Gk7qp1DNYQGDurixnE7FWT3LyBvSK3asrvqSm057
Bookmark

Soal dan Pembahasan OSN Matematika SMP Tingkat Kabupaten (OSN-K) Tahun 2018 (R1)

Soal dan Pembahasan OSN 2018 Tingkat Kabupaten Matematika SMP (Kode: OSN.KK.M.R1)

Calon Guru Belajar matematika dasar SMP lewat Soal dan Pembahasan olimpiade matematika SMP untuk tingkat kabupaten tahun 2018 (Kode: OSN.KK.M.R1). Soal OSK matematika SMP tahun 2018 dibuat berbeda dari tahun sebelumnya. Pada OSK Matematika SMP tahun 2017 banyak soal ada sebanyak 10 soal untuk pilihan ganda dan 5 soal untuk isian singkat dan disemua kabupaten/kota jenis soal adalah sama.

Untuk tahun 2018 ini jumlah soal kembali dirubah, semua bentuk soal pilihan ganda berjumlah 25 soal. Ada 4 type soal OSN tingkat Kabupaten untuk mata pelajaran matematika, yaitu:

  • Soal OSN 2018 Tingkat Kabupaten Matematika SMP dengan Kode OSN.KK.M.R1 👀Lihat Soal
  • Soal OSN 2018 Tingkat Kabupaten Matematika SMP dengan Kode OSN.KK.M.R2 👀Lihat Soal
  • Soal OSN 2018 Tingkat Kabupaten Matematika SMP dengan Kode OSN.KK.M.R3 👀Lihat Soal
  • Soal OSN 2018 Tingkat Kabupaten Matematika SMP dengan Kode OSN.KK.M.R4 👀Lihat Soal

Soal dan Pembahasan OSN Matematika SMP Tingkat Kabupaten (OSN-K) Tahun 2018 (R1)

Berikut soal dan pembahasan soal OSN tingkat kabupaten mata pelajaran matematika untuk SMP😉.

Ayo dicoba terlebih dahulu, Sebelum melihat pembahasan soal.
Tunjukkan Kemampuan Matematika Terbaikmu!
Nama Peserta :
Tanggal Tes :
Jumlah Soal :25 soal

1. Soal OSN-K Matematika SMP 2018

Bilangan prima $p$ dan $q$ masing-masing dua digit. Hasil penjumlahan $p$ dan $q$ merupakan bilangan dua digit yang digitnya sama. Jika bilangan tiga digit $r$ merupakan perkalian $p$ dan $q$, maka dua nilai $r$ yang mungkin adalah ...




Alternatif Pembahasan:

Disampaikan $p$ dan $q$ adalah bilangan prima dua digit, maka nilai $p$ dan $q$ adalah diantara: $11$, $13$, $17$, $194$, $23$, $29$, $31$, $37$, $41$, $43$, $47$, $53$, $61$, $67$, $71$, $73$, $79$, $83$, $89$, $91$, dan $97$.

Bilangan prima dua digit adalah bilangan ganjil sehingga $p+q$ bilangan genap dua digit yang digitnya sama, sehingga $p+q=22,44,66, \text{atau}\ 88$.

  • Jika $p+q=22$, maka pasangan $(𝑝,𝑞)$ yang memenuhi adalah $(11,11)$
    Nilai dari $𝑟=pq$ yang memenuhi adalah 121.
  • Jika $𝑝+𝑞=44$, maka pasangan $(𝑝,𝑞)$ yang memenuhi adalah $(13,31)$.
    Nilai dari $𝑟$ yang memenuhi adalah $403$.
  • Jika $𝑝+𝑞=66$, maka pasangan $(𝑝,𝑞)$ yang memenuhi adalah $(13,53),\ (19,47),\ (23,43)$.
    Nilai dari $𝑟$ yang memenuhi adalah $689$, $893$, dan $989$.
  • Jika $𝑝+𝑞=88$, maka $𝑟$ bukan bilangan tiga digit.

$\therefore$ Pilihan yang sesuai $(C)\ 403\ \text{atau}\ 989$

2. Soal OSN-K Matematika SMP 2018

Diketahui tabel distribusi nilai siswa kelas A dan kelas B sebagai berikut:
Soal dan Pembahasan OSN 2018 Tingkat Kabupaten Matematika SMP (Kode: OSN.KK.M.R4)
Pernyataan berikut yang benar adalah...




Alternatif Pembahasan:

Coba kita hitung Mean, Median dan Modus dari nilai ulangan dari kelas A dan kelas B seperti permintaan pada pilihan soal.

Soal dan Pembahasan OSN 2018 Tingkat Kabupaten Matematika SMP (Kode: OSN.KK.M.R4)
  • Mean (rata-rata)
    $\bar{x}=\dfrac{\text{Jumlah Data}}{\text{Banyak data}}$
    $\bar{x}_{A}=\dfrac{2920}{36}=81,11$
    $\bar{x}_{B}=\dfrac{2885}{36}=80,13$
  • Modus (Nilai paling sering muncul)
    $Mo_{A}=80$
    $Mo_{B}=85$
  • Median (Nilai tengah)
    Banyak data sama yaitu 36, Nilai median berada pada nilai ke-$\dfrac{f_{18}+f_{19}}{2}$
    $Me_{A}=\dfrac{80+80}{2}=80$
    $Me_{B}=\dfrac{80+80}{2}=80$

$\therefore$ Pilihan yang sesuai adalah $(A)$ Median nilai ulangan sama untuk kelas A dan kelas B

3. Soal OSN-K Matematika SMP 2018

Pada suatu data terdapat 21 bilangan bulat positif. Bilangan terbesar pada data tersebut adalah $16$. Median dari data adalah $10$. Rata-rata terkecil yang mungkin dari data tersebut adalah...




