Diskusi Matematika Seleksi Akademik Masuk Asrama YASOP SMAN 2 Balige 2006

Diskusi Matematika kita berikut ini soalnya kita coba dari Soal Seleksi Akademik masuk Asrama Yayasan Soposurung SMAN 2 Balige Tahun 2006. Siswa-siswi yang tinggal di Asrama Yayasan Soposurung Balige yang dikenal dengan sebutan "Anak YASOP" bersekolah di SMAN 2 Balige. YASOP menjadi salah satu yayasan yang konsisten dalam memajukan pendidikan di Indonesia kuhususnya Sumatera Utara, sehingga tidak heran jika banyak anak-anak SMP kelas IX dari berbagai daerah ingin masuk dan bergabung bersama keluarga besar YASOP.

Soal Seleksi Akademik masuk Asrama Yayasan Soposurung SMAN 2 Balige tiap tahun yang diujikan juga terus berkembang seiring dengan mengikuti perkembangan kurikulum dan teknologi. Tetapi aturan-aturan dasar atau sifat-sifat dalam mengerjakan soal, sifat dan aturannya selalu sama, terkhusus dalam pelajaran matematika. Sehingga soal-soal yang sudah diujikan panitia Seleksi Akademik masuk Asrama Yayasan Soposurung pada tahun-tahun lalu sangat baik dijadikan latihan dasar sebagai latihan dalam bernalar.

Mari kita diskusikan beberapa soal:
1. Kumpulan-kumpulan berikut ini yang bukan merupakan himpunan adalah...
$(A).$ Siswa-siswi SMA Yayasan Soposurung yang berparas cantik.
$(B).$ Siswa-siswi SMA Yayasan Soposurung yang berkaca mata.
$(C).$ Siswa-siswi SMA Yayasan Soposurung yang berbadan pendek.
$(D).$ Siswa-siswi SMA Yayasan Soposurung yang berbadan tinggi.
Alternatif Pembahasan:

Hint

Himpunan adalah kumpulan benda ataupun obyek yang anggota-anggotanya dapat didefinisikan secara jelas, sehingga antara satu orang dengan yang lain tidak akan terjadi multi tafsir. Antara kumpulan dan himpunan yang membedakan adalah pembatasannya, jika kumpulan tanpa adanya batasan yang jelas, namun jika himpunan memiliki batasan yang jelas.

Dari kumpulan diatas yang paling jelas batasannya adalah Siswa-siswi SMA Yayasan Soposurung yang berkaca mata.

$\therefore$ Pilihan yang sesuai adalah $(B).$ Siswa-siswi SMA Yayasan Soposurung yang berkaca mata

2. Jika $M=\left\{\text{Huruf pembentuk kata "PARYASOP NABURJU"} \right\}$ maka $n(M)=\cdots$
$\begin{align}
(A).\ & 15 \\
(B).\ & 10 \\
(C).\ & 11 \\
(D).\ & 12
\end{align}$
Alternatif Pembahasan:

Hint

Huruf-huruf pembentuk "PARYASOP NABURJU" adalah "PARYSOP NBUJ" $n(M)=11$

$\therefore$ Pilihan yang sesuai adalah $(C).\ 11$

3. $A=\left\{ \text{Himpunan bilangan bulat} \right\}$
$B=\left\{ \text{Himpunan bilangan prima} \right\}$
maka $A \cap B$ adalah...
$\begin{align}
(A).\ & \text{Himpunan bilangan asli} \\
(B).\ & \text{Himpunan bilangan cacah} \\
(C).\ & \text{Himpunan bilangan genap} \\
(D).\ & \text{Himpunan bilangan prima}
\end{align}$
Alternatif Pembahasan:

Hint

$A=\left\{ \text{Himpunan bilangan bulat} \right\}$
$A=\left\{\cdots,-2,\ -1,\ 0,\ 1,\ 2,\ 3,\ \cdots \right\}$

$B=\left\{ \text{Himpunan bilangan prima} \right\}$
$B=\left\{ 2,\ 3,\ 5,\ 7,\ 11,\ \cdots \right\}$

Irisan dari kedua himpunan diatas adalah $\text{Himpunan bilangan prima}$, atau karena semua bilangan prima merupakan bilangan bulat.

$\therefore$ Pilihan yang sesuai adalah $(D).\ \text{Himpunan bilangan prima}$

4. Jumlah siswa suatu kelas $60$ orang. Sebanyak $30$ siswa senang sepak bola dan $40$ siswa senang bulu tangkis. Jika $5$ siswa tidak senang sepak bola dan bulu tangkis maka jumlah siswa yang menyenangi sepak bola dan bulu tangkis adalah...
$\begin{align}
(A).\ & 5\ \text{siswa} \\
(B).\ & 15\ \text{siswa} \\
(C).\ & 20\ \text{siswa} \\
(D).\ & 25\ \text{siswa}
\end{align}$
Alternatif Pembahasan:

Hint

Jika informasi pada soal kita sajikan dalam bentuk diagram venn, bentuknya kira-kira seperti berikut ini;

