a)^{2}-\dfrac{1}{3}(2a)^{3} \right]-\left[ a(0)^{2}-\dfrac{1}{3}(0)^{3} \right] \\ \dfrac{1}{48} & = \left[ 4a^{3}-\dfrac{8}{3}a^{3} \right]-\left[ 0 \right] \\ \dfrac{1}{48} & = \dfrac{4}{3} \cdot (a)^{3} \\ \dfrac{3}{4} \cdot \dfrac{1}{48} & = (a)^{3} \\ \dfrac{1}{64} & = (a)^{3} \rightarrow a = \dfrac{1}{4}
\end{align}$

Jika $L(a)=\dfrac{9}{16}$ maka:
$\begin{align}
L(a) & = \int \limits_{0}^{2a} 2ax-x^{2}\ dx \\ \dfrac{9}{16} & = \left[ ax^{2}-\dfrac{1}{3}x^{3} \right]_{0}^{2a} \\ \dfrac{9}{16} & = \dfrac{4}{3} \cdot (a)^{3} \\ \dfrac{3}{4} \cdot \dfrac{9}{16} & = (a)^{3} \\ \dfrac{27}{64} & = (a)^{3} \rightarrow a = \dfrac{3}{4}
\end{align}$

Dengan nilai $0 \lt a \lt 1 $, untuk nilai $ a= \dfrac{1}{4}$ diperoleh $L(a)=\dfrac{1}{48}$ dan $ a= \dfrac{3}{4}$ diperoleh $L(a)=\dfrac{9}{16}$, sehingga agar $\dfrac{1}{48} \leq L(a) \leq \dfrac{9}{16}$ diperoleh saat $\dfrac{1}{4} \leq a \leq \dfrac{3}{4}$ ilustrasinya dapat kita gambarkan seperti berikut ini;
maka Peluang nlai a sehingga  L(a) lebih dari atau sama dengan 1/48 dan kurang dari atau sama dengan 9/16

Berdasarkan apa yang kita peroleh di atas, agar luas $\dfrac{1}{48} \leq L(a) \leq \dfrac{9}{16}$ terjadi, maka $n(E)$ adalah $\dfrac{1}{4} \leq a \leq \dfrac{3}{4}$ atau $\dfrac{1}{2} \leq x \leq \dfrac{3}{2}$

Peluang nlai $a$ sehingga $\dfrac{1}{48} \leq L(a) \leq \dfrac{9}{16}$,
$ \begin{align} P(E) & = \dfrac{n(E)}{n(S)} \\ & = \dfrac{\dfrac{1}{4} \leq a \leq \dfrac{3}{4}}{0 \lt a \lt 1} \\ & = \dfrac{\dfrac{3}{4}-\dfrac{1}{4}}{1-0} = \dfrac{1}{2}
\end{align}$

$\therefore$ Pilihan yang sesuai $(B)\ \frac{1}{2}$

49. Soal SBMPTN 2014 Kode 532 🔗

Tujuh anak laki-laki dan tiga perempuan akan duduk berdampingan dalam satu baris. Peluang kedua ujung ditempati anak laik-laki dan tidak ada anak perempuan duduk berdampingan adalah...
Alternatif Pembahasan:

$(S):$ Tujuh anak laki-laki dan tiga perempuan akan duduk berdampingan dalam satu baris,
$\begin{array}{|c|c|c|c|cc|}
A_{10} & A_{9} & \cdots & A_{2} & A_{1}\\ \hline
(10) & (9) & \cdots & (2) & (1) \end{array} $
Banyak posisi duduk adalah $n(S)=10 \cdot 9 \cdots 2 \cdot 1 =10!$

$(E):$ Posisi kedua ujung ditempati anak laki-laki dan tidak ada anak perempuan duduk berdampingan.

  • Posisi duduk untuk yang paling ujung harus laki-laki,
    $\begin{array}{|c| c|cc|}
    L_{7} & \cdots & L_{6}\\ \hline
    (7) & \cdots & (6) \end{array} $
    Banyak posisi duduk adalah $7 \cdot 6$
  • Setelah laki-laki disusun pada kursi yang paling ujung, susunan untuk $8$ posisi yang ditengah, posisi laki-laki bebas dan perempuan tidak boleh berdekatan.

    Agar perempuan tidak ada yang berdekatan, maka satu pasang laki-laki dan perempuan kita anggap "(1)", sehingga susunan posisi duduk yang mungkin adalah:
    $\begin{array}{|c|c|c|c|cc|}
    \left( P_{1}L_{1} \right) & \left( P_{2}L_{2} \right) & \left( P_{3}L_{3} \right) & \left( L_{4} \right) & \left( L_{5} \right) \\ \hline
    \left( L_{1}P_{1} \right) & \left( L_{2}P_{2} \right) & \left( L_{3}P_{3} \right) & \left( L_{4} \right) & \left( L_{5} \right)
    \end{array} $
    Banyak posisi susunan kelompok $\left( PL \right)$, $\left( PL \right)$, $\left( PL \right)$, $\left( L \right)$ dan $\left( L \right)$ adalah $5! \cdot 2$.
  • Banyak kelompok pasangan yang dapat terbentuk dari $3$ perempuan dan $5$ laki-laki adalah:
    $\begin{array}{|c| c|cc|}
    P_{1} & P_{2} & P_{3} \\ \hline
    (5) & (4) & (3) \end{array} $
    Banyak pasangan adalah $5 \cdot 4 \cdot 3=60$
  • Banyak anggota $E$ yang mungkin adalah $n(E)=7 \cdot 6 \cdot 5! \cdot 2 \cdot 60$

Peluang kedua ujung ditempati anak laki-laki dan tidak ada anak perempuan duduk berdampingan,
$ \begin{align} P(E) & = \dfrac{n(E)}{n(S)} \\ & = \dfrac{7 \cdot 6 \cdot 5! \cdot 2 \cdot 60}{10!} \\ & = \dfrac{7 \cdot 6 \cdot 5! \cdot 2 \cdot 60}{10 \cdot 9 \cdot 8 \cdot 7!} \\ & = \dfrac{2 \cdot 60}{10 \cdot 9 \cdot 8} = \dfrac{ 1 }{ 6 }
\end{align}$

$\therefore$ Pilihan yang sesuai $(B)\ \frac{1}{6}$

50. Soal SIMAK UI 2011 Kode 211 🔗

Peluang mendapatkan satu kali jumlah angka $7$ dalam tiga kali pelemparan dua buah dadu adalah...
Alternatif Pembahasan:

Pada pelemparan dua buah dadu banyak hasil yang mungkin adalah $S=\left \{ \left ( 1,1 \right ),\left ( 1,2 \right ), \cdots , \left ( 6,6 \right ) \right \}$, $n \left ( S \right ) =36$.