Alternatif Pembahasan:

Kita misalkan $21$ bilangan bulat positif setelah diurutkan dari yang terkecil adalah $x_{1},x_{2},x_{3},\cdots,x_{21}$.

Bilangan terbesar: $x_{21}=16$
Median: $x_{11}=10$
Rata-rata:
$\bar{x}=\dfrac{x_{1}+x_{2}+x_{3}+\cdots +x_{21}}{21}$
Agar rata-rata yang dihasilkan adalah yang terkecil dan masih memenuhi syarat yaitu bilangan terbesar $21$ dan median $10$, maka kita anggap saja $x_{1}$ sampai $x_{10}$ nilainya adalah $1$, lalu $x_{11}$ sampai $x_{20}$ nilainya adalah $10$.

Rata-rata nilai terkecil adalah:
$\begin{align}
\bar{x} &=\dfrac{x_{1}+x_{2}+x_{3}+\cdots +x_{21}}{21} \\ &=\dfrac{10 \times 1+ 10 \times 10+16}{21} \\ &=\dfrac{10+100+16}{21} \\ &=\dfrac{126}{21} \\ &=6
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 6$

4. Soal OSN-K Matematika SMP 2018

Diketahui persamaan garis $3x+4y-5=0$. Jika garis tersebut direfleksikan terhadap sumbu $Y$ dan dilanjutkan dilatasi $[O,3]$, maka persamaannya menjadi...




Alternatif Pembahasan:

Mungkin bisa mempermudah pengerjaan jika kita coba dengan merubah bentuk garis $3x+4y-5=0$ menjadi bentuk $y=mx+n$.

$\begin{align} 3x+4y-5 &= 0 \\ 4y &=-3x+5 \\ y &=\dfrac{-3}{4}x+\dfrac{5}{4} \end{align}$


Garis direfleksikan terhadap sumbu $Y$,
Persamaan garis $y=\dfrac{-3}{4}x+\dfrac{5}{4}$ jadi $y=\dfrac{3}{4}x+\dfrac{5}{4}$.

Lalu garis didilatasi $[O,3]$,

$\begin{align} y &= \dfrac{3}{4}x+\dfrac{5}{4} \\ &= \dfrac{3}{4}x+[3] \dfrac{5}{4} \\ &= \dfrac{3}{4}x+[3] \dfrac{5}{4} \\ &= \dfrac{3}{4}x+\dfrac{15}{4} \\ 4y &= 3x+15 \\ 4y-3x-15 &= 0 \end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ -3x+4y-15=0 $

5. Soal OSN-K Matematika SMP 2018

Jika $-1 \lt x \lt y \lt 0$, maka berlaku...




Alternatif Pembahasan:

Dari pertidaksamaan $-1 \lt x \lt y \lt 0$ dapat kita simpulkan bahwa $x \lt 0$, $y \lt 0$ dan $xy \gt 0$.
Jika $x \lt y$ kita kalikan dengan $xy$ maka $x^{2}y \lt xy^{2}$.

Dari data-data yang kita peroleh:

  • $x^{2}y \lt 0$,
  • $xy^{2} \lt 0$,
  • $x^{2}y \lt xy^{2}$dan
  • $xy \gt 0$

Pertidaksamaan yang memenuhi adalah $x^{2}y \lt xy^{2} \lt xy$

$\therefore$ Pilihan yang sesuai adalah $(D)\ x^{2}y \lt xy^{2} \lt xy$

6. Soal OSN-K Matematika SMP 2018

Jika $x$ dan $y$ adalah bilangan bulat positif dengan $y \gt 1$, sehingga $x^{y}=3^{18}5^{30}$, maka nilai $x-y$ yang mungkin adalah...




Alternatif Pembahasan:

Kita coba mulai menyelesaikan soal diatas dengan merubah $3^{18}5^{30}$ menjadi bilangan dengan bentuk $x^{y}$.
$\begin{split}x^{y} &= 3^{18}5^{30}\\ &=\ (3^{3})^{6} \cdot (5^{5})^{6}\\ &=\ (3^{3} \cdot 5^{5})^{6}\\ &=\ (27 \cdot 3125)^{6}\\ &=\ 84375^{6} \end{split}$

Dari bentuk bilangan berpangkat diatas kita peroleh nilai $x=84375$ dan $y=6$.
Nilai $x-y=84375-6=84369$

$\therefore$ Pilihan yang sesuai $(B)\ 84369$

7. Soal OSN-K Matematika SMP 2018

Diketahui $F=\{9,10,11,12,13,.....,49,50\}$ dan $G$ adalah himpunan bilangan yang anggota-anggotanya dapat dinyatakan sebagai hasil penjumlahan tiga atau lebih bilangan-bilangan asli berurutan. Anggota $F\ \cap\ G$ sebanyak...




Alternatif Pembahasan:

$F=\{9,10,11,12,13,.....,49,50\}$,
$n(F)=42$

$G$ adalah himpunan bilangan yang anggota-anggotanya dapat dinyatakan sebagai hasil penjumlahan tiga atau lebih bilangan-bilangan asli berurutan.