  • $30$ siswa senang $S$ dan $x$ diantaranya juga senang $B$, jadi yang hanya senang $S$ adalah $30-x$.
  • $40$ siswa senang $B$ dan $x$ diantaranya juga senang $S$, jadi yang hanya senang $B$ adalah $40-x$.
  • Siswa senang $S$ dan $B$ adalah $x$
$\begin{align}
n(S \cup B) & =n(S)+n(B)-n(S \cap B) \\
60-5 & =30-x +x + 40-x +x-x \\
55 & =70-x \\
x & =70-55 \\
x & =15
\end{align}$
Banyak siswa senang $S$ dan $B$ adalah $15$

$\therefore$ Pilihan yang sesuai adalah $(B).\ 15$

5. Dua orang satpam masing-masing mendapat tugas piket $4$ hari dan $6$ hari sekali. Jika mereka bertugas pertama bersama-sama pada hari senin maka mereka bertugas bersama-sama untuk kedua kalinya pada hari...
$\begin{align}
(A).\ & \text{Rabu} \\
(B).\ & \text{Kamis} \\
(C).\ & \text{Jumat} \\
(D).\ & \text{Sabtu}
\end{align}$
Alternatif Pembahasan:

Hint

Kedua satpam piket pertama bersama adalah haris senin. Mereka akan piket bersama kembali $24\ (24=6 \times 4)$ hari lagi.

Jika sekarang hari senin, maka $24$ hari lagi sama dengan $3$ hari lagi yaitu Kamis.
$3$ hari lagi diperoleh dari sisa pembagian $24$ dibagi $7$ yaitu $\left[\dfrac{24}{7}=3\ \text{sisa}\ 3 \right]$

$\therefore$ Pilihan yang sesuai adalah $(B).\ \text{Kamis}$

6. Hasil dari $8^{7} \times 8^{-7}=\cdots$
$\begin{align}
(A).\ & 0 \\
(B).\ & -1 \\
(C).\ & 1 \\
(D).\ & \text{tak terdefenisi}
\end{align}$
Alternatif Pembahasan:

Hint

Dari sifat-sifat bilangan berpangkat kita peroleh
$\begin{align}
a^{m} \times a^{n} & = a^{m+n} \\
8^{7} \times 8^{-7} & = 8^{7-7} \\
8^{7} \times 8^{-7} & = 8^{0} \\
8^{7} \times 8^{-7} & = 1
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C).\ 1$

7. Seorang pedagang menyimpan uangnya di sebuah bank sebesar $Rp12.500.000,00$. Setelah setahun uangnya menjadi $Rp15.000.000,00$. Presentase bunga yang diterima selama setahun adalah...
$\begin{align}
(A).\ & 8,33 \% \\
(B).\ & 16,67 \% \\
(C).\ & 20,00 \% \\
(D).\ & 83,33 \%
\end{align}$
Alternatif Pembahasan:

Hint

Bunga yang diterima pedagang selama setahun adalah $15.000.000-12.500.000=2.500.000$.
Dalam persentase
$\dfrac{2.500.000}{12.500.000} \times 100 \%$
$=\dfrac{1}{5} \times 100 \%$
$=20 \%$

$\therefore$ Pilihan yang sesuai adalah $(C).\ 20 \% $

8. Manakah dibawah ini yang merupakan identitas
$\begin{align}
(A).\ & a^{2}-b^{2}=(a-b)^{2} \\
(B).\ & a^{2}+b^{2}=(a+b)^{2} \\
(C).\ & (a-b)(a+b)=a^{2}-b^{2} \\
(D).\ & (ab)^{2}=a^{2}+ab^{2}
\end{align}$
Alternatif Pembahasan:

Hint

Dari sifat-sifat bilangan berpangkat dapat kita peroleh yang merupakan identitas adalah $(a-b)(a+b)=a^{2}-b^{2}$.
$\begin{align}
(a+b)(a-b) & = a^{2}-b^{2} \\
(a+b)^{2} & = a^{2}+b^{2}+2ab \\
(a-b)^{2} & = a^{2}+b^{2}-2ab \\
(ab)^{2} & = a^{2} \times b^{2}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C).\ (a-b)(a+b)=a^{2}-b^{2}$

9. Jumlah dua bilangan cacah adalah $79$. Selisih dua bilangan cacah tersebut adalah 33. Salah satu dari bilangan cacah tersebut adalah...
$\begin{align}
(A).\ & 23 \\
(B).\ & 24 \\
(C).\ & 47 \\
(D).\ & 58
\end{align}$
Alternatif Pembahasan:

Hint

Kita misalkan kedua bilangan tersebut adalah $m$ dan $n$.
$\begin{array}{c|c|cc}
m+n=79 & \\
m-n=33 & (+) \\
\hline
2m=112 \\
m=\dfrac{112}{2} \\
m= 56 & n=23
\end{array} $

$\therefore$ Pilihan yang sesuai adalah $(A).\ 23$

10. Penyederhanaan bentuk $(2x+3)^{2}-(x-2)^{2}$, adalah...
$\begin{align}
(A).\ & 3x^{2}+8x+13 \\
(B).\ & 3x^{2}+16x+5 \\
(C).\ & 3x^{2}+4x+13 \\
(D).\ & 3x^{2}+8x+5
\end{align}$
Alternatif Pembahasan:

Hint

Dari sifat-sifat bilangan berpangkat dapat kita peroleh:
$\begin{align}
& (2x+3)^{2}-(x-2)^{2} \\
& = 4x^{2}+12x+9-(x^2-4x+4) \\
& = 4x^{2}+12x+9-x^{2}+4x-4) \\
& = 3x^{2}+16x+5 \\
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(B).\ 3x^{2}+16x+5$

11. Pemfaktoran bentuk kuadrat $x^{2}-3ax+2a^{2}$ adalah...
$\begin{align}
(A).\ & (x-2a)(x+a) \\
(B).\ & (x+2a)(x+a) \\
(C).\ & (x-2a)(x-a) \\
(D).\ & (x+2a)(x-a)
\end{align}$
Alternatif Pembahasan:

Hint

Jika sudah terbiasa memfaktorkan persamaan kuadrat maka kita bisa melakukannya dengan cepat. Jika belum coba dibaca: cara kreatif memfaktorkan persamaan kuadrat.