Kejadian yang diharapakan adalah jumlah mata dadu $7$, $E=\left \{ \left ( 1,6 \right ),\left ( 2,5 \right ), \cdots , \left ( 3,4 \right ),\left ( 4,3 \right ),\left ( 5,2 \right ),\left ( 6,1 \right ) \right \}$, $n \left ( E \right ) =6$

Untuk satu kali pelemparan dua buah dadu berhasil mendapatkan jumlah mata dadu $7$ adalah $P\left ( E \right )=\dfrac{n(E)}{n(S)}=\dfrac{6}{36}=\dfrac{1}{6}$, sedangkan peluang gagal adalah $P\left ( {E}' \right )=1-P\left ( E \right )=\dfrac{5}{6}$

Sehingga untuk mendapatkan satu kali dalam tiga kali pelemparan setidaknya dalam pelemparan terjadi: $L(1)_{\text{Berhasil}}$ dan $L(2)_{\text{Gagal}}$ dan $L(3)_{\text{Gagal}}$ atau $L(1)_{\text{Gagal}}$ dan $L(2)_{\text{Berhasil}}$ dan $L(3)_{\text{Gagal}}$ atau $L(1)_{\text{Gagal}}$ dan $L(2)_{\text{Gagal}}$ dan $L(3)_{\text{Berhasil}}$

Dengan menggunakan teorema peluang, dapat kita tuliskan:
$\begin{align} P \left ( A \right ) &= P \left ( E \right ) P \left ( {E}' \right ) P\left ( {E}' \right ) + P\left ( {E}' \right ) P\left ( E \right ) P\left ( {E}' \right ) + P\left ( {E}' \right ) P\left ( {E}' \right ) P\left ( E \right ) \\ &= \dfrac{1}{6} \cdot \dfrac{5}{6} \cdot \dfrac{5}{6} + \dfrac{5}{6} \cdot \dfrac{1}{6} \cdot \dfrac{5}{6} + \dfrac{5}{6} \cdot \dfrac{5}{6} \cdot \dfrac{1}{6} \\ &= \dfrac{25}{216} + \dfrac{25}{216} + \dfrac{25}{216} \\ &= \dfrac{75}{216} = \dfrac{25}{72} \end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ \frac{25}{72}$

51. Soal SIMAK UI 2011 Kode 318 🔗

Sebuah titik $(x, y)$ dalam bidang koordinat kartesius, di mana $x$ dan $y$ bilangan bulat dengan $\left| x \right| \leq 4$ dan $\left| y \right| \leq 4$, dipilih secara acak. Setiap titik mempunyai peluang yang sama untuk terpilih. Peluang terpilihnya titik yang jaraknya dari titik asal tidak lebih dari $2$ adalah...
Alternatif Pembahasan:

Pada soal disampaikan sebuah titik $(x, y)$ dipilih di mana $x$ dan $y$ bilangan bulat dengan $\left| x \right| \leq 4$ dan $\left| y \right| \leq 4$. Sehingga banyak anggota $x=\left \{ -4,-3, \cdots ,3,4 \right \}$ dan $y=\left \{ -4,-3, \cdots ,3,4 \right \}$.
$n(s)=9 \cdot 9 =81$.

Kejadian yang diharapkan adalah terpilihnya titik yang jaraknya dari titik asal tidak lebih dari $2$, jika kita gambarkan semua titik yang jraknya kurang dari $2$ adalah sebagai berikut:

Setiap titik mempunyai peluang yang sama untuk terpilih. Peluang terpilihnya titik yang jaraknya dari titik asal tidak lebih dari 2 adalah

Untuk $(x,y)$ bilangan bulat ada $13$ titik sehingga $n(E)=13$
Peluang terpilihnya titik yang jaraknya dari titik asal tidak lebih dari $2$,
$ \begin{align} P(E) & = \dfrac{n(E)}{n(S)} \\ & = \dfrac{13}{81}
\end{align}$

$\therefore$ Pilihan yang sesuai $(B)\ \frac{13}{81}$

52. Soal Ujian Nasional 2017 🔗

Dari $500$ bilangan akan dipilih sebuah bilangan. Jika $375$ bilangan diantara bilangan tersebut adalah bilangan kelipatan $3$ dan $275$ bilangan adalah bilangan kelipatan $5$ dan sisanya adalah $40$ bilangan adalah bilangan prima. Berapa peluang yang terambil adalah bilangan kelipatan $5$ juga merupakan kelipatan $3$
Alternatif Pembahasan:

Pada soal disampaikan ada $500$ bilangan, sehingga $n(S)=500$.

Bilangan terdiri dari:

  • $375$ bilangan diantara bilangan tersebut adalah bilangan kelipatan $3$, kita misalkan $n(A)=375$,
  • $275$ bilangan adalah bilangan kelipatan $5$, kita misalkan $n(B)=275$,
  • $40$ bilangan adalah bilangan prima, dapat kita sebut $n{\left ( A \cup B \right )}'=40$.
  • Dari $500$ bilangan, $40$ bilangan adalah prima sehingga banyak bilangan kelipatan $5$ atau $3$ adalah $500-40=460$

Karena ada bilangan kelipatan $3$ juga kelipatan $5$, sehingga $n \left ( A \cap B \right )$ ada, untuk menghitungnya kita pakai bilangan kardinal pada himpunan
$\begin{align}
n \left ( A \cup B \right ) &= n\left ( A \right )+\left ( B \right )-n\left ( A \cap B \right ) \\ 460 &= 375 + 275 - n\left ( A \cap B \right ) \\ n\left ( A \cap B \right ) &= 650 - 460 \\ n\left ( A \cap B \right ) &= 190
\end{align} $

peluang yang terambil adalah bilangan kelipatan $5$ juga merupakan kelipatan $3$
$ \begin{align}
P\left ( A \cap B \right ) & = \dfrac{n\left ( A \cap B \right )}{n(S)} \\ & = \dfrac{190}{500} = \dfrac{19 }{50 }
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(A)\ \frac{19}{50}$

53. Soal Ujian Masuk STIS 2017 🔗

Dari sebuah kotak yang terdapat $4$ bola merah dan $3$ bola biru, dilakukan pengambilan dua bola tanpa pengembalian. Peluang terambil satu bola merah dan satu bola biru adalah...
Alternatif Pembahasan:

Peluang sebuah kejadian dirumuskan $P(E)=\dfrac{n(E)}{n(S)}$
dimana $n(E)$ adalah banyak anggota kejadian yang diharapkan,
$n(S)$ adalah banyak anggota kejadian yang mungkin terjadi.