  • Hasil penjumlahan tiga bilangan asli berurutan. Untuk $𝑎=1,2,3,\cdots$ kita dapat anggota bilangan $G$ adalah sebagai berikut:
    $𝑎+(𝑎+1)+(𝑎+2)=3𝑎+3$, (Bilangan habis dibagi 3=$3(a+1)$)
    $G=6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,\cdots $

  • Hasil penjumlahan empat bilangan asli berurutan.
    $𝑎+(𝑎+1)+(𝑎+2)+(𝑎+3)=4𝑎+6$, (Bilangan jika dibagi 4 sisa 2=$4(a+1)+2$)
    $𝐺=10,14,18,22,26,30,34,38,42,46,50,\cdots $
  • Hasil penjumlahan lima bilangan asli berurutan.
    $𝑎+(𝑎+1)+\cdots+(𝑎+4)=5𝑎+10$, (Bilangan habis dibagi 5=$5(a+2)$)
    $𝐺=15,20,25,30,35,40,45,50,\cdots$
  • Hasil penjumlahan enam bilangan asli berurutan.
    $𝑎+(𝑎+1)+\cdots+(𝑎+5)=6𝑎+15$, (Bilangan jika dibagi 6 sisa 3=$6(a+2)+3$)
    $𝐺=21,27,33,39,45,\cdots$
  • Hasil penjumlahan tujuh bilangan asli berurutan.
    $𝑎+(𝑎+1)+\cdots+(a+6)=7𝑎+21$, (Bilangan habis dibagi 7=$7(a+3)$)
    $𝐺=28,35,42,49,\cdots$
  • Hasil penjumlahan delapan bilangan asli berurutan.
    $a+(𝑎+1)+\cdots+(a+7)=8𝑎+28=$, (Bilangan jika dibagi 8 sisa 4=$8(a+3)+4$)
    $𝐺=36,44,\cdots$
  • Hasil penjumlahan sembilan bilangan asli berurutan.
    $𝑎+(𝑎+1)+\cdots+(a+8)=9𝑎+36$, (Bilangan habis dibagi 9=$9(a+4)$)
    $𝐺=45,\cdots $

Banyak anggota $G$ tak hingga, tetapi anggota $G$ yang merupakan anggota $F$ adalah 9, 10, 12, 14, 15, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 33, 34, 35, 36, 38, 39, 40, 42, 45, 46, 49, dan 50.
$n(F\ \cap\ G)=29$

$\therefore$ Pilihan yang sesuai $(C)\ 29$

8. Soal OSN-K Matematika SMP 2018

Salah satu contoh situasi untuk sistem persamaan $2x+y = 10000$ dan $x+3y=20000$ adalah...




Alternatif Pembahasan:

Jika pernyataan pada pilihan di atas dapat kita tuliskan menjadi:
$(A)\ x+y=10000$ dan $x+3y=20000$
$(B)\ x+3y=10000$ dan $2x+y=20000$
$(C)\ 2x+3y \leq 30000$
$(D)\ 2x+y = 10000$ dan $x+3y=20000$

$\therefore$ Pilihan yang sesuai adalah $(D)$ Seorang membeli sebuah pulpen dan tiga buah buku tulis seharga $Rp20.000,00$. Selain itu, dia juga membeli dua buah pulpen dan sebuah buku tulis untuk adiknya seharga $Rp10.000,00$. Berapakah harga masing-masing sebuah pulpen dan sebuah buku tulis?

9. Soal OSN-K Matematika SMP 2018

Diketahui $x,\ y,\ \text{dan}\ z$ adalah tiga bilangan bulat positif. Tiga terurut $(x,\ y,\ z)$ yang memenuhi $(x+2y)^{z} = 64$ ada sebanyak...




Alternatif Pembahasan:

$(x+2y)^{z}=64=2^{6}=4^{3}=8^{2}$

  • Kemungkinan I;
    $(x+2y)^{z}=2^{6}$, diperoleh nilai $z=6$ dan $(x+2y)=2$.
    Pada saat ini tidak ada nilai $x$ dan $y$ bilangan bulat positif yang memenuhi $(x+2y)=2$. Tiga terurut $(x,y,z)$ ada sebanyak 0.
  • Kemungkinan II;
    $(x+2y)^{z}=4^{3}$, diperoleh nilai $z=3$ dan $(x+2y)=4$.
    Pasangan $(x,y)$ adalah $(2,1)$. Tiga terurut $(x,y,z)$ ada sebanyak 1.
  • Kemungkinan III;
    $(x+2y)^{z}=8^{2}$, diperoleh nilai $z=2$ dan $(x+2y)=8$
    Pasangan $(x,y)$ adalah $(6,1),(4,2),(2,3)$. Tiga terurut $(x,y,z)$ ada sebanyak 3.
  • Kemungkinan IV;
    $(x+2y)^{z}=64^{1}$, diperoleh nilai $z=1$ dan $(x+2y)=64$
    Pasangan $(x,y)$ adalah $(62,1),(60,2),(58,3), \cdots ,(2,31)$. Tiga terurut $(x,y,z)$ ada sebanyak 31.

Total banyak kemungkinan tiga terurut $(x,y,z)$ ada sebanyak $0+1+3+31=35$

$\therefore$ Pilihan yang sesuai $(C)\ 35$

10. Soal OSN-K Matematika SMP 2018

Sepuluh kartu masing-masing ditulis bilangan $1-10$ sedemikian sehingga tidak ada dua kartu yang memiliki bilangan sama. Sebuah kartu diambil secara acak, dicatat bilangan pada kartu tersebut. Kemudian sebuah dadu dilemparkan, dicatat mata dadu yang muncul. Peluang untuk mendapatkan hasil kali bilangan pada kartu dan mata dadu yang merupakan bilangan kuadrat adalah...