Untuk soal diatas kita kerjakan dengan cara yang slowly, mari kita mulai;
$\begin{align}
& x^{2}-3ax+2a^{2} \\
& = x^{2}-ax-2ax+2a^{2} \\
& = x^{2}-ax -2ax+2a^{2} \\
& = x(x-a)-2a(x-a) \\
& = (x-2a) (x-a) \\
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C).\ (x-2a)(x-a)$

12. Hasil pengurangan 3x-4 dari 2x+5 adalah...
$\begin{align}
(A).\ & 5x+9 \\
(B).\ & -5x+1 \\
(C).\ & x+1 \\
(D).\ & -x+9
\end{align}$
Alternatif Pembahasan:

Hint

Hasil pengurangan $3x-4$ dari $2x+5$ jika kita tulisakn dengan menggunkan operasi aljabar, penulisannya kurang lebih seperti berikut ini:
Dengan menggunakan konsep perbandingan senilai maka kita peroleh:
$\begin{align}
& (2x+5)-(3x-4) \\
& = 2x+5-3x+4 \\
& = -x+9
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D).\ -x+9$

13. Diketahui $3x-2y=8$ dan $2x+5y=-1$, maka nilai $y-x=\cdots$
$\begin{align}
(A).\ & 3 \\
(B).\ & 1 \\
(C).\ & -1 \\
(D).\ & -3
\end{align}$
Alternatif Pembahasan:

Hint

$\begin{array}{c|c|cc}
3x-2y=8 & (\times\ 2) \\
2x+5y=-1 & (\times\ 3) \\
\hline
6x-4y=16 & \\
6x+15y=-3 & (-) \\
\hline
-19y=19 \\
y=-\dfrac{19}{19} & y=-1 \\
x = 2 \\
\end{array} $
Nilai $y-x = -1-2=-3$
$\therefore$ Pilihan yang sesuai adalah $(D).\ -3$

14. Himpunan penyelesaian dari sistem persamaan $3x-2y=8$ dan $4x+y=7$ adalah...
$\begin{align}
(A).\ & {2,-1} \\
(B).\ & {2,1} \\
(C).\ & {2,15} \\
(D).\ & {-1,3}
\end{align}$
Alternatif Pembahasan:

Hint

$\begin{array}{c|c|cc}
3x-2y=8 & (\times\ 1) \\
4x+y=7 & (\times\ 2) \\
\hline
3x-2y=8 & \\
4x+2y=14 & (-) \\
\hline
-x=-6 \\
x=6 \\
x = 2 & 4x+y=7\\
y = -1
\end{array} $

$\therefore$ Pilihan yang sesuai adalah $(D).\ (2,-1)$

15. Apabila $\left(-x-\dfrac{1}{x} \right)^{2}$ dinyatakan sebagai penjumlahan suku-suku akan menjadi...
$\begin{align}
(A).\ & x^{2}+\dfrac{1}{x^{2}}+2 \\
(B).\ & x^{2}-\dfrac{1}{x^{2}}+2 \\
(C).\ & x^{2}-\dfrac{1}{x^{2}}-2 \\
(D).\ & x^{2}+\dfrac{1}{x^{2}}-2
\end{align}$
Alternatif Pembahasan:

Hint

$\begin{align}
& \left(-x-\dfrac{1}{x} \right)^{2} \\
& = x^{2}+2(-x)(-\dfrac{1}{x})+\dfrac{1}{x^{2}} \\
& = x^{2}+2+\dfrac{1}{x^{2}}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(A).\ x^{2}+2+\dfrac{1}{x^{2}}$

16.Himpunan bagian dari himpunan bilangan nyata dibawah ini dapat dinyatakan dengan notasi pembentuk himpunan...

$\begin{align}
(A).\ & \left \{ x | x \gt 7\ \text{dan}\ x \leq - 3, x \in R \right \} \\
(B).\ & \left \{ x | 7\ \leq x \leq 3, x \in R \right \} \\
(C).\ & \left \{ x | x \gt 7\ \text{atau}\ x \leq 3, x \in R \right \} \\
(D).\ & \left \{ x | x \gt 7\ \text{dan}\ x \leq 3, x \in R \right \} \\
\end{align}$
Alternatif Pembahasan:

Hint

Pada penulisan Penyelesaian Pertidaksamaan jika pada garis bilangan digambarkan "$\bullet$" dapat diwakili "$\leq\ \text{atau}\ \geq$" dan tanda "$\circ$" dapat diwakili "$\lt\ \text{atau}\ \gt$".