Pada soal disampaikan bahwa kotak berisi $4$ Bola Merah dan $3$ Bola Biru, dan dua bola diambil tanpa pengembalian, karena tidak disebut bola diambil satu persatau kita anggap bola diambil seklaigus.
Untuk kejadian ini $n(S)$ adalah akan dipilih $2$ dari $7$
$\begin{align}
n(S) & = C_{2}^{7} \\ & = \dfrac{7!}{2!(7-2)!} \\ & = \dfrac{7 \cdot 6 \cdot 5!}{2! \cdot 5!} = 21
\end{align} $

Kejadian yang diharapkan terambil satu bola merah dan satu bola biru,
Untuk $n(E)$ adalah akan dipilih $1$ dari $4$ dan $1$ dari $3$
$ \begin{align}
n(E) & = C_{1}^{4} \cdot C_{1}^{3} \\ & = 4 \cdot 3 = 12
\end{align} $

$ \begin{align}
P(E) & = \dfrac{n(E)}{n(S)} \\ & = \dfrac{12}{21} = \dfrac{4}{7}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D)\ \frac{4}{7}$

54. Soal UM UGM 2006 🔗

Jika $A$ dan $B$ adalah dua kejadian saling bebas. Jika diketahui $P \left( A \right)=\dfrac{1}{3}$ dan $\overline{A} \cup \overline{B} =\dfrac{7}{9}$, maka $P \left( \overline{A} \cap \overline{B} \right)=\cdots$
Alternatif Pembahasan:

Kejadian $A$ dan $B$ adalah dua kejadian saling bebas sehinga berlaku $P \left( A \cap B \right)=P \left( A \right) \cdot P \left( A \right)$

$P \left( A \right)=\dfrac{1}{3}$ maka $P \left( \overline{A} \right)=\dfrac{2}{3}$
$\begin{align}
P \left( \overline{A} \cup \overline{B} \right ) &= P \left( \overline{A} \right ) + P \left( \overline{B} \right ) - P \left( \overline{A} \cap \overline{B} \right ) \\ \dfrac{7}{9} &= \dfrac{2}{3} + P \left( \overline{B} \right ) - P \left( \overline{A} \cap \overline{B} \right ) \\ \dfrac{7}{9} - \dfrac{2}{3} &= P \left( \overline{B} \right ) - P \left( \overline{A} \right ) \cdot P \left( \overline{B} \right ) \\ \dfrac{7}{9} - \dfrac{6}{9} &= P \left( \overline{B} \right ) \cdot \left( 1- P \left( \overline{A} \right ) \right ) \\ \dfrac{1}{9} &= P \left( \overline{B} \right ) \cdot \dfrac{1}{3} \\ \dfrac{1}{3} &= P \left( \overline{B} \right )
\end{align} $

$ \begin{align}
P \left( \overline{A} \cap \overline{B} \right) &= P \left( \overline{A} \right) \cdot P \left( \overline{B} \right) \\ &= \dfrac{2}{3} \cdot \dfrac{1}{3}=\dfrac{2}{9}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(B)\ \frac{2}{9}$

55. Soal UM UGM 2014 🔗

Peluang Ali, Budi, dan Dian lulus "UGM" masing-masing adalah $0,7$; $0,8$, dan $0,9$. Peluang lulus hanya satu orang diantara tiga orang tersebut adalah...
Alternatif Pembahasan:

Diketahui pada soal peluang Ali, Budi, dan Dian lulus yaitu:

  • Peluang Ali lulus $P(A)=0,7$ sehingga Peluang Ali tidak lulus $P(\overline{A})=1-0,7=0,3$
  • Peluang Budi lulus $P(B)=0,8$ sehingga Peluang Budi tidak lulus $P(\overline{B})=1-0,8=0,2$
  • Peluang Dian lulus $P(D)=0,9$ sehingga Peluang Dian tidak lulus $P(\overline{D})=1-0,9=0,1$

Kejadian $(E)$ yang diharapkan terjadi adalah hanya satu orang yang lulus, sehingga kemungkinannya adalah Ali lulus, Budi tidak dan Dian tidak atau Ali tidak, Budi lulus dan Dian tidak atau Ali tidak, Budi tidak dan Dian lulus.

$\begin{align}
P \left( E \right ) &= P \left( A \right ) P \left( \overline{B} \right ) P \left( \overline{D} \right ) + P \left( \overline{A} \right ) P \left( B \right ) P \left( \overline{D} \right ) +P \left( \overline{A} \right ) P \left( \overline{B} \right ) P \left( D \right ) \\ &= 0,7 \cdot 0,2 \cdot 0,1 + 0,3 \cdot 0,8 \cdot 0,1 +0,3 \cdot 0,2 \cdot 0,9 \\ &= 0,014 + 0,024 + 0,054 \\ &= 0,092
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(B)\ 0,092$

56. Soal OSK Matematika SMP 2009 🔗

Misalkan $S= \{21,22,23,...,29,30 \}$. Jika empat anggota $S$ diambil secara acak, maka peluang terambilnya empat bilangan yang berjumlah genap adalah...
Alternatif Pembahasan:

Dari anggota himpunan $S= \{21,22,23,...,29,30 \}$ jika diambil $4$ bilangan maka $n(S)=C(10,4)=\dfrac{10!}{4! \cdot (10-4)!}=210$.

Kejadian $(E)$ yang menghasilkan bilangan genap adalah:

  • $A:$ Empat bilangan genap dari bilangan genap yang ada $\{22,24,26,28,30 \}$ $n(A)=C(5,4)=\dfrac{5!}{4! \cdot (5-4)!}=5$
  • $B:$ Empat bilangan ganji dari bilangan ganjil yang ada $\{21,23,25,27,29 \}$ $n(B)=C(5,4)=\dfrac{5!}{4! \cdot (5-4)!}=5$
  • $C:$ Dua bilangan ganjil dari bilangan ganjil yang ada dan Dua bilangan genap dari bilangan genap yang ada $n(C)=C(5,2) \cdot C(5,2)=10 \cdot 10 =100$
  • Total banyak anggota $n(E)=5+5+100=110$

Peluang terambilnya empat bilangan yang berjumlah genap,
$\begin{align}
P \left( E \right ) &= \dfrac{n \left( E \right )}{n \left( S \right )} \\ &= \dfrac{110}{ 210} = \dfrac{11}{ 21}
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(C)\ \frac{11}{21}$

57. Soal OSK Matematika SMP 2009 🔗

Suatu percobaan dilakukan dengan ketentuan sebagai berikut:
  • Pertama kali dilakukan pelemparan sekeping mata uang.
  • Jika dalam pelemparan mata uang muncul sisi gambar, percobaan dilanjutkan dengan pelemparan mata uang. Sedangkan jika muncul sisi angka, percobaan dilanjutkan dengan sebuah dadu bersisi enam.
  • Jika sampai dengan pelemparan mata uang untuk ketiga kalinya selalu muncul gambar, percobaan dihentikan.
  • Jika dalam pelemparan dadu muncul angka genap, pelemparan dihentikan.
  • Jika dalam pelemparan dadu muncul angka ganjil, pelemparan diulang sekali dan selanjutnya pelemparan dihentikan apapun angka yang muncul.
Peluang bahwa dalam percobaan tersebut tidak pernah terjadi pelemparan dadu adalah...
Alternatif Pembahasan:

Pada soal yang diharapkan adalah tidak pernah terjadi pelemparan dadu, sehingga ini terjadi apabila terjadi pada point $(3)$ Jika sampai dengan pelemparan mata uang untuk ketiga kalinya selalu muncul gambar.