Alternatif Pembahasan:

Kartu: $\{1,2,3,\cdots,10\}$
Dadu: $\{1,2,3,\cdots,6\}$

Hasil yang mungkin terjadi [Ruang Sampel];
$S:\{(1,1),(1,2),(1,3),\cdots,(6,10)\}$
$n(S)=60$

Kejadian yang diharapkan muncul adalah hasil kali bilangan pada kartu dan mata dadu yang merupakan bilangan kuadrat.
$E:\{(1,1),(2,2),(3,3),(4,4)$$,(5,5),(6,6),(1,4),(1,9)$$,(2,8),(4,1),(4,9)\}$
$n(E)=11$

Peluang kejadian $E$ terjadi adalah:
$P(E)=\dfrac{n(E)}{n(S)}$
$P(E)=\dfrac{11}{60}$

$\therefore$ Pilihan yang sesuai $(C)\ \dfrac{11}{60}$

11. Soal OSN-K Matematika SMP 2018

Grafik fungsi kuadrat $y=a(x-1)^{2}+a$ dengan $a \neq 0$, tidak berpotongan dengan grafik fungsi kuadrat $y=(1-a^{2})x^{2}+2a+1$, jika...




Alternatif Pembahasan:

Persamaan Kuadrat persekutuan kita peroleh dari persamaan berikut;
\begin{split}y &= y\\ a(x-1)^{2}+a &=(1-a^{2})x^{2}+2a+1\\ a(x^{2}-2x+1)+a &=(1-a^{2})x^{2}+2a+1\\ ax^{2}-2ax+2a &=(1-a^{2})x^{2}+2a+1\\ ax^{2}-2ax+2a-(1-a^{2})x^{2}-2a-1 &=0\\ ax^{2}+(a^{2}-1)x^{2}-2ax-1 &=0\\ (a^{2}+a-1)x^{2}-2ax-1 &=0 \end{split}
Agar kedua grafik tidak berpotongan, maka nilai Diskriminan harus lebih kecil dari nol $(𝐷 \lt 0)$
$\begin{align}
D & = b^{2}-4ac \\ & = (-2a)^{2}-4(a^{2}+a-1)(-1) \\ & = 4a^{2}+4a^{2}+4a-4 \\ & = 8a^{2}+4a-4 \\ & = 4(2a-1)(a+1) \\ \hline & 4(2a-1)(a+1) \lt 0 \\ & (2a-1)(a+1) \lt 0 \\ & HP:\ -1 \lt a \lt \dfrac{1}{2} \\ \end{align}$

Karena $a \neq 0$, maka nilai $a$ yang memenuhi adalah
$-1 \lt a \lt 0$ atau $0 \lt a \lt \dfrac{1}{2}$

$\therefore$ Pilihan yang sesuai adalah $(A)\ -1 \lt a \lt 0\ \text{atau}\ 0 \lt a \lt \dfrac{1}{2}$

12. Soal OSN-K Matematika SMP 2018

Suku keempat, suku ketujuh, suku kesepuluh, dan suku ke-1010 suatu barisan aritmatika berturut-turut adalah $t,\ t^{2},\ \text{dan}\ t+t^{2}$, dan 2018. Suku ke-100 dikurangi suku ke-10 barisan tersebut adalah...




Alternatif Pembahasan:

Sekarang kita coba bermain dengan Barisan Aritmatika;
$\begin{align}
U_{4} &= a+3b=t \\ U_{7} &= a+6b=t^{2} \\ U_{10} &= a+9b=t+t^{2} \\ U_{1010} &=a+1009b=2018 \\ \hline U_{4}+U_{7} &= t+t^{2} \\ a+3b+a+6b &= t+t^{2} \\ 2a+9b &= a+9b \\ a &= 0 \\ \hline a+1009b &= 2018 \\ 1009b &= 2018 \\ b &= \dfrac{2018}{1009} \\ b &= 2 \\ \end{align}$ $\begin{align}
U_{100}-U_{10} & = a+99b-a+9b \\ & = 90b \\ & = 90(2) = 180 \\ \end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D)\ 180$

13. Soal OSN-K Matematika SMP 2018

Diketahui jajar genjang $ABCD$ dengan $AB=10\ cm$. Titik $P$ berada di garis diagonal $BD$ dan sebagai titik potong garis $BD$ dan $AQ$, serta titik $Q$ terletak pada $CD$ dan $BP=2DP$. panjang $DQ$ adalah...cm




Alternatif Pembahasan:

Soal dan Pembahasan OSN 2018 Tingkat Kabupaten Matematika SMP (Kode: OSN.KK.M.R2)

Dari gambar jajar genjang $ABCD$ diatas kita peroleh $\bigtriangleup ABP$ sebangun dengan $\bigtriangleup QDP$, sehingga berlaku:
$\begin{align}
\dfrac{DQ}{AB} &=\dfrac{DP}{BP}=\dfrac{1}{2} \\ DQ &=\dfrac{1}{2} AB \\ DQ &=5\ cm \\ \end{align}$

$\therefore$ Pilihan yang sesuai $(D)\ 5$

14. Soal OSN-K Matematika SMP 2018

Diberikan bilangan asli dua digit. Peluang bahwa bilangan tersebut memiliki digit penyusun prima dan bersisa $3$ jika dibagi $7$ adalah...