Pada gambar garis bilangan yang lebih tebal merupakan daerah Himpunan Penyelesaian sehingga $x \leq\ 3$ atau $x \gt\ 7$.

$\therefore$ Pilihan yang sesuai adalah $(C).\ \left \{ x | x \gt 7\ \text{atau}\ x \leq 3, x \in R \right \} \\$

17. Diketahui $f(x)=x^{2}$, pernyataan-pernyataan di bawah ini benar kecuali:
$\begin{align}
(A).\ & f(2)=4 \\
(B).\ & f(-2)=4 \\
(C).\ & f(2)+f(-2)=0 \\
(D).\ & f(1)+f(1)+f(-1)+f(-1)=4
\end{align}$
Alternatif Pembahasan:

Hint

$\begin{align}
f(x) & = x^{2} \\
f(2) & = (2)^{2}=4 \\
f(-2) & = (-2)^{2}=4 \\
f(1) & = (1)^{2}=1 \\
f(-1) & = (-1)^{2}=1
\end{align}$
Pernyataan yang tidak tepat adalah $f(2)+f(-2)=0$.

$\therefore$ Pilihan yang sesuai adalah $(D).\ f(2)+f(-2)=0$

18. Daerah hasil untuk $f(x)=2x+1$ $x \in \text{Bilangan Cacah}$ adalah...
$\begin{align}
(A).\ & \text{Bilangan bulat} \\
(B).\ & \text{Bilangan asli} \\
(C).\ & \text{Bilangan ganjil} \\
(D).\ & \text{Bilangan real}
\end{align}$
Alternatif Pembahasan:

Hint

Untuk $x \in \text{Bilangan Cacah}$ maka nilai $f(x)=2x+1$ dapat kita simpulkan:
$\begin{align}
f(0) & =2(0)+1=1\\
f(1) & =2(1)+1=3\\
f(2) & =2(2)+1=5\\
f(3) & =2(3)+1=7\\
\vdots
\end{align}$
Semua pilihan jawaban pada soal benar, tetapi karena diharuskan memilih maka pilihan kita ada pada $(C).\ \text{Bilangan ganjil}$.

$\therefore$ Pilihan yang sesuai adalah $(C).\ \text{Bilangan ganjil}$

19. Manakah garis-garis di bawah ini yang sejajar?
  • garis $l:\ y=2x-5$
  • garis $g:\ y=5x-2$
  • garis $h:\ y=3x-2$
  • garis $j:\ y=3x-6$
$\begin{align}
(A).\ & \text{l dan g} \\
(B).\ & \text{l dan j} \\
(C).\ & \text{g dan j} \\
(D).\ & \text{g dan h}
\end{align}$
Alternatif Pembahasan:

Hint

Garis yang sejajar jika gradien $(m)$ sama dan pada garis $y=ax+b$ gradiennya adalah $m=a$
$\begin{align}
\text{garis l}:\ & y=2x-5\ \rightarrow m=2 \\
\text{garis g}:\ & y=5x-2 \rightarrow m=5 \\
\text{garis h}:\ & y=3x-2 \rightarrow m=3 \\
\text{garis j}:\ & y=5x-6 \rightarrow m=5
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C).\ \text{g dan j}$

20. Titik potong antar garis $g:y=2x+5$ dan garis $l:y=-x-1$ adalah:
$\begin{align}
(A).\ & (-2,1) \\
(B).\ & (1,-2) \\
(C).\ & (-1,2) \\
(D).\ & (-1,-2)
\end{align}$
Alternatif Pembahasan:

Hint

Titik potong garis coba kita tentukan dengan menggunakan metode eliminasi
$\begin{array}{c|c|cc}
y=2x+5 & \\
y=-x-1 & (-) \\
\hline
0=3x+6 \\
-3x=6 \\
x=-2 & y=-x-1\\
y = 1
\end{array} $

$\therefore$ Pilihan yang sesuai adalah $(A).\ (-2,1)$

21. Garis $y=a$ dan garis $x=b$ akan berpotongan di titik:
$\begin{align}
(A).\ & (0,0) \\
(B).\ & (a,b) \\
(C).\ & (b,a) \\
(D).\ & (-a,-b)
\end{align}$
Alternatif Pembahasan:

Hint

Garis $y=a$ dan garis $x=b$ akan berpotongan di titik $(b,a)$
Jika kita gambarkan untuk sembarang nilai $x=b$ dan sembarang $y=a$ maka garis akan berpotongan di titik $(b,a)$


$\therefore$ Pilihan yang sesuai adalah $(C).\ (b,a)$

22. Untuk fungsi $h:x\ \rightarrow ax+b$ ditentukan $a$ dan $b$ bilangan bulat. Bayangan $1$ oleh $h$ adalah $-1$. Bayangan $4$ oleh $h$ adalah $8$. Maka nilai $a$ dan $b$ adalah...
$\begin{align}
(A).\ & a=3\ \text{dan}\ b=2 \\
(B).\ & a=3\ \text{dan}\ b=-4 \\
(C).\ & a=-3\ \text{dan}\ b=2 \\
(D).\ & a=-3\ \text{dan}\ b=-4
\end{align}$
Alternatif Pembahasan:

Hint

Fungsi $h(x)=ax+b$
$\begin{align}
h(1) & =a+b \\
-1 & =a+b \\
h(4) & =4a+b \\
8 & =4a+b
\end{align}$
$\begin{array}{c|c|cc}
a+b=-1 & \\
4a+b=8 & (-) \\
\hline
-3a=9 \\
a=\dfrac{9}{-3} \\
a=-3 & a+b=-1\\
b = 2
\end{array} $

$\therefore$ Pilihan yang sesuai adalah $(C).\ a=-3\ \text{dan}\ b=2$

23.Semua persamaan garis lurus di bawah ini mempunyai gradien $\dfrac{1}{3}$ kecuali:
$\begin{align}
(A).\ & 3y-x=6 \\
(B).\ & 3y=x+1 \\
(C).\ & x=3y+2 \\
(D).\ & y=x+1
\end{align}$
Alternatif Pembahasan:

Hint

Persamaan garis umumnya dituliskan dalam bentuk $ax+by=c$ atau $y=mx+n$, kedua bentuk itu sebenarnya sama jika kita lakukan sedikti manipulasi aljabar.

Saat $ax+by=c$ maka gradiennya adalah $m=-\dfrac{a}{b}$
Saat $y=mx+n$ maka gradiennya adalah $m=m$

  • $3y-x=6$ $\rightarrow m=\dfrac{1}{3}$
  • $3y=x+1$ $\rightarrow m=\dfrac{1}{3}$
  • $x=3y+2$ $\rightarrow m=\dfrac{1}{3}$
  • $y=x+1$ $\rightarrow m=1$
$\therefore$ Pilihan yang sesuai adalah $(D).\ y=x+1$

24. Pada pukul $12.15$, sudut terkecil yang dibetnuk oleh jarum jam adalah...
$\begin{align}
(A).\ & 80^{\circ} \\
(B).\ & 82,5^{\circ} \\
(C).\ & 90^{\circ} \\
(D).\ & 92,5^{\circ}
\end{align}$
Alternatif Pembahasan:

Hint

Pukul $12.15$ jatum panjang berada tepat pada angka $3$ dan jarum pendek berada pada angka $12$ lewat sedikit, jika kita gambarkan kurang lebih seperti berikut ini;

  • Dari pukul $12$ ke angka $3$ sudut yang terbentuk adalah $90^{\circ}$.
  • Sudut dari angka $12$ ke angka $1$ adalah $\dfrac{360}{12}=30^{\circ}$.
  • Jarum pendek bergerak dari angka $12$ ke angka $1$ setelah jarum panjang bergerak satu putaran atau $360^{\circ}$. Dengan kata lain Jarum panjang bergerak $360^{\circ}$ jarum pendek bergerak $30^{\circ}$.
  • Jarum panjang bergerak dari angka $12$ ke angka $3$ yaitu $90^{\circ}$ seperempat dari $360^{\circ}$ berarti jarum pendek juga bergerak seperempat dari $30^{\circ}$ yaitu $7,5^{\circ}$.
  • Sudut terkecil yang terbentuk pukul $12.15$ adalah $90^{\circ}-7,5^{\circ}=82,5^{\circ}$
$\therefore$ Pilihan yang sesuai adalah $(B).\ 82,5^{\circ}$

25. Empat sudut terbentuk oleh dua garis berpotongan seperti pada gambar berikut:
Bila diketahui $r^{\circ}=30^{\circ}$ maka:
$\begin{align}
(A).\ & s=160^{\circ};\ t=30^{\circ};\ u=160^{\circ} \\
(B).\ & s=150^{\circ};\ t=60^{\circ};\ u=160^{\circ} \\
(C).\ & s=130^{\circ};\ t=60^{\circ};\ u=130^{\circ} \\
(D).\ & s=150^{\circ};\ t=30^{\circ};\ u=150^{\circ}
\end{align}$
Alternatif Pembahasan:

Hint

Jika kita perhatikan gambar di atas, keempat sudut adalah dua pasang sudut yang bertolak belakang sehingga $r=t$ dan $s=u$.
Karena $r^{\circ}=30^{\circ}$ maka $t^{\circ}=30^{\circ}$.

Jumlah sudut $r+s+t+u=360^{\circ}$ maka $30^{\circ}+s+30^{\circ}+u=360^{\circ}$ dan $s+u=300^{\circ}$
Karena $s=u$ maka $s=150^{\circ}$ dan $u=150^{\circ}$

$\therefore$ Pilihan yang sesuai adalah $(D).\ s=150^{\circ};\ t=30^{\circ};\ u=150^{\circ}$

26. Panjang sisi-sisi segitiga siku-siku adalah $x\ cm$, $(x+1)\ cm$ dan $(x+2)\ cm$, maka $x=\cdots$
$\begin{align}
(A).\ & 1\ cm \\
(B).\ & 2\ cm \\
(C).\ & 3\ cm \\
(D).\ & 4\ cm \\
\end{align}$
Alternatif Pembahasan:

Hint

Berdasarkan bilangan trypel pythagoras sisi yang terpanjang adalah sisi miring, sehingga dari sisi-sisi $x\ cm$, $(x+1)\ cm$ dan $(x+2)\ cm$ sisi miring adalah $(x+2)\ cm$.