Jika pada pelemparan mata uang selalu muncul gambar, maka kejadian yang terjadi adalah:

  • Pada pelemparan pertama muncul gambar $P \left( G_{1} \right)=\dfrac{1}{2}$
  • Pada pelemparan kedua muncul gambar dengan syarat $\left( G_{1} \right)$ sehingga $P \left( G_{2} | G_{1} \right)=\dfrac{1}{2} \cdot \dfrac{1}{2}=\dfrac{1}{4}$
  • Pada pelemparan ketiga muncul gambar dengan syarat $\left( G_{2} \right)$ sehingga $P \left( G_{3} | G_{2} \right)=\dfrac{1}{2} \cdot \dfrac{1}{4}=\dfrac{1}{8}$
Peluang tidak pernah terjadi pelemparan dadu,
$\begin{align}
P \left( E \right ) &= P \left( G_{1} \right) \cdot P \left( G_{2} | G_{1} \right) \cdot P \left( G_{3} | G_{2} \right) \\ &= \dfrac{1}{2} \cdot \dfrac{1}{4} \cdot \dfrac{1}{8} = \dfrac{1}{64}
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(E)\ \frac{1}{64}$

58. Soal UMB-PTN 2012 Kode 270 🔗

Jika sebuah dadu dilempar (ditos) empat kali, maka peluang jumlah mata dadu yang muncul adalah $21$ adalah...
Alternatif Pembahasan:

Pada sebuah dadu bermata enam $S=\{1,2,3,4,5,6\}$ yang dilempar empat kali maka $n(S)=6^{4}$

Kejadian yang diharapkan muncul jumlah mata dadu $21$ maka mata dadu yang kita harapkan muncul dari pelemparan satu sampai empat adalah susunan $\left[6,6,6,3 \right]$, $\left[6,6,5,4 \right]$, atau $\left[6,5,5,5 \right]$

  • Untuk mata dadu $\left[6,6,6,3 \right]$ banyak susunan kemungkinan yang terjadi dapat kita hitung dengan permutasi yang memiliki unsur yang sama.
    $P_{1!,3!}^{4}=\dfrac{4!}{1! \times 3!}=4$.
  • Untuk mata dadu $\left[6,6,5,4 \right]$ banyak susunan kemungkinan yang terjadi dapat kita hitung dengan permutasi yang memiliki unsur yang sama.
    $P_{1!,1!,2!}^{4}=\dfrac{4!}{1! \times 1! \times 2!}=12$.
  • Untuk mata dadu $\left[6,5,5,5 \right]$ banyak susunan kemungkinan yang terjadi dapat kita hitung dengan permutasi yang memiliki unsur yang sama.
    $P_{1!,3!}^{4}=\dfrac{4!}{1! \times 3!}=4$.

Sehingga kita peroleh banyak $n\left( E \right)=4+12+4=20$, dan $P\left( E \right)=\dfrac{n\left( E \right)}{n\left( S \right)}=\dfrac{20}{6^{4}}$

$\therefore$ Pilihan yang sesuai $(D)\ \frac{20}{6^{4}}$

59. Soal SIMAK UI 2010 Kode 204 🔗

Jika $A$ dan $B$ adalah dua kejadian dengan $P \left( A \right) = \dfrac{1}{8}$ dan $P \left( B \right) = \dfrac{1}{2}$ serta $P \left( A \cup B \right) = \dfrac{11}{16}$, maka kejadian $A$ dan $B$ adalah...
Alternatif Pembahasan:

Dari apa yang disampaikan pada soal dapat kita ketahui bahwa $P \left( A \cup B \right) \neq P \left( A \right) + P \left( B \right)$ sehingga $P \left( A \cap B \right)$ mempunyai nilai, yang artinya $A$ dan $B$ adalah dua kejadian yang tidak saling lepas.

Untuk $A$ dan $B$ tidak saling lepas, maka berlaku:
$\begin{align}
P \left( A \cup B \right) &= P \left( A \right ) + P \left( B \right ) - P \left( A \cap B \right ) \\ \dfrac{11}{16} &= \dfrac{1}{8} + \dfrac{1}{2} - P \left( A \cap B \right ) \\ \dfrac{11}{16} &= \dfrac{2}{16} + \dfrac{8}{16} - P \left( A \cap B \right ) \\ \dfrac{11}{16} &= \dfrac{10}{16} - P \left( A \cap B \right ) \\ -\dfrac{ 1}{16} &= P \left( A \cap B \right ) \end{align} $

Nilai $P \left( A \cap B \right )=-\dfrac{ 1}{16}$, sedangkan kisaran nilai peluang adalah $0 \leq P(E) \leq 1$ sehingga kejadian $A$ dan $B$ tidak dapat kita tentukan hubungannya.

$\therefore$ Pilihan yang sesuai adalah $(E)$ tidak dapat ditentukan hubungannya$

60. Soal SIMAK UI 2010 Kode 208 🔗

Peluang Kris mendapat nilai $A$ untuk matematika adalah $0,6$ dan untuk bahasa Inggris $0,7$. Peluang Kris hanya mendapatkan satu nilai $A$ adalah...
Alternatif Pembahasan:

Dari apa yang disampaikan pada soal dapat kita ketahui bahwa Peluang Kris mendapat nilai $A$ untuk matematika adalah $P \left( M \right )=0,6$ sehingga peluang matematika tidak mendapatkan $A$ adalah $P \left( \overline{M} \right )=1-0,6=0,4$. Sedangkan untuk bahasa Inggris $P \left( B \right )=0,7$ dan peluang untuk mendapatkan bukan $A$ adalah $P \left( \overline{B} \right )=1-0,7=0,3$

Agar Kris hanya mendapatkan satu nilai $A$, berarti yang terjadi adalah Kris dapat $A$ pada matematika dan tidak dapat $A$ pada Bahasa Inggris atau Kris tidak dapat $A$ pada matematika dan dapat $A$ pada Bahasa Inggris.

Peluang Kris hanya mendapatkan satu nilai $A$ adalah:
$\begin{align} P \left( E \right ) &= P \left( M \right ) P \left( \overline{B} \right ) + P \left( \overline{M} \right ) P \left( B \right ) \\ &= 0,6 \cdot 0,3 +0,4 \cdot 0,7 \\ &= 0,18 + 0, 28 \\ &= 0,46 \end{align} $

$\therefore$ Pilihan yang sesuai adalah $(E)\ 0,46$

61. Soal SIMAK UI 2010 Kode 207 🔗

Dua buah dadu dilempar secara bersamaan. $x$ adalah angka yang keluar dari dadu pertama, $y$ adalah angka yang keluar dari dadu kedua. Jika $A=\left \{x,y |x+y \lt 2y \lt y + 2x \right \}$, dimana sisa hasil bagi $\left( x + y \right)$ oleh $2$ adalah $0$, maka nilai $P \left(A \right)= \cdots$
Alternatif Pembahasan:

Ruang sampel dari dua buah dadu dapat kita tuliskan seperti berikut ini:

Dua buah dadu dilempar secara bersamaan. x adalah angka yang keluar dari dadu pertama, y adalah angka yang keluar dari dadu kedua

Dari apa yang disampaikan pada soal bahwa sisa hasil bagi $\left( x + y \right)$ oleh $2$ adalah $0$, sehingga $\left( x + y \right)$ adalah bilangan genap.

Pada pernyataan $A=\left \{x,y |x+y \lt 2y \lt y + 2x \right \}$, dapat kita sederhanakan menjadi $A=\left \{x,y | 0 \lt y-x \lt x \right \}$. Sehingga untuk $\left( x + y \right)$ bilangan genap yang memenuhi $0 \lt y-x \lt x$ hanya tinggal $\left(4,6 \right)$ dan $\left( 3,5 \right)$

Kita peroleh $P\left( A \right )=\dfrac{n\left( A \right )}{n\left( S \right )}=\dfrac{2}{36}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ \frac{1}{18}$

62. Soal UM UGM 2010 Kode 461 🔗

Dua kotak masing-masing berisi lima bola yang diberi nomor $2,3,5,7,$ dan $8$. Dari setiap kotak diambil sebuah bola. Peluang terambil sedikitnya satu bola dengan nomor $3$ atau $5$ adalah...
Alternatif Pembahasan:

Dari setiap kotak diambil sebuah bola bernomor sehingga bola yang mungkin terambil adalah $\left(2,2 \right)$, $\left(2,3 \right)$,$\cdots$, $\left( 8,8 \right)$. Banyak anggota ruang sampel adalah $n\left( S \right)=25$.

Diharapkan terambil sedikitnya satu bola dengan nomor $3$ atau $5$ sehingga bola yang mungkin terambil adalah:

  • $\left( 2,3 \right)$, $\left( 2,5 \right)$,
  • $\left(3,2 \right)$, $\left(3,3 \right)$, $\left( 3,5 \right)$, $\left( 3,7 \right)$, $\left( 3,8 \right)$,
  • $\left( 5,2 \right)$, $\left( 5,3 \right)$, $\left( 5,5 \right)$, $\left( 5,7 \right)$, $\left( 5,8 \right)$,
  • $\left( 7,3 \right)$, $\left( 7,5 \right)$,
  • $\left( 8,3 \right)$, $\left( 8,5 \right)$,

Banyak anggota kejadian adalah $n\left( E \right)=16$ sehingga $P \left( E \right ) = \dfrac{n\left( E \right)}{n\left( S \right)}=\dfrac{16}{25}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ \frac{16}{25}$

Gunakan bacaan ini untuk menjawab soal 63-65!
Dalam pelajaran teori peluang seorang guru matematika membawa dua buah kotak yang berisi bola merah dan bola putih. Dalam kotak pertama terdapat $3$ bola merah dan $5$ bola putih, sedangkan dalam kotak kedua terdapat $2$ bola merah dan $3$ bola putih. Dari setiap kotak diambil satu bola dan diamati warna bola yang terambil.

63. Soal UMB-PTN 2009 Kode 110 🔗

Peluang kejadian terpilihnya dua bola merah adalah...
Alternatif Pembahasan:

Peluang kejadian terpilihnya dua bola merah adalah saat terambil bola merah dari kota pertama dan bola merah dari kotak kedua.

Peluang terambil bola merah dari kotak pertama adalah $P\left( M_{I} \right)=\dfrac{n\left( M_{I} \right)}{n\left( S \right)}=\dfrac{3}{8}$

Peluang terambil bola merah dari kotak kedua adalah $P\left( M_{II} \right)=\dfrac{n\left( M_{II} \right)}{n\left( S \right)}=\dfrac{2}{5}$

Peluang terambil bola merah dari kotak pertama dan kedua adalah $\dfrac{3}{8} \times \dfrac{2}{5}=\dfrac{6}{40}=\dfrac{3}{20}$.

$\therefore$ Pilihan yang sesuai $(A)\ \frac{3}{20}$

64. Soal UMB-PTN 2009 Kode 110 🔗

Peluang kejadian terpilihnya dua bola putih adalah...
Alternatif Pembahasan:

Peluang kejadian terpilihnya dua bola putih adalah saat terambil bola putih dari kota pertama dan bola putih dari kotak kedua.

Peluang terambil bola putih dari kotak pertama adalah $P\left( P_{I} \right)=\dfrac{n\left( P_{I} \right)}{n\left( S \right)}=\dfrac{5}{8}$

Peluang terambil bola putih dari kotak kedua adalah $P\left( M_{II} \right)=\dfrac{n\left( M_{II} \right)}{n\left( S \right)}=\dfrac{3}{5}$

Peluang terambil bola putih dari kotak pertama dan kedua adalah $\dfrac{5}{8} \times \dfrac{3}{5}=\dfrac{15}{40}=\dfrac{3}{8}$.

$\therefore$ Pilihan yang sesuai $(D)\ \frac{3}{8}$

65. Soal UMB-PTN 2009 Kode 110 🔗

Peluang kejadian terpilihnya satu bola merah dan satu bola putih adalah...
Alternatif Pembahasan:

Peluang kejadian terpilihnya satu bola merah dan satu bola putih adalah saat terambil bola putih dari kota pertama dan bola merah dari kotak kedua atau bola merah dari kota pertama dan bola putih dari kotak kedua.

Peluang terambil bola putih dari kotak pertama dan bola merah kotak kedua adalah $\dfrac{5}{8} \times \dfrac{2}{5}=\dfrac{10}{40}=\dfrac{1}{4}$

Peluang terambil bola merah dari kotak pertama dan bola putih kotak kedua adalah $\dfrac{3}{8} \times \dfrac{3}{5}=\dfrac{9}{40}$

Peluang kejadian terpilihnya satu bola merah dan satu bola putih $\dfrac{1}{4} + \dfrac{9}{40}=\dfrac{19}{40}$.