Alternatif Pembahasan:

Ruang Sampel adalah Banyak bilangan asli dua digit.
$S=\{10,11, \cdots , 99 \}$
$n(S)=90$

Kejadian yang diharapkan adalah bilangan yang memiliki digit penyusun prima dan bersisa $3$ jika dibagi $7$.
Bilangan asli dua digit yang penyusunnya bilangan prima adalah
$22$, $23$, $25$, $27$,
$32$, $33$, $35$, $37$,
$52$, $53$, $55$, $57$,
$72$, $73$, $75$, $77$.
Diantara bilangan-bilangan tersebut, bilangan yang bersisa $3$ jika dibagi $7$ (*habis dibagi $7$ jika ditambahkan $4$) adalah $52$ dan $73$.
$n(E)=2$

$P(E)=\dfrac{n(E)}{n(S)}$
$P(E)=\dfrac{2}{90}=\dfrac{1}{45}$

$\therefore$ Pilihan yang sesuai $(A)\ \dfrac{1}{45}$

15. Soal OSN-K Matematika SMP 2018

Perhatikan $\bigtriangleup ABC$ dan lingkaran dalam pada gambar di bawah.
Soal dan Pembahasan OSN 2018 Tingkat Kabupaten Matematika SMP (Kode: OSN.KK.M.R3)
Jika $\bigtriangleup ABC$ sama sisi dengan $CD=6\ cm$, maka luas daerah lingkaran dalam adalah...$cm^{2}$




Alternatif Pembahasan:

Soal dan Pembahasan OSN 2018 Tingkat Kabupaten Matematika SMP (Kode: OSN.KK.M.R3)

Lingkaran menyinggung ketiga sisi segitiga sama sisi, maka pusat lingkaran titik $O$ juga merupakan pusat segitiga.
$\begin{align}
AD^{2} & = AC^{2}-DC^{2} \\ & = 12^{2}-6^{2} \\ & = 144-36 \\ & = 108 \\ AD & = \sqrt{108} \\ & = 6\sqrt{3} \end{align}$

Perbandingan $AO:OD=2:1$
$OD=\dfrac{1}{3} \times AD$
$OD=\dfrac{1}{3} \times 6\sqrt{3}$
$OD=2\sqrt{3}$

Luas Lingkaran adalah:
$\begin{align}
L & = \pi r^{2} \\ & = \pi (2\sqrt{3})^{2} \\ & = 12 \pi \end{align}$

$\therefore$ Pilihan yang sesuai adalah $(B)\ 12 \pi$

16. Soal OSN-K Matematika SMP 2018

Kubus $ABCD.PQRS$ memiliki sisi-sisi yang panjangnya 4 cm. Jika titik $T$ terletak pada perpanjangan garis $CR$ sehinga $RT=CR$, maka luas daerah $TBD$ adalah...$cm^{2}$




Alternatif Pembahasan:
Soal dan Pembahasan OSN 2018 Tingkat Kabupaten Matematika SMP (Kode: OSN.KK.M.R4)

$AB=4$, $AC=BD=4\sqrt{2}$,
$OC=\dfrac{1}{2}AC=2\sqrt{2}$, $CT=8$

$\begin{align}
OT^{2} & = OC^{2} + CT^{2} \\ & = (2\sqrt{2})^{2} + 8^{2} \\ & = 8 + 64 \\ OT & = \sqrt{72} \\ & = 6 \sqrt{2} \end{align}$

Luas $\bigtriangleup BDT$ adalah:
$\begin{align}
(BDT) & = \dfrac{1}{2} BD \cdot OT \\ & = \dfrac{1}{2} \cdot 4\sqrt{2} \cdot 6\sqrt{2} \\ & = 24 \end{align}$

$\therefore$ Pilihan yang sesuai $(B)\ 24$

17. Soal OSN-K Matematika SMP 2018

Peserta sebuah kegiatan OSIS yang diikuti oleh $2$ orang siswa laki-laki dan $4$ orang siswa perempuan dibagi secara acak menjadi dua kelompok dengan anggota masing-masing tiga orang. Peluang bahwa setiap kelompok beranggotakan satu siswa laki-laki adalah...




Alternatif Pembahasan:

Ruang Sampel
$S:$ Dua kelompok masing-masing 3 orang dari 2 siswa laki-laki dan 4 siswa perempuan.
$n(S)=C_{3}^{6}$
$n(S)=\dfrac{6!}{3! \cdot (6-3)!}$
$n(S)=\dfrac{6 \cdot 5 \cdot 4 \cdot 3!}{6 \cdot 3!}$
$n(S)=20$

Kejadian
$E:$ Setiap kelompok beranggotakan satu siswa laki-laki.
$n(E)= C_{1}^{2} \cdot C_{2}^{4}$
$n(E)= 2 \cdot 6 =12$

Peluang kejadian $E$
$P(E)=\dfrac{n(E)}{n(S)}$
$P(E)=\dfrac{12}{20}$
$P(E)=\dfrac{3}{5}$

Alternatif mode nguli, hasilnya sebagai berikut;
Misal anggota OSIS adalah $P_{1},P_{2},P_{3},P_{4},L_{1},L_{2}$.
$(P_{1},P_{2},P_{3})$; $(P_{4},L_{1},L_{2})$ | $(P_{1},P_{2},P_{4})$; $(P_{3},L_{1},L_{2})$ | $(P_{1},P_{2},L_{1})$; $(P_{3},P_{4},L_{2})$ | $(P_{1},P_{2},L_{2})$; $(P_{3},P_{4},L_{1})$ | $(P_{1},P_{3},P_{4})$; $(P_{2},L_{1},L_{2})$ | $(P_{1},P_{3},L_{1})$; $(P_{2},P_{4},L_{2})$ | $(P_{1},P_{3},L_{2})$; $(P_{2},P_{4},L_{1})$ | $(P_{1},P_{4},L_{1})$; $(P_{2},P_{3},L_{2})$ | $(P_{1},P_{4},L_{2})$; $(P_{2},P_{3},L_{1})$ | $(P_{1},L_{1},L_{2})$; $(P_{2},P_{3},P_{4})$
Dari $10$ kelompok yang mungkin terbentuk $6$ diantaranya beranggotakan $1$ laki-laki. $P(E)=\dfrac{6}{10}=\dfrac{3}{5}$

$\therefore$ Pilihan yang sesuai $(A)\ \dfrac{3}{5}$

18. Soal OSN-K Matematika SMP 2018

Semua bilangan real $x$ yang memenuhi pertidaksamaan $\dfrac{2(x+3)-5\sqrt{x+2}}{x+2} \geq 0$ adalah...




Alternatif Pembahasan:

$\dfrac{2(x+3)-\sqrt{x+2}}{x+2} \geq 0$

Dari pertidaksamaan pecahan diatas, jika kita perhatikan bilangan pada penyebut sama dengan yang di dalam akar yaitu $x+2$.
Sehingga agar pertidaksamaan ini terdefinisi syarat yang dipenuhi pertama adalah $x+2 \gt 0$ atau $x \gt -2$

Kita coba bermain dengan memisalkan $x+2=m$
$\begin{split}\dfrac{2(x+3)-5\sqrt{x+2}}{x+2} & \geq 0\\ \dfrac{2(m+1)-5\sqrt{m}}{m} & \geq 0\\ \dfrac{2m+2-5 \sqrt{m}}{m} & \geq 0\\ 2m+2-5 \sqrt{m} & \geq 0\\ 2m+2 & \geq 5 \sqrt{m}\\ (2m+2)^{2} & \geq (5 \sqrt{m})^{2} \\ 4m^{2}+8m+4 & \geq 25m \\ 4m^{2}-17m+4 & \geq 0 \\ (4m-1)(m-4) & \geq 0 \\ \text{Nilai $m$ yang memenuhi adalah:}\\ m \leq \dfrac{1}{4} \text{atau}\ m \geq 4 \end{split}$
Kita substitusikan kembali nilai $m=x+2$

  • $m \leq \dfrac{1}{4} $
    $x+2 \leq \dfrac{1}{4} $
    $x \leq -\dfrac{7}{4} $
  • $m \geq 4$
    $x+2 \geq 4$
    $x \geq 2$

Dengan mengabungkan kedua syarat diatas dan syarat awal $x \gt -2$ maka akan kita peroleh pertidaksamaan sebagai berikut:

Soal dan Pembahasan OSN 2018 Tingkat Kabupaten Matematika SMP (Kode: OSN.KK.M.R3)

$-2 \lt x \leq -\dfrac{7}{4}$ atau $x \geq 2$

$\therefore$ Pilihan yang sesuai $(B)\ -2 \lt x \leq - \dfrac{7}{4} \text{atau}\ x\geq 2$

19. Soal OSN-K Matematika SMP 2018

Jika $\dfrac{1}{n}-\dfrac{1}{3n}+\dfrac{n}{3}-\dfrac{1}{2n}=\dfrac{3}{2n}$, maka jumlah semua nilai $n$ yang mungkin adalah...




Alternatif Pembahasan:

Soal sepertinya kembali mengajak kita untuk bermain-main di aljabar,..
$\begin{split} \dfrac{1}{n}-\dfrac{1}{3n}+\dfrac{n}{3}-\dfrac{1}{2n} & =\dfrac{3}{2n} \\ \dfrac{1}{n}-\dfrac{1}{3n}+\dfrac{n}{3}-\dfrac{1}{2n}- \dfrac{3}{2n} & =0 \\ \dfrac{6}{6n}-\dfrac{2}{6n}+\dfrac{2n^{2}}{6n}-\dfrac{3}{6n}- \dfrac{9}{6n} & =0 \\ \dfrac{2n^{2}-8}{6n} & =0 \\ \dfrac{n^{2}-4}{3n} & =0 \\ n^{2}-4 & =0 \\ n_{1}+n_{2} & = -\dfrac{b}{a} \\ & = -\dfrac{0}{1}=0 \\ \end{split}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 0$

20. Soal OSN-K Matematika SMP 2018

Grafik dibawah ini menggambarkan gerakan dua kendaraan bermotor.
Soal dan Pembahasan OSN 2018 Tingkat Kabupaten Matematika SMP (Kode: OSN.KK.M.R3)
Pernyataan berikut yang salah adalah...




Alternatif Pembahasan:

Dengan memperhatikan grafik dan pernyataan pada pilihan soal, kita dapat menyimpulkan

  • Pernyataan yang $(A)$ Benar, karena kecepatan terendah pertama ada pada saat detik ke-10 hingga ke-15;
  • Pernyataan yang $(B)$ Salah, karena kecepatan tertinggi kendaraan B adalah pada detik ke-2 sampai detik ke-8;
  • Pernyataan yang $(C)$ Benar, karena dari detik ke-10 hingga ke-15 tidak ada pertambahan jarak tempuh kedua kendaraan;
  • Pernyataan yang $(D)$ Benar, Karena waktu yang dibutuhkan kendaraan A untuk menempuh 1 km lebih sedikit dari kendaraan B;

$\therefore$ Pilihan yang sesuai $(B)$ Kecepatan tertinggi kendaraan B dicapai pada detik ke-18 hingga detik ke-23

21. Soal OSN-K Matematika SMP 2018

Menjelang tahun baru, harga sebuah kacamata dipotong (didiskon) dua kali seperti dinyatakan pada tanda di samping. Seorang pembeli membayar sebesar Rp168.750,00 untuk kacamata tersebut. Berapa harga kacamata tersebut sebelum dipotong harganya?
Soal dan Pembahasan OSN 2018 Tingkat Kabupaten Matematika SMP (Kode: OSN.KK.M.R4)




Alternatif Pembahasan:

Misal Harga awal adalah $H_{o}$ dan Harga setelah diskon pertama adalah $H_{1}$
$\begin{split} H_{1} &= \dfrac{100}{100-10} \times 168.750 \\ &=\ \dfrac{100}{90} \times 168.750 \\ &=\ 187.500 \\ \hline H_{o} &= \dfrac{100}{100-50} \times 187.500 \\ &=\ \dfrac{100}{50} \times 187.500 \\ &=\ 375.000 \end{split}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ Rp375.000,00$

22. Soal OSN-K Matematika SMP 2018

Nilai sudut $x$ dan $y$ pada gambar berikut adalah...
Soal dan Pembahasan OSN 2018 Tingkat Kabupaten Matematika SMP (Kode: OSN.KK.M.R4)




Alternatif Pembahasan:

Dengan memperhatikan gambar, kita mulai dari segitiga yang terbentuk. Besar sudut dalam sebuah segitiga adalah $180^{\circ}$ sehingga kita peroleh:
$\begin{align}
61^{\circ}+2x+(180^{\circ}-135^{\circ}) &= 180^{\circ} \\ 61^{\circ}+2x+45^{\circ} &= 180^{\circ} \\ 2x &= 180^{\circ}-106^{\circ} \\ 2x &= 74^{\circ} \\ x &= 37^{\circ} \\ \hline y &= 180^{\circ}-2x \\ y &= 180^{\circ}-74^{\circ} \\ y &= 106^{\circ}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D)\ x=37^{\circ};\ y=106^{\circ}$

23. Soal OSN-K Matematika SMP 2018

Rata-rata usia sepasang suami istri pada saat mereka menikah adalah $25$ tahun. Rata-rata usia keluarga pada saat anak pertama mereka lahir adalah $18$ tahun. Rata-rata usia keluarga pada saat anak kedua lahir adalah $15$ tahun. Rata-rata usia keluarga pada saat anak ketiga dan keempat lahir (kembar) adalah $12$ tahun. Jika saat ini rata-rata usia enam orang ini adalah $16$ tahun, maka usia anak pertama mereka adalah... tahun.




Alternatif Pembahasan:
  • Rata-rata usia suami istri saat menikah adalah $25$ tahun.
    Misal usia suami saat menikah adalah $s$, dan usia istri saat menikah adalah $i$.
    $\dfrac{s+i}{2}=25$
    $s+i=50$
  • Rata-rata usia keluarga saat anak pertama lahir adalah $18$ tahun;
    Misal anak pertama lahir setelah usia pernikahan $a$ tahun, dan anak baru lahir kita anggap berusia $0$ tahun.
    $\begin{align}
    \dfrac{(s+a)+(i+a)+0}{3} &=18 \\ s+i+2a&=54 \\ 50+2a&=54 \\ 2a &=4 \\
    a &= 2
    \end{align}$
    Anak pertama lahir setelah perkawinan berusia $2$ tahun, sehingga jumlah usia suami dan istri adalah $s+i=50+4=54$;
  • Rata-rata usia keluarga saat anak kedua lahir adalah $15$ tahun.
    Misal anak kedua lahir setelah usia anak pertama $b$ tahun, dan anak baru lahir kita anggap berusia $0$ tahun.
    $\begin{align}
    \dfrac{(s+b)+(i+b)+b+0}{4} &=15 \\ s+i+3b &=60 \\ 54+3b &=60 \\ 3b &=6 \\
    b &= 2
    \end{align}$
    Anak kedua lahir setelah anak pertama berusia $2$ tahun, sehingga jumlah usia suami dan istri adalah $s+i=54+4=58$, dan usia anak kedua $0$ tahun
  • Rata-rata usia keluarga saat anak ketiga dan keempat lahir (kembar) adalah $12$ tahun.
    Misal anak ketiga dan keempat lahir setelah usia anak kedua $c$ tahun, dan anak baru lahir kita anggap berusia $0$ tahun.
    $\begin{align}
    \dfrac{(s+c)+(i+c)+(2+c)+c+2 \times 0}{6} &= 12 \\ s+i+4c+2 &= 72 \\ 58+4c+2 &= 72 \\ 4c &= 12 \\
    c &= 3
    \end{align}$
    Anak ketiga dan keempat lahir setelah usia anak kedua $3$ tahun, sehingga jumlah usia suami dan istri adalah $s+i=58+6=64$, dan usia anak pertama $5$ tahun;
  • Rata-rata usia enam orang saat ini adalah $16$ tahun.
    Misal usia anak ketiga dan keempat saat ini adalah $d$ tahun, maka usia anak kedua $3+d$, usia anak pertama $5+d$, dan jumlah usia suami dan istri adalah $s+i=64+2d$.
    $\begin{align}
    \dfrac{s+i+a1+a2+a3+a4}{6} &= 16 \\ \dfrac{(64+2d)+(5+d)+(3+d)+(d)+(d)}{6} &= 16 \\ \dfrac{64+2d+5+d+3+d+d+d}{6} &= 16 \\ \dfrac{72+6d}{6} &= 16 \\ 72+6d &= 96 \\ 6d &= 24 \\
    d &= 4
    \end{align}$
    Pada saat ini, usia anak pertama adalah $5+4=9$ tahun;

$\therefore$ Pilihan yang sesuai adalah $(C)\ 9$

24. Soal OSN-K Matematika SMP 2018

Grafik berikut menunjukkan persentase berdasarkan jenis kelamin pada suatu ujian masuk sekolah tinggi dari tahun 2013 sampai 2017. Sedangkan tabel di bawahnya menunjukkan jumlah peserta ujian dan jumlah lulusan, serta komposisi lulusan berdasarkan jenis kelamin.
Soal dan Pembahasan OSN 2018 Tingkat Kabupaten Matematika SMP (Kode: OSN.KK.M.R4)
Soal dan Pembahasan OSN 2018 Tingkat Kabupaten Matematika SMP (Kode: OSN.KK.M.R4)
Total peserta perempuan yang tidak lulus ujian selama lima tahun adalah...orang




Alternatif Pembahasan:

Informasi yang bisa kita kumpulkan dari grafik dan tabel diatas untuk peserta Perempuan adalah sebagai berikut;

  • Tahun 2013
    Perempuan: $\dfrac{40}{100} \times 1400 = 560$
    Lulus: $\dfrac{40}{100} \times 800 = 320$
    Tidak Lulus: $560-320=240$
  • Tahun 2014
    Perempuan: $\dfrac{50}{100} \times 800 = 400$
    Lulus: $\dfrac{50}{100} \times 660 = 330$
    Tidak Lulus: $400-330=70$
  • Tahun 2015
    Perempuan: $\dfrac{36}{100} \times 1000 = 360$
    Lulus: $\dfrac{55}{100} \times 500 = 275$
    Tidak Lulus: $360-275=85$
  • Tahun 2016
    Perempuan: $\dfrac{45}{100} \times 500 = 225$
    Lulus: $\dfrac{52}{100} \times 400 = 208$
    Tidak Lulus: $225-208=17$
  • Tahun 2017
    Perempuan: $\dfrac{30}{100} \times 1100 = 330$
    Lulus: $\dfrac{36}{100} \times 800 = 288$
    Tidak Lulus: $330-288=42$

Total peserta perempuan tidak lulus adalah:
$240+70+85+17+42=454$

$\therefore$ Pilihan yang sesuai $(A)\ 454$

25. Soal OSN-K Matematika SMP 2018

Diketahui sisi-sisi trapesium adalah $5\ cm$, $7\ cm$, $7\ cm$, dan $13\ cm$. Pernyataan di bawah yang salah adalah...




Alternatif Pembahasan:

Trapesium dengan panjang sisi $5\ cm$, $7\ cm$, $7\ cm$, dan $13\ cm$, yang bisa kita bentuk ada 2 kemungkinan;
Kemungkinan Pertama

Soal dan Pembahasan OSN 2018 Tingkat Kabupaten Matematika SMP (Kode: OSN.KK.M.R4)

Dari gambar di atas tinggi dan luas trapesium adalah;
$\begin{align}
t &= \sqrt{7^{2}-4^{2}} \\ t &= \sqrt{49-16} \\ t &= \sqrt{33}\ (A) \\ \hline L &= \dfrac{1}{2} (5+13) \cdot \sqrt{33} \\ L &= 9 \sqrt{33} \ (D) \\ \end{align}$
Kemungkinan Kedua

Soal dan Pembahasan OSN 2018 Tingkat Kabupaten Matematika SMP (Kode: OSN.KK.M.R4)

Dari gambar di atas tinggi dan luas trapesium adalah;
$\begin{align}
t &= \sqrt{7^{2}-(6-x)^{2}} \\ t &= \sqrt{49-36+12x-x^{2}} \\ t &= \sqrt{13+12x-x^{2}} \\ \hline t &= \sqrt{5^{2}-x^{2}} \\ t &= \sqrt{25-x^{2}} \\ \hline \sqrt{25-x^{2}} &= \sqrt{13+12x-x^{2}} \\ 25-x^{2} &= 13+12x-x^{2} \\ 25 &= 13+12x \\ x &= 1 \\ t &= \sqrt{24}=2\sqrt{6}\ (B) \\ \hline L &= \dfrac{1}{2} (7+13) \cdot 2\sqrt{6} \\ L &= 20 \sqrt{6} \\ \end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ \text{Luas trapesium}= 10\sqrt{6}\ cm^{2}$


Ide, referensi, atau penjabaran dari alternatif penyelesaian soal diatas dibantu oleh teman-teman guru matematika di Matematika Nusantara dan Bapak Ahmad Mustofa.

Pada catatan sebelumnya kita sudah mendiskusikan beberapa soal yang dapat dijadikan sebagai bahan latihan dalam menghadapi OSN Matematika pada tahun ini, diantaranya:

Catatan Soal dan Pembahasan OSN Matematika SMP Tingkat Kabupaten (OSN-K) Tahun 2018 (R1) di atas sifatnya "dokumen hidup" yang senantiasa diperbaiki atau diperbaharui sesuai dengan dinamika kebutuhan dan perubahan zaman. Catatan tambahan dari Anda untuk admin diharapkan dapat meningkatkan kualitas catatan ini 🙏 CMIIW.

JADIKAN HARI INI LUAR BIASA!
Ayo Share (Berbagi) Satu Hal Baik.
Jangan jadikan sekolah hanya untuk mencari nilai, tetapi bagaimana sekolah itu menjadikanmu bernilai.
close