Dengan teorema pythagoras kita peroleh:
$\begin{align}
(x+2)^{2} & = (x+1)^{2}+x^{2} \\
x^{2}+4x+4 & = x^{2}+2x+1+x^{2} \\
x^{2}+4x+4 & = 2x^{2}+2x+1 \\
2x^{2}-x^{2}+2x-4x+1-4 & = 0 \\
x^{2}-2x-3 & = 0 \\
(x-3)(x+1)& = 0 \\
x=3 & x=-1 (TM)
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C).\ 3\ cm$

27. Sebidang tanah berbentuk trapesium seperti gambar di bawah ini, jika $\angle A=\angle B=45^{\circ}$ maka rumus luas tanah tersebut adalah...
$\begin{align}
(A).\ & L=x(60-x) \\
(B).\ & L=x(30-x) \\
(C).\ & L=2x(30+x) \\
(D).\ & L=x(60-2x) \\
\end{align}$
Alternatif Pembahasan:

Hint

Diberitahukan bahwa $\angle A=\angle B=45^{\circ}$ sehingga segitiga yang terlihat pada trapesium adalah segitiga samakaki.

Dari gambar trapesium $ABCD$ luasnya adalah penjumlahan $2$ segitiga samakaki yang kongruen dan sebuah persegi panjang.
$L=2[\bigtriangleup]+[\square]$
$L=2\left(\dfrac{1}{2} x \times x \right)+CD \times x$
$L=x \times x +CD \times x$
$L=x \times x +(30-2x) \times x$
$L=x \left( x +(30-2x) \right)$
$L=x \left( 30-x \right)$

$\therefore$ Pilihan yang sesuai adalah $(B).\ L=x(30-x)$


28. Volume sebuah kerucut adalah $314\ cm^{2}$. Jika jari-jarinya adalah $5\ cm$ dan $\pi=3,14$ maka panjang garis pelukisnya adalah...
$\begin{align}
(A).\ & 4\ cm \\
(B).\ & 12\ cm \\
(C).\ & 13\ cm \\
(D).\ & 20\ cm
\end{align}$
Alternatif Pembahasan:

Hint

Garis pelukis kerucut $(s)$ adalah jumlah kuadrat dari jari-jari dan tinggi kerucut;
Dengan Volume $314\ cm^{2}$ maka
$\begin{align}
V & = \dfrac{1}{3} \pi r^{2} t \\
314 & = \dfrac{1}{3} (3,14) (25) (t) \\
314 & = \dfrac{1}{3} (3,14) (25) (t) \\
t & = \dfrac{314 \times 3}{3,14 \times 25} \\
t & = \dfrac{300}{25} \\
t & = 12
\end{align}$

$\begin{align}
s^{2} & = t^{2}+r^{2} \\
s^{2} & = 12^{2}+5^{2} \\
s^{2} & = 144+25 \\
s^{2} & = 169 \\
s & = \sqrt{169} \\
s & = 13
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C).\ 13$

29. Pernyataan dibawah ini benar untuk semua balok kecuali:
$(A).$ Mempunyai $12$ buah bidang diagonal.
$(B).$ Mempunyai $4$ buah bidang diagonal ruang.
$(C).$ Mempunyai $12$ buah rusuk.
$(D).$ Mempunyai $8$ buah titik sudut
Alternatif Pembahasan:

Hint

Coba kita perhatika gambar balok $ABCD.EFGH$ beriktu untuk mempermudah menjawab tentang balok diatas;

$(A).$ Mempunyai $12$ buah bidang diagonal, salah karena balok hanya punya $6$ bidang diagonal yaitu $ABGH$, $CDEF$, $EBCH$, $AFGD$, $EGCA$, dan $BDHF$.

$\therefore$ Pilihan yang sesuai adalah $(A).$ Mempunyai $12$ buah bidang diagonal


30. $ABCD$ adalah bujur sangkar dengan sisi $14$ cm, merupakan alas limas dengan puncak $P$ yang tingginya $6$ cm. Di dalam bujur sangkar tersebut dibuat lingkaran yang menyinggung keempat sisi bujur sangkar tadi. Lingkaran ini merupakan alas kerucut dengan puncak $P$. Jika $\pi=\dfrac{22}{7}$, maka volume kerucut tersebut adalah...
$\begin{align}
(A).\ & 11.232\ cm^{3} \\
(B).\ & 924\ cm^{3} \\
(C).\ & 308\ cm^{3} \\
(D).\ & 88\ cm^{3}
\end{align}$
Alternatif Pembahasan:

Hint

Lingkaran berada dalam bujur sangkar dan menyingung keempat sisi persegi sehingga jari-jari lingkaran adalah setengah sisi persegi yaitu $7$ cm.
$\begin{align}
V & = \dfrac{1}{3} \pi r^{2} t \\
& = \dfrac{1}{3} \left(\dfrac{22}{7} \right) (49) (6) \\
& = \dfrac{1}{3} (22) (7) (6) \\
& = (22) (7) (2) \\
& = 308
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C).\ 308\ cm^{3}$

31. Keempat sisi persegi disinggung oleh sebuah lingkaran seperti gambar. Jika keliling lingkaran $44$ cm, dan $\pi=\dfrac{22}{7}$, maka panjang sisi persegi adalah...
$\begin{align}
(A).\ & 7\ cm \\
(B).\ & 14\ cm \\
(C).\ & 18\ cm \\
(D).\ & 22\ cm
\end{align}$
Alternatif Pembahasan:

Hint

Keliling lingkaran adalah $2 \pi r$.
$\begin{align}
K & = 2 \pi r \\
44 & = 2 \times \dfrac{22}{7} r \\
44 & = \dfrac{44}{7} r \\
1 & = \dfrac{1}{7} r \\
r & = 7
\end{align}$
Untuk $r=7$ dan panjang sisi persegi adalah $2r=14$

$\therefore$ Pilihan yang sesuai adalah $(B).\ 14\ cm$

32. Jika dikeathui $OA=4\ cm$, dan $PB=2\ cm$ dan $OP=10\ cm $. Panjang garis singgung persekutuan dalam dua lingkaran tersebut di bawah ini adalah...
$\begin{align}
(A).\ & 6\ cm \\
(B).\ & 8\ cm \\
(C).\ & 10\ cm \\
(D).\ & 12\ cm
\end{align}$
Alternatif Pembahasan:

Hint

Untuk mempermudah menghitung panjang garis singgung persekutuan dalam, dimana pada gambar dimisalkan $AB$ kita beri beberapa titik dan garis tambahan. Kurang lebih seperti berikut ini;

Dari gambar diatas kita dapat ambil kesimpulan;
  • Panjang $AB=CP=OD=10\ cm$,
  • Panjang $OA=BD=4\ cm$,
  • Panjang $BP=AD=2\ cm$,
  • Paniang $OC=DP=6\ cm$
  • Dengan menggunakan teorema pythagoras pada segitiga $OCP$ kita dapat hitung panjang $CP=8\ cm$
$\therefore$ Pilihan yang sesuai adalah $(B).\ 8\ cm$

33. Jika sudut $ABC=60^{\circ}$ dan titik $O$ adalah pusat lingkaran maka sudut refleks $AOC=\cdots$
$\begin{align}
(A).\ & 180^{\circ} \\
(B).\ & 200^{\circ} \\
(C).\ & 220^{\circ} \\
(D).\ & 240^{\circ}
\end{align}$
Alternatif Pembahasan:

Hint

Sudut refleks adalah sudut yang memiliki ukuran lebih dari 180 derajat dan kurang dari 360 derajat.

Dari gambar yang diberikan bahwa $AOC$ adalah sudut pusat yang besarnya $2$ kali sudut keliling yaitu $ABC$ karena kedua sudut tersebut menghadap tali busur yang sama yaitu $AC$, sehingga besar $AOC=120^{\circ}$.

Sudut refleks $AOC$ adalah $360^{\circ}-120^{\circ}=240^{\circ}$

$\therefore$ Pilihan yang sesuai adalah $(D).\ 240^{\circ}$

34. Data pada tabel frekuensi sebagai berikut:
Nilai $(x)$ Frekuensi $(f)$ $(x)(f)$
4 1 4
5 1 5
6 2 12
7 3 21
Jumlah 7 42
Median dari tabel diatas adalah...
$\begin{align}
(A).\ & 6 \\
(B).\ & 7 \\
(C).\ & 43 \\
(D).\ & 49
\end{align}$
Alternatif Pembahasan:

Hint

Median adalah nilai tenga sebuah data setelah diurutkan dari yang terkecil ke yang terbesar.
Data adalah $4,\ 5,\ 6,\ 6,\ 7,\ 7,\ 7$
Median adalah $6$
$\therefore$ Pilihan yang sesuai adalah $(A).\ 6$

35. Jika data dalam tabel dibawah ini adalah nilai ulangan matematika siswa, maka jumlah siswa yang mencapai nilai lebih kecil dari pada $6$ adalah...
Nilai $(x)$ Frekuensi $(f)$
4 4
5 5
6 12
7 21
Jumlah 42
$\begin{align}
(A).\ & 4\ \text{siswa} \\
(B).\ & 5\ \text{siswa} \\
(C).\ & 9\ \text{siswa} \\
(D).\ & 21\ \text{siswa}
\end{align}$
Alternatif Pembahasan:

Hint

Dari tabel dapat kita perhatikan jumlah siswa yang nilainya lebih kecil dari $6$ ada sebanyak $9$ yang diperoleh dari jumlah siswa yang nilainya $5$ sebanyak $5$ dan siswa yang jumlah nilainya $4$ sebanyak $4$.

$\therefore$ Pilihan yang sesuai adalah $(C).\ 9\ \text{siswa}$

36. Manakah bayangan $A(-5,8)$ jika dicerminkan terhadap garis $x=5$
$\begin{align}
(A).\ & (8,15) \\
(B).\ & (-8,15) \\
(C).\ & (15,8) \\
(D).\ & (15,-8)
\end{align}$
Alternatif Pembahasan:

Hint

Titik $(-5,8)$ dicerminkan terhadap garis $x=5$ berarti yang berubah hanya $x$ sedangkan $y$ tetap sehingga jawabnya adalah $(15,8)$.