$\therefore$ Pilihan yang sesuai $(E)\ \frac{19}{40}$

66. Soal UMB-PTN 2009 Kode 110 🔗

Dua bola diambil satu persatu tanpa pengembalian dari suatu kantong yang berisi $6$ bola merah dan $4$ bola putih. Peluang bola yang terambil berwarna sama adalah...
Alternatif Pembahasan:

Peluang bola yang terambil berwarna sama adalah saat terambil bola merah pada pengambilan pertama dan terambil bola merah pada pengambilan kedua atau terambil bola putih pada pengambilan pertama dan terambil bola putih pada pengambilan kedua.

Peluang terambil bola merah pada pengambilan pertama adalah $\dfrac{6}{10}$ dan Peluang terambil bola merah pada pengambilan kedua dengan syarat terambil bola merah yang pertama adalah $\dfrac{5}{9} \times \dfrac{6}{10}=\dfrac{30}{90}=\dfrac{1}{3}$

Peluang terambil bola putih pada pengambilan pertama adalah $\dfrac{4}{10}$ dan Peluang terambil bola putih pada pengambilan kedua dengan syarat terambil bola putih yang pertama adalah $\dfrac{3}{9} \times \dfrac{4}{10}=\dfrac{12}{90}=\dfrac{2}{15}$

Peluang kejadian terambil bola berwarna sama adalah $\dfrac{1}{3} + \dfrac{2}{15}=\dfrac{7}{15}$.

$\therefore$ Pilihan yang sesuai $(E)\ \frac{7}{15}$

67. Soal SIMAK UI 2009 Kode 961 🔗

Kotak $A$ berisi $8$ bola merah dan $2$ bola putih. Kotak $B$ berisi $5$ bola merah dan $3$ bola putih. Jika dari masing-masing kotak diambil sebuah bola secara acak, maka peluang bahwa kedua bola berwarna sama adalah...
Alternatif Pembahasan:

Peluang kejadian terpilihnya dua bola berwarna sama adalah saat terambil bola merah dari kotak $A$ dan bola merah dari kotak $B$ atau terambil bola putih dari kotak $A$ dan bola putih dari kotak $B$.

Peluang terambil bola merah dari kotak $A$ dan $B$ adalah $P\left( M \right)= \dfrac{8}{10} \times \dfrac{5}{8} =\dfrac{40}{80} $

Peluang terambil bola putih dari kotak $A$ dan $B$ adalah $P\left( P \right)= \dfrac{2}{10} \times \dfrac{3}{8} =\dfrac{6}{80} $

Peluang terambil bola berwarna sama adalah $\dfrac{40}{80} + \dfrac{6}{80}=\dfrac{46}{80}$.

$\therefore$ Pilihan yang sesuai $(E)\ \frac{46}{80}$

68. Soal UM UGM 2009 Kode 932 🔗

Jika sebuah dadu dilempar dua kali, maka peluang untuk mendapatkan jumlah angka kurang dari lima adalah...
Alternatif Pembahasan:

Ruang sampel dari pelemparan sebuah dadu sebanyak dua kali dapat kita tuliskan seperti berikut ini:

Ruang sampel dari pelemparan sebuah dadu sebanyak dua kali

Banyak anggota ruang sampel adalah $n \left( S \right)=36$ dan banyak anggota yang diharapkan terjadi jumlah angka kurang dari lima adalah $n \left( E \right)=6$. Sehingga $P \left( E \right) = \dfrac{n \left( E \right)}{n \left( S \right)}=\dfrac{6}{36}=\dfrac{1}{6}$

$\therefore$ Pilihan yang sesuai $(D)\ \frac{1}{6}$

69. Soal SNMPTN 2009 Kode 285 🔗

Kelas XIIA terdiri dari $10$ murid laki-laki dan $20$ murid perempuan. Setengah dari jumlah murid laki-laki dan setengah dari jumlah murid perempuan berambut keriting. Apabila seorang murid dipilih secara acak untuk mengerjakan soal, maka peluang bahwa murid yang terpilih itu laki-laki atau berambut keriting adalah...
Alternatif Pembahasan:

Banyak murid keseluruhan adalah $30$, ini dapat kita sebut $n(S)=30$ dimana terdiri dari $20$ perempuan dan $10$ laki-laki.

  • Jika dimisalkan kejadian $L$: terpilih murid Laki-laki, maka $n(L)=10$ dan yang keriting ada $5$.
  • Jika dimisalkan kejadian $P$: terpilih murid Perempuan, maka $n(P)=20$ dan yang keriting ada $10$.
  • Jika dimisalkan kejadian $K$: terpilih murid Keriting, maka $n(K)=15$
  • Kejadian murid Laki-laki dan Keriting $n(L \cap K)=5$

Peluang kejadian terpilih laki-laki atau murid keriting adalah:
$\begin{align} P (L \cup K)\ & = P(L)+P(K)- P(L \cap K) \\ & = \dfrac{n(L)}{n(S)}+\dfrac{n(K)}{n(S)}- \dfrac{n(L \cap K)}{n(S)}\\ & = \dfrac{10}{30}+\dfrac{15}{30}- \dfrac{5}{30}\\ & = \dfrac{20}{30}= \dfrac{2}{3} \end{align}$

$\therefore$ Pilihan yang sesuai adalah $(E)\ \frac{20}{30}$

70. Soal SNMPTN 2009 Kode 383 🔗

Dalam suatu kotak terdapat $100$ bola serupa yang diberi nomor $1,\ 2,\ \cdots ,\ 100$. Jika dipilih satu bola secara acak, maka peluang terambilnya bola dengan nomor yang habis dibagi $5$, tetapi tidak habis dibagi $3$ adalah...
Alternatif Pembahasan:

Banyak bola keseluruhan adalah $100$, ini dapat kita sebut $n(S)=100$.

  • $A$: Nomor bola yang habis dibagi $5$ adalah bola kelipatan $5$ yaitu $5,10,15,\cdots,100$, ada sebanyak $n(A)=20$.
  • $B$: Nomor bola yang habis dibagi $3$ dan $5$ adalah bola kelipatan $15$ yaitu $15,30,45,\cdots,90$, ada sebanyak $n(B)=6$.
  • $C$: Nomor bola yang habis dibagi $5$ tetapi tidak habis dibagi $3$ yaitu $5,10,20,\cdots,100$, ada sebanyak $n(C)=20-6=14$.

Peluang kejadian terpilih bola dengan nomor yang habis dibagi $5$, tetapi tidak habis dibagi $3$ adalah $\dfrac{n(C)}{n(S)}= \dfrac{14}{100}=\dfrac{7}{50}$

$\therefore$ Pilihan yang sesuai adalah $(B)\ \frac{7}{50}$

71. Soal UMB-PTN 2008 Kode 270 🔗

Jika sebuah dadu dilempar lima kali, maka peluang mata dadu yang muncul selalu ganjil adalah...
Alternatif Pembahasan:

Kejadian yang diharapkan muncul jumlah mata dadu ganjil maka mata dadu yang kita harapkan muncul dari setiap pelemparan adalah $1$, $3$, atau $5$

Peluang muncul mata dadu ganjil untuk setiap pelemparan adalah $\dfrac{3}{6}= \dfrac{1}{2}$, sehingga untuk lima kali pelemparan peluang muncul mata dadu ganjil adalah peluang muncul mata dadu ganjil pada pelemparan pertama dan peluang muncul mata dadu ganjil pada pelemparan kedua dan peluang muncul mata dadu ganjil pada pelemparan ketiga dan peluang muncul mata dadu ganjil pada pelemparan keempat dan peluang muncul mata dadu ganjil pada pelemparan kelima yaitu $\dfrac{1}{2} \cdot \dfrac{1}{2} \cdot \dfrac{1}{2} \cdot \dfrac{1}{2} \cdot \dfrac{1}{2} = \dfrac{1}{32}$

$\therefore$ Pilihan yang sesuai $(B)\ \frac{1}{32}$

72. Soal UM UGM 2008 Kode 270 🔗

Tetangga baru yang belum Anda kenal katanya mempunyai anak $2$ anak. Anda tahu salah satunya adalah laki-laki. Peluang kedua anak tetangga baru anda semuanya laki-laki adalah...
Alternatif Pembahasan:

Kemungkinan jenis kelamain anak tetangga dengan satu orang sudah pasti laki-laki adalah $ \left(L,L \right)$, $ \left(L,P \right)$, atau $ \left(P,L \right)$ sehingga $ n\left( S \right)=3$

Peluang kedua anak tetangga adalah laki-laki semua $ \left(L,L \right)$ adalah $P(L,L)=\dfrac{n\left(L,L \right)}{n\left( S \right)} =\dfrac{1}{3}$

$\therefore$ Pilihan yang sesuai $(C)\ \frac{1}{3}$

73. Soal SNMPTN 2008 Kode 301 🔗

Jika sebuah dadu dilempar dua kali dan mata dadu yang muncul dijumlahkan, maka peluang jumlah mata dadu yang muncul kurang dari $10$ atau prima adalah...
Alternatif Pembahasan:

Ruang sampel dari pelemparan sebuah dadu sebanyak dua kali dapat kita tuliskan seperti berikut ini:

Ruang sampel dari pelemparan sebuah dadu sebanyak dua kali

Banyak anggota ruang sampel adalah $n \left( S \right)=36$ dan banyak anggota yang diharapkan terjadi jumlah mata dadu yang muncul kurang dari $10$ atau prima adalah:

  • $A$: Jumlah mata dadu kurang dari $10$, $n(A)=30$.
  • $B$: Jumlah mata dadu prima, $n(B)=15$.
  • Jumlah mata dadu kurang dari $10$ dan prima, $n(A \cap B)=17$

Peluang kejadian jumlah mata dadu kurang dari $10$ atau prima adalah:
$\begin{align} P (A \cup B)\ & = P(A)+P(B)- P(A \cap B) \\ & = \dfrac{n(A)}{n(S)}+\dfrac{n(B)}{n(S)}- \dfrac{n(A \cap B)}{n(S)}\\ & = \dfrac{30}{36}+\dfrac{15}{36}- \dfrac{17}{36}\\ & = \dfrac{32}{36}= \dfrac{8}{9} \end{align}$

$\therefore$ Pilihan yang sesuai adalah $(B)\ \frac{8}{9}$

74. Soal SNMPTN 2008 Kode 111 🔗

Pada sekeping uang logam terdapat sisi gambar dan sisi angka. Jika $3$ uang logam sejenis dilempar bersamaan, maka peluang diperoleh dua gambar dan satu angka adalah...
Alternatif Pembahasan:

Ruang sampel dari pelemparan tiga buah koin dapat kita tuliskan seperti berikut ini:

Pada sekeping uang logam terdapat sisi gambar dan sisi angka. Jika 3 uang logam sejenis dilempar bersamaan, maka peluang diperoleh dua gambar dan satu angka adalah

Banyak keseluruhan hasil yang mungkin dari pelemparan tiga uang logam sejenis adalah $\left(AAA \right)$, $\left(AAG \right)$, $\left(AGA \right)$, $\left(AGG \right)$, $\left(GAA \right)$, $\left(GAG \right)$, $\left(GGA \right)$, atau $\left(GGG \right)$, sehingga $n(S)=8$.

Banyak kemungkinan muncul dua gambar dan satu angka adalah $\left(AGG \right)$, $\left(GAG \right)$, atau $\left(GGA \right)$, sehingga $n(E)=3$.
$ \begin{align} P(E) & = \dfrac{n(E)}{n(S)} \\ & = \dfrac{3}{8} \end{align}$

$\therefore$ Pilihan yang sesuai $(C)\ \frac{3}{8} $

75. Soal UM UGM 2007 Kode 741 🔗

Jika $A$ dan $B$ dua kejadian dengan $P \left( B^{c} \right)=0,45$, $P \left( A \cap B \right)=0,45$ dan $P \left( A \cup B \right)=0,85$ maka $P \left( A^{c} \right)$ sama dengan...
Alternatif Pembahasan:

Dari apa yang disampaikan di soal $P \left( B^{c} \right)=0,45$ maka $P \left( B \right)=1-0,45=0,55$. sehingga dapat kita tuliskan:

$\begin{align} \left( A \cup B \right)\ & = P \left( A \right)+P \left( B \right)- P\left( A \cap B \right) \\ 0,85 &= P \left( A \right)+0,55- 0,45 \\ 0,85 &= P \left( A \right)+0,1 \\ P \left( A \right) & = 0,75 \\ P \left( A^{c} \right) & = 1-0,75 =0,25 \end{align}$

$\therefore$ Pilihan yang sesuai adalah $(B)\ 0,25$

76. Soal SPMB 2007 Kode 641 🔗

Pada sebuah gudang tersimpan $80$ barang dan $20$ diantaranya rusak. Jika diambil satu barang secara acak, maka peluang barang yang terambil dalam kondisi tidak rusak adalah...
Alternatif Pembahasan:

Dari apa yang disampaikan di soal bahwa ada $80$ barang, kita sebut $n(S)=80$ dan $20$ diantaranya rusak, artinya ada $60$ barang yang bagus, kita sebut $n(B)=60$ dan $20$ barang yang rusak. kita sebut $n(R)=20$.

Jika dipilih sebuah barang secara acak maka peluang terpilih barang dalam kondisi tidak rusak adalah $P\left(B\right)=\dfrac{n(B)}{n(S)}=\dfrac{60}{80}=\dfrac{3}{4}$

$\therefore$ Pilihan yang sesuai adalah $(E)\ \frac{3}{4} $

77. Soal SPMB 2007 Kode 141 🔗

Tiga siswa dipilih untuk mewakili $6$ orang siswa putri dan $10$ orang siswa putra. Kemungkinan ketiga siswa yang terpilih semuanya putra adalah...
Alternatif Pembahasan:

Akan dipilih $3$ orang dari $6$ orang siswa putri dan $10$ orang siswa putra artinya hasil yang mungkin adalah
$\begin{align} n \left( S \right ) &= C(16,3) \\ &= \dfrac{16!}{3! \cdot \left( 16-3 \right)!} \\ &= \dfrac{16 \cdot 15 \cdot 14 \cdot 13!}{3 \cdot 2 \cdot 1 \cdot 13!}= 8 \cdot 5 \cdot 14 \end{align} $

Jika diharapkan yang terpilih semuanya adalah laki-laki, sehingga yang diharapkan adalah terpilih $3$ dari $10$, artinya hasil yang diharapkan adalah
$\begin{align} n \left( E \right ) &= C(10,3) \\ &= \dfrac{10!}{3! \cdot \left( 10-3 \right)!} \\ &= \dfrac{10 \cdot 9 \cdot 8 \cdot 7!}{3 \cdot 2 \cdot 1 \cdot 7!}= 5 \cdot 3 \cdot 8 \end{align} $

Peluang kejadi $E$ adalah:
$\begin{align} P \left( E \right ) &= \dfrac{n \left( E \right)}{n \left( S \right)} \\ &= \dfrac{5 \cdot 3 \cdot 8}{8 \cdot 5 \cdot 14} \\ &= \dfrac{3}{14}= \dfrac{12}{56} \end{align} $

$\therefore$ Pilihan yang sesuai adalah $(A)\ \frac{12}{56} $

78. Soal SPMB 2007 Kode 741 🔗

Sebuah kotak berisi $10$ bola lampu dengan $3$ diantaraya cacat. Jika $3$ bola lampu dipilih secara acak, maka peluang terpilihnya satu bola lampu rusak adalah...
Alternatif Pembahasan:

Akan dipilih $3$ bola lampu dari $10$ bola lampu artinya hasil yang mungkin adalah
$\begin{align} n \left( S \right ) &= C(10,3) \\ &= \dfrac{10!}{3! \cdot \left( 10-3 \right)!} \\ &= \dfrac{10 \cdot 9 \cdot 8 \cdot 7!}{3 \cdot 2 \cdot 1 \cdot 7!}= 10 \cdot 3 \cdot 4 \end{align} $

Jika diharapkan yang terpilih adalah satu lampu catat dan dua lampu baik, artinya hasil yang diharapkan adalah
$\begin{align} n \left( E \right ) &= C(3,1) \cdot C(7,2) \\ &= \dfrac{3!}{2! \cdot \left( 3-1 \right)!} \cdot \dfrac{7!}{2! \cdot \left( 7-2 \right)!} \\ &= 3 \cdot 21 = 63 \end{align} $

Peluang kejadi $E$ adalah:
$\begin{align} P \left( E \right ) &= \dfrac{n \left( E \right)}{n \left( S \right)} \\ &= \dfrac{63}{10 \cdot 3 \cdot 4} \\ &= \dfrac{21}{40} \end{align} $

$\therefore$ Pilihan yang sesuai adalah $(B)\ \frac{21}{40} $

79. Soal SPMB 2007 Kode 741 🔗

Enam pasang suami istri berada dalam suatu ruangan. Kemungkinan memilih $2$ orang secara acak yang berlainan jenis adalah...
Alternatif Pembahasan:

Akan dipilih $2$ orang dari $12$ orang artinya hasil yang mungkin adalah
$\begin{align} n \left( S \right ) &= C(12,3) \\ &= \dfrac{12!}{2! \cdot \left( 12-2 \right)!} \\ &= \dfrac{12 \cdot 11 \cdot 10!}{2 \cdot 10!}= 66 \end{align} $

Jika diharapkan yang terpilih adalah $2$ orang dengan jenis kelamin berbeda, artinya terpilih $1$ laki-laki dari $6$ laki-laki dan terpilih $1$ perempuan dari $6$ perempuan. Banyak susunan yang diharapkan adalah:
$\begin{align} n \left( E \right ) &= C(6,1) \cdot C(6,1) \\ &= \dfrac{6!}{1! \cdot \left( 6-1 \right)!} \cdot \dfrac{6!}{1! \cdot \left( 6-1 \right)!} \\ &= 6 \cdot 6 = 36 \end{align} $

Peluang kejadi $E$ adalah:
$\begin{align} P \left( E \right ) &= \dfrac{n \left( E \right)}{n \left( S \right)} \\ &= \dfrac{36}{66} \\ &= \dfrac{6}{11} \end{align} $

$\therefore$ Pilihan yang sesuai adalah $(E)\ \frac{6}{11} $

80. Soal SPMB 2007 Kode 541 🔗

Dalam sebuah ruangan pertemuan terdapat enam pasang suami istri. Jika dipilih dua orang secara acak dari ruangan tersebut, maka peluang terpilihnya dua orang tersebut suami-istri adalah...
Alternatif Pembahasan:

Akan dipilih $2$ orang dari $12$ orang artinya hasil yang mungkin adalah
$\begin{align} n \left( S \right ) &= C(12,3) \\ &= \dfrac{12!}{2! \cdot \left( 12-2 \right)!} \\ &= \dfrac{12 \cdot 11 \cdot 10!}{2 \cdot 10!}= 66 \end{align} $

Jika diharapkan yang terpilih adalah $2$ orang suami istri, artinya yang terpilih sepasang suami istri. Banyak susunan yang diharapkan adalah:
$\begin{align} n \left( E \right ) &= C(6,1) \\ &= \dfrac{6!}{1! \cdot \left( 6-1 \right)!} \\ &= 6 \end{align} $

Peluang kejadi $E$ adalah:
$\begin{align} P \left( E \right ) &= \dfrac{n \left( E \right)}{n \left( S \right)} \\ &= \dfrac{ 6}{66} = \dfrac{1}{11} \end{align} $

$\therefore$ Pilihan yang sesuai adalah $(A)\ \frac{1}{11} $


Catatan Soal dan Pembahasan Matematika SMA Teori Peluang di atas sifatnya "dokumen hidup" yang senantiasa diperbaiki atau diperbaharui sesuai dengan dinamika kebutuhan dan perubahan zaman. Catatan tambahan dari Anda untuk admin diharapkan dapat meningkatkan kualitas catatan ini 🙏 CMIIW.

JADIKAN HARI INI LUAR BIASA!
Ayo Share (Berbagi) Satu Hal Baik.
Kita adalah apa yang kita lakukan berulang kali. Maka, keunggulan bukanlah sebuah tindakan, melainkan sebuah kebiasaan
Aristoteles
close