Jika dengan menganalisis bayangan titik $A(x,y)$ yang dicerminkan terhadap garis $x=a$ adalah $A'(2a-x,y)$
Bayangan titik $A(-5,8)$ yang dicerminkan terhadap garis $x=5$ adalah $A'(2(5)-(-5),8)$ adalah $(15,8)$

$\therefore$ Pilihan yang sesuai adalah $(C).\ (15,8)$

37. Suatu barisan bilangan $2,\ 6,\ 12,\ 20,\ \cdots$ suku yang ke-20 adalah...
$\begin{align}
(A).\ & 420 \\
(B).\ & 480 \\
(C).\ & 500 \\
(D).\ & 602
\end{align}$
Alternatif Pembahasan:

Hint

Barisan $2,\ 6,\ 12,\ 20,\ \cdots$ barisan aritmatika tingkat dua;
jika kita manipulasi bentuknya menjadi
$u_{1}=1 \times 2$
$u_{2}=2 \times 3$
$u_{3}=3 \times 4$
$u_{4}=4 \times 5$
$\vdots$
$u_{20}=20 \times 21=420$

$\therefore$ Pilihan yang sesuai adalah $(C).\ 420$

38. Sebatang besi bersandar pada tembok dengan sudut $30^{\circ}$ dengan tanah. Jika ujung bagian alas besi berjaeak $2$ meter dengan tanah maka panjang besi adalah...
$\begin{align}
(A).\ & 3,5\ m \\
(B).\ & 3,75\ m \\
(C).\ & 4\ m \\
(D).\ & 4,75\ m
\end{align}$
Alternatif Pembahasan:

Hint

Jika kita ikustrasikan besi yang bersandar pada tembok kurang lebih seperti berikut ini:

Dengan menggunakan perbandingan trigonometri sederhana yaitu
$\begin{align}
sin\ 30^{\circ} & =\dfrac{2}{Besi} \\
Besi & =\dfrac{2}{sin\ 30^{\circ}} \\
& =\dfrac{2}{\dfrac{1}{2}} \\
& =4
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C).\ 4\ m$

39. Jika $log\ 2=0,301$, $log\ 3=0,477$ maka $log\ \dfrac{3}{4}=\cdots$
$\begin{align}
(A).\ & 0,875 \\
(B).\ & 0,775 \\
(C).\ & 0,135-1 \\
(D).\ & 0,875-1
\end{align}$
Alternatif Pembahasan:

Hint

Dengan menggunakan sifat-sifat logaritma kita peroleh:
$\begin{align}
log\ \dfrac{a}{b} & = log\ a - log\ b \\
log\ \dfrac{3}{4} & = log\ 3 - log\ 4 \\
log\ \dfrac{3}{4} & = log\ 3 - log\ 2^{2} \\
log\ \dfrac{3}{4} & = log\ 3 - 2\ log\ 2 \\
log\ \dfrac{3}{4} & = 0,477 - 2(0,301) \\
log\ \dfrac{3}{4} & = 0,477 - 0,602 \\
log\ \dfrac{3}{4} & = -0,125
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D).\ 0,875-1$

40. Jika $log\ 2=0,301$, $log\ 3=0,477$ maka...
$\begin{align}
(A).\ & log\ 0,00006=0,778-5 \\
(B).\ & log\ 0,006=0,778-2 \\
(C).\ & log\ 0,006=0,778-5 \\
(D).\ & log\ 0,06=0,78-1
\end{align}$
Alternatif Pembahasan:

Hint

Dengan menggunakan sifat-sifat logaritma kita peroleh:

  • $log\ 0,00006=log\ \left(6 \times 10^{-5} \right)$
    $log\ 0,00006=log\ 6 +log\ 10^{-5}$
    $log\ 0,00006=log\ (2 \times 3) +log\ 10^{-5}$
    $log\ 0,00006=log\ 2 + log\ 3 -5 $
    $log\ 0,00006=0,301 + 0,477 -5 $
    $log\ 0,00006=0,778 -5 $
  • $log\ 0,006=log\ \left(6 \times 10^{-3} \right)$
    $log\ 0, 006=log\ 6 +log\ 10^{-3}$
    $log\ 0, 006=log\ (2 \times 3) +log\ 10^{-3}$
    $log\ 0, 006=log\ 2 + log\ 3 -3 $
    $log\ 0, 006=0,301 + 0,477 -3 $
    $log\ 0, 006=0,778 -3 $
  • $log\ 0,06=log\ \left(6 \times 10^{-2} \right)$
    $log\ 0, 06=log\ 6 +log\ 10^{-2}$
    $log\ 0, 06=log\ (2 \times 3) +log\ 10^{-2}$
    $log\ 0, 06=log\ 2 + log\ 3 -2 $
    $log\ 0, 06=0,301 + 0,477 -2 $
    $log\ 0, 06=0,778 -2 $
$\therefore$ Pilihan yang sesuai adalah $(A).\ log\ 0,00006=0,778-5$


Silahkan dowload soal Matematika Soal Seleksi Akademik masuk Asrama Yayasan Soposurung SMAN 2 Balige Tahun 2006.

Semoga Bermanfaat, soal-soal dan pembahasan Matematika Soal Seleksi Akademik masuk Asrama Yayasan Soposurung SMAN 2 Balige Tahun 2006 di atas masih jauh dari sempurna, jadi jika ada masukan yang sifatnya membangun terkait masalah alternatif penyelesaian atau request pembahasan soal, silahkan disampaikan, kami dengan senang hati segera menanggapinya 😊😊

Video pilihan khusus untuk Anda 😊 Cara Pilar (Pintar Bernalar) Perkalian Dua Angka Ciri Puluhan Sama dan Jumlah Satuan 10;

You Might Also Like: