
Calon guru belajar matematika dasar SMP lewat soal dan pembahasan statistika pada matematika SMP. Apa yang diharapkan setelah mempelajari materi ini, yaitu dengan aturan yang berlaku dan kreativitas berpikir kita dapat menyajikan dan menyelesaikan masalah yang berkaitan dengan distribusi data, nilai rata-rata, median, modus, dan sebaran data untuk mengambil kesimpulan, membuat keputusan, dan membuat prediksi.
Soal matematika dasar statistika untuk SMP kita pilih dari soal-soal yang sudah pernah diujikan pada soal Ujian Sekolah matematika SMP, soal Ujian Nasional matematika SMP, atau soal ujian seleksi akademik masuk SMA Unggulan atau SMA Plus.
STATISTIKA dan STATISTIK
Statistika merupakan ilmu yang mempelajari bagaimana mengumpulkan data, mengolah data, menyajikan data, menganalisis data, dan mengambil keputusan berdasarkan hasil analisis data tersebut.
Statistik adalah sekelompok metode atau cara untuk mengumpulkan data, mengolah data, menarik kesimpulan, dan membuat keputusan berdasarkan analisis data yang dikumpulkan.
Dari penjelasan sederhana di atas dengan kata lain dapat juga kita sebut statistika adalah ilmu tentang statistik.
RATA-RATA
Rata-rata adalah suatu bilangan yang mewakili sekumpulan data. Istilah rata-rata ini yang paling umum adalah menyatakan rataan aritmetik yang diperoleh dari jumlah data dibagikan dengan banyak data.
Rata-rata sebuah data disimbolkan dengan $\bar{x}$, sehingga untuk sebuah data $x_{1},\ x_{2},\ x_{3}, \cdots\ , x_{n}$ dapat kita tuliskan dalam bentuk:
$\bar{x} = \dfrac{x_{1} + x_{2} + x_{3} + \cdots\ + x_{n}}{n}$
Jika data disajikan dalam bentuk tabel seperti berikut ini:
Nilai $\left( x_{i} \right)$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\cdots$ | $x_{n}$ |
Frekuensi $\left( f_{i} \right)$ | $f_{1}$ | $f_{2}$ | $f_{3}$ | $\cdots$ | $f_{n}$ |
Dari pengembangan rumus rata-rata $\bar{x} = \dfrac{x_{1} + x_{2} + x_{3} + \cdots\ + x_{n}}{n}$, untuk menghitung rata-rata dalam bentuk tabel di atas dapat juga kita gunakan rumus berikut ini:
$\begin{align}
\bar{x} &= \dfrac{\left( f_{1} \times x_{1} \right)+\left( f_{2} \times x_{2} \right)+ \cdots + \left( f_{i} \times x_{i} \right)}{f_{1} + f_{2} + \cdots + f_{i}} \\
\bar{x} & = \dfrac{\sum \limits_{i=1}^{n} \left( x_{i} \times f_{i} \right) }{\sum \limits_{i=1}^{n}f_{i} } \\
\hline
& \text{dimana:} \\
f_{i} &= \text{frekuensi datum} \\
x_{i} &= \text{nilai datum} \\
\end{align}$
MEDIAN
Median adalah nilai tengah suatu data yang telah diurutkan dari yang terkecil ke yang terbesar. Sehingga untuk sebuah data $x_{1},\ x_{2},\ x_{3}, \cdots\ , x_{n}$ jika $n$ ganjil maka mediannya adalah datum ke-$\dfrac{ n+1 }{2}$ sedangkan jika $n$ genap maka mediannya adalah $\dfrac{1}{2} \left( x_{\frac{n}{2}+1}+x_{\frac{n}{2}} \right)$.
MODUS
Modus adalah nilai yang paling sering muncul atau nilai yang frekuensinya paling banyak.
RATA-RATA GABUNGAN
Rata-rata gabungan!
Jika kelompok pertama rata-ratanya $\bar{x}_{1}$ dan banyak anggotanya $n_{1}$ sedangkan kelompok kedua rata-ratanya $\bar{x}_{2}$ dan banyak anggotanya $n_{2}$, sehingga saat dua kelompok digabungkan dapat kita peroleh:
$\begin{align}
\bar{x}_{gab} &= \dfrac{\bar{x}_{1} \times n_{1}+\bar{x}_{2} \times n_{2}}{n_{1}+n_{2}}
\end{align}$
Jika ada tiga kelompok atau lebih, rumus di atas dapat juga digunakan sampai banyak kelompok yang hendak digabungkan.
PENYAJIAN DATA
Data yang sudah dikumpulkan dan dianalisa dapat disajikan dalam beberapa bentuk, antara lain:
- Tabel frekuensi
Nilai Frekuensi $4$ $a$ $5$ $46$ $6$ $80$ $7$ $62$ $8$ $24$ Jumlah $40$ - Diagram batang
- Diagram garis
- Diagram lingkaran
Pembahasan Soal Statistika Matematika SMP
1. Soal UNBK Matematika SMP 2019 |*Soal Lengkap
Tim Bola Basket terdiri dari $5$ siswa memiliki rata-rata berat badan $45\ \text{kg}$. Selisih berat badan terbesar dan terkecil $15\ \text{kg}$. Ada satu orang terberat dan lainnya sama beratnya. Berat badan siswa yang terbesar adalah...
Alternatif Pembahasan:
Kita misalkan berat badan tim bola basket adalah $ x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ dimana $ x_{1}= x_{2}= x_{3}= x_{4}$, $x_{5}-x_{1}=15$ dan $\bar{x}=43$ sehingga berlaku:
$\begin{align}
\bar{x} &= \dfrac{x_{1}+x_{2}+x_{3}+\cdots +x_{5}}{5} \\
45 &= \dfrac{x_{1}+x_{2}+x_{3}+\cdots +x_{5}}{5} \\
45 &= \dfrac{4x_{1}+x_{5}}{5} \\
45 \times 5 &= 4x_{1}+x_{5} \\
225 &= 4x_{1}+x_{5} \\
15 &= x_{5}-x_{1} \\
\hline
210 &= 5x_{1} \\
x_{1} &= \dfrac{210}{5}=42 \\
x_{5} &= 42+15=57
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 57\ \text{kg}$
2. Soal UNBK Matematika SMP 2019 |*Soal Lengkap
Perhatikan tabel berikut!
Banyak siswa yang memiliki tinggi badan di atas rata-rata adalah...
Tinggi Badan (cm) Frekuensi (f) $155$ $4$ $156$ $2$ $157$ $15$ $158$ $8$ $159$ $3$ Jumlah $32$
Alternatif Pembahasan:
Jika tabel kita lengkapi menjadi seperti berikut ini;
Tinggi Badan (cm) | Frekuensi (f) | $t \times f$ |
---|---|---|
$155$ | $4$ | $620$ |
$156$ | $2$ | $312$ |
$157$ | $15$ | $2355$ |
$158$ | $8$ | $1264$ |
$159$ | $3$ | $477$ |
Jumlah | $32$ | $5028$ |
Rata-tata data di atas adalah $\bar{x} = \dfrac{5028}{32}= 157,125$, sehingga banyak siswa yang memiliki tinggi badan di atas rata-rata adalah $8+3=11$.
$\therefore$ Pilihan yang sesuai $(C)\ 11\ \text{siswa}$
3. Soal UNBK Matematika SMP 2019 |*Soal Lengkap
Data tinggi badan $20$ siswa $\text{(dalam cm)}$ sebagai berikut.
$157$, $159$, $159$, $156$, $157$, $157$, $158$, $158$, $158$, $160$, $160$, $161$, $158$, $159$, $159$, $156$, $156$, $157$, $159$, $160$, $160$, $158$, $159$, $160$.
Modus tinggi badan siswa adalah...
Alternatif Pembahasan:
Modus adalah nilai yang paling sering uncul atau frekuensi yang paling besar.
Dari data di atas yang paling sering muncul adalah $159$
$156: 3 \times$;
$157: 4 \times$;
$158: 5 \times$;
$159: 6 \times$;
$160: 5 \times$;
$161: 1 \times$.
$\therefore$ Pilihan yang sesuai adalah $(C)\ 159\ \text{cm}$
4. Soal UNBK Matematika SMP 2019 |*Soal Lengkap
Sekolah melakukan pendataan terhadap kegiatan paling di senangi siswa setelah pulang sekolah seperti pada diagram berikut;
Jika banyak siswa yang di data $1.800$ anak, banyak siswa yang senang bermain bersama teman adalah...
Alternatif Pembahasan:
Dari diagram lingkaran di atas, sudut pusat lingkaran untuk "Bermain Bersama Teman" $360^{\circ}-\left(60^{\circ}+60^{\circ}+70^{\circ}+50^{\circ}+40^{\circ} \right)$ yaitu $80^{\circ}$.
Banyak anak yang senang Bermain Bersama Teman adalah:
$\begin{align}
\dfrac{80^{\circ}}{360^{\circ}} \times 1.800 & = \dfrac{2}{9} \times 1.800 \\
& = \dfrac{2}{9} \times 1.800 \\
& = 400
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 400\ \text{anak}$
5. Soal Simulasi UNBK Matematika SMP 2019 |*Soal Lengkap
Hasil panen padi suatu daerah selama $5$ tahun tergambar pada diagram berikut.
Jika total hasil panen selama $5$ tahun $195$ ton, besar panen pada tahun 2014 adalah...
Alternatif Pembahasan:
Dari grafik kita peroleh data hasil panen sebagai berikut:
- 2011: $40$
- 2012: $30$
- 2013: $45$
- 2013: $x$
- 2015: $25$
Total yang ada di grafik adalah $40+30+45+x+25=140+x$.
Jumlah hasil panen adalah $190$, sehingga panen tahun 2014 adalah $x=190-140=50$
$\therefore$ Pilihan yang sesua adalah $(C)\ 50\ \text{ton}$
6. Soal Simulasi UNBK Matematika SMP 2019 |*Soal Lengkap
Diagram lingkaran di bawah menunjukkan pendidikan orangtua siswa di suatu sekolah. Jika jumlah orang tua siswa di sekolah tersebut $900$ orang, banyak orang tua siswa yang berpendidikan SMP adalah...
Alternatif Pembahasan:
Dari gambar kita peroleh beberapa data,
- SD $45 \%$, banyak orangtua SD adalah $\dfrac{45}{100} \times 900= 405$
- SMA $12 \%$, banyak orangtua SMA adalah $\dfrac{12}{100} \times 900= 108$
- PT $8 \%$, banyak orangtua PT adalah $\dfrac{8}{100} \times 900= 72$
- SMP $35 \%$, banyak orangtua SMP adalah $\dfrac{35}{100} \times 900= 315$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 315\ \text{orang}$
7. Soal Simulasi UNBK Matematika SMP 2019 |*Soal Lengkap
Nilai rata-rata dari $16$ orang siswa adalah $6,3$. Satu siswa yang mempunyai nilai $7,8$ tidak disertakan dari kelompok tersebut. Nilai rata-rata yang baru adalah...
Alternatif Pembahasan:
Rata-rata $(\bar{x})$ adalah jumlah nilai dibagikan dengan banyak nilai.
$\begin{align}
\bar{x} & = \dfrac{x_{1}+x_{2}+x_{3}+\cdots+x_{15}+x_{16}}{16} \\
6,3 & = \dfrac{x_{1}+x_{2}+x_{3}+\cdots+x_{15}+x_{16}}{8} \\
6,3 \times 16 & = x_{1}+x_{2}+x_{3}+\cdots+x_{15}+x_{16} \\
100,8 & = x_{1}+x_{2}+x_{3}+\cdots+x_{15}+x_{16}
\end{align}$
Karena satu siswa yang nilainya $7,8$ tidak disertakan maka $x_{1}+x_{2}+x_{3}+\cdots+x_{15}=100,8-7,8=93$.
Rata-rata yang baru untuk $15$ siswa adalah
$\begin{align}
\bar{x} & = \dfrac{x_{1}+x_{2}+x_{3}+\cdots+x_{15}}{15} \\
& = \dfrac{93}{15} \\
& = \dfrac{31}{5} \\
& = 6,2
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 6,2$
8. Soal Simulasi UNBK Matematika SMP 2019 |*Soal Lengkap
Data berat badan $\text{(dalm kg)}$ peserta didik kelas IX.A sebagai berikut:
$40$, $36$, $38$, $35$, $42$, $39$, $41$, $37$, $42$, $38$, $36$, $40$, $40$, $38$, $37$, $41$.
Berdasarkan data diatas median data tersebut adalah...
Alternatif Pembahasan:
Median adalah nilai tengah suatu data atau suatu nilai yang membagi data menjadi dua bagian yang sama setelah diurutkan dari yang terkecil ke terbesar.
Data di atas kita urutkan terlebih dahulu dari yang terkecil ke yang terbesar.
$35$, $36$, $36$, $37$, $37$, $38$, $38$, $38$, $39$, $40$, $40$, $40$, $41$, $41$, $42$, 42$.
Nilai tengah adalah $\dfrac{38+39}{2}=38,5$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 38,5$
9. Soal UNBK Matematika SMP 2018 |*Soal Lengkap
Diagram lingkaran di bawah berikut adalah data pekerjaan penduduk sebuah desa. Jika penduduk desa tersebut $300$ orang, banyak pengusaha di desa tersebut adalah...
Alternatif Pembahasan:
Dari gambar kita peroleh beberapa data,
- Buruh $20 \%$, banyak buruh adalah $\dfrac{20}{100} \times 300= 60$
- Pedagang $40 \%$, banyak pedagang adalah $\dfrac{40}{100} \times 300= 120$
- Petani seperempat dari lingkaran, berarti $25 \%$, banyak petani adalah $\dfrac{25}{100} \times 300= 75$
- Jumlah Buruh, Petani dan Pedagang adalah $60+120+75=255$, maka $300-255=45$ adalah pengusaha.
$\therefore$ Pilihan yang sesuai adalah $(B)\ 45\ \text{orang}$
10. Soal UNBK Matematika SMP 2018 |*Soal Lengkap
Nilai rata-rata dari $8$ orang siswa adalah $6,5$. Satu siswa yang mempunyai nilai $10$ keluar dari kelompok tersebut. Nilai rata-rata $7$ orang siswa adalah...
Alternatif Pembahasan:
Rata-rata $(\bar{x})$ adalah jumlah nilai dibagikan dengan banyak nilai.
$\begin{align}
\bar{x} & = \dfrac{x_{1}+x_{2}+x_{3}+\cdots+x_{7}+x_{8}}{8} \\
6,5 & = \dfrac{x_{1}+x_{2}+x_{3}+\cdots+x_{7}+x_{8}}{8} \\
6,5 \times 8 & = x_{1}+x_{2}+x_{3}+\cdots+x_{7}+x_{8} \\
52 & = x_{1}+x_{2}+x_{3}+\cdots+x_{7}+x_{8}
\end{align}$
Karena satu siswa yang nilainya $10$ keluar maka $x_{1}+x_{2}+x_{3}+\cdots+x_{7}=42$, rata-rata ketujuh siswa adalah
$\begin{align}
\bar{x} & = \dfrac{x_{1}+x_{2}+x_{3}+\cdots+x_{7}}{7} \\
& = \dfrac{42}{7} \\
& = 6
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(A)\ 6,0$
11. Soal UNBK Matematika SMP 2018 |*Soal Lengkap
Data nomor sepatu dari $18$ peserta didik kelas IX SMP adalah sebagai berikut:
$38$, $43$, $36$, $37$, $41$, $35$, $40$, $37$, $44$, $42$, $37$, $40$, $35$, $36$, $39$, $40$, $39$, $41$
Median dari data tersebut adalah...
Alternatif Pembahasan:
Median adalah nilai tengah suatu data atau suatu nilai yang membagi data menjadi dua bagian yang sama setelah diurutkan dari yang terkecil ke terbesar.
Data di atas kita urutkan terlebih dahulu dari yang terkecil ke yang terbesar.
$35$, $35$, $36$, $36$, $37$, $37$, $37$, $38$, $39$, $39$, $40$, $40$, $40$, $41$, $41$, $42$, $43$, $44$
Nilai tengah adalah $\dfrac{39+39}{2}=39$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 39$
12. Soal UNBK Matematika SMP 2018 |*Soal Lengkap
Berikut adalah data nilai matematika $150$ siswa
Banyak siswa yang memperoleh nilai $8$ adalah...
Alternatif Pembahasan:
Dari grafik kita peroleh data sebagai berikut:
Nilai $6$ ada sebanyak $35$ siswa,
Nilai $7$ ada sebanyak $27$ siswa,
Nilai $9$ ada sebanyak $44$ siswa,
Jumlah yang nilainya $6,\ 7,$ dan $9$ adalah $35+27+44=106$.
Jumlah ssiwa keseluruhan adalah $150$ siswa, sehingga yang nilai $8$ ada sebanyak $150-106=44$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 44\ \text{orang}$
13. Soal Simulasi UNBK Matematika SMP 2018 |*Soal Lengkap
Parto minum $80\ \text{mg}$ obat untuk mengendalikan tekanan darahnya. Grafik berikut memperlihatkan banyaknya obat pada saat itu beserta banyaknya obat dalam darah Parto setelah satu, dua, tiga dan empat hari.
Berapa banyak obat yang masih tetap aktif pada akhir hari pertama?
Alternatif Pembahasan:
Dengan memperhatikan grafik yang dimulai dari $80\ \text{mg}$, sumbu $y$ yang menyatakan kadar Dosis $\text{(mg)}$ untuk satu kotak setara dengan $10\ \text{mg}$. Sumbu $x$ yang menyatakan waktu $\text{(hari)}$ setelah minum obat dimana untuk dua kotak setara dengan $1$ hari.
Dari grafik, pada akhir hari pertama titik grafik berada pada posisi $30-40$, yang paling cocok dengan pilihan pada soal adalah $32\ \text{mg}$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 32$
14. Soal Simulasi UNBK Matematika SMP 2018 |*Soal Lengkap
"Pengunjung Perpustakaan"
Suatu hari Ani menemukan sobekan koran yang memuat data pengunjung perpustakaan berupa gambar diagram batang sebagai berikut.
Informasi yang ada pada koran tersebut menunjukkan data pengunjung perpustakaan selama $5$ hari. Ani penasaran ingin tahu tentang banyak pengunjung pada hari Rabu. Tolong bantu Ani, berapa banyak pengunjung pada hari Rabu?
Alternatif Pembahasan:
Dari informasi yang disampaikan pada sobekan koran bahwa rata-rata pengunjung selama lima hari adalah $41$.
Dengan menerapkan aturan dalam menghitung rata-rata dan informasi pada soal, kesimpulan yang bisa kita ambil adalah:
$\begin{align}
\bar{x} &=\dfrac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}}{5} \\
41 &=\dfrac{x_{senin}+x_{selasa}+x_{rabu}+x_{kamis}+x_{Jumat}}{5} \\
41 &=\dfrac{45+40+x_{rabu}+30+20}{5} \\
41 \times 5 &=135+x_{rabu} \\
205 &=135+x_{rabu}\\
205-135 &=x_{rabu} \\
70 &=x_{rabu}
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 70\ \text{orang}$
15. Soal Simulasi UNBK Matematika SMP 2018 |*Soal Lengkap
Lama pembicaraan telepon (dalam menit) yang di lakukan oleh seorang pengusaha adalah $7$, $8$, $10$, $6$, $6$, $4$, $5$, $4$, $5$, $7$, $9$, $7$. Modus dan rata-rata dari pembicaraan tersebut berturut-turut adalah...
Alternatif Pembahasan:
Data di atas jika kita urutkan adalah $4$, $4$, $5$, $5$, $6$, $6$, $7$, $7$, $7$, $8$, $9$, $10$. Modus adalah nilai data yang paling sering muncul atau nilai yang frekuensinya paling banyak, dari data di atas sudah dapat kita peroleh yaitu $7$ yang muncul sebanyak tiga kali.
Rata-rata data di atas adalah:
$ \begin{align}
\bar{x} & =\dfrac{x_{1}+x_{2}+ \cdots +x_{n}}{n} \\
\bar{x} & =\dfrac{4+ 4+5+5+ 6+ 6+ 7+ 7+ 7+ 8+ 9+ 10}{12} \\
& =\dfrac{8+10+12+21+8+9+10}{12} \\
& =\dfrac{78}{12} \\
& =6,5
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(A)\ 7\ \text {dan}\ 6,5$
16. Soal Simulasi UNBK Matematika SMP 2018 |*Soal Lengkap
Data rata-rata tinggi siswa wanita $134\ \text{cm}$, rata-rata tinggi siswa pria $145\ \text{cm}$. Jika banyak siswa $33$ orang dan rata-rata tinggi seluruhnya $142\ \text{cm}$, maka banyak siswa pria adalah...
Alternatif Pembahasan:
Rata-rata gabungan!
Jika kelompok pertama rata-ratanya $\bar{x}_{1}$ dan banyak anggotanya $n_{1}$ sedangkan kelompok kedua rata-ratanya $\bar{x}_{2}$ dan banyak anggotanya $n_{2}$, sehingga saat dua kelompok digabungkan dapat kita peroleh:
$\begin{align}
\bar{x}_{gab} &= \dfrac{\bar{x}_{1} \times n_{1}+\bar{x}_{2} \times n_{2}}{n_{1}+n_{2}}
\end{align}$
Untuk soal di atas $\bar{x}_{p}=145$, $\bar{x}_{w}=134$, $\bar{x}_{gab}=142$, $n_{p}+n_{w}=33$ atau $n_{w}=33-n_{p}$, sehingga dapat kita peroleh:
$\begin{align}
\bar{x}_{gab} &= \dfrac{\bar{x}_{p} \times n_{p}+\bar{x}_{w} \times n_{w}}{n_{p}+n_{w}} \\
142 &= \dfrac{145 \times n_{p}+134 \times n_{w}}{33} \\
142 \times 33 &= 145 \times n_{p}+134 \times \left(33-n_{p} \right) \\
142 \times 33 &= 145 \times n_{p}+134 \times 33- 134 \times n_{p} \\
142 \times 33-134 \times 33 &= 145 \times n_{p}- 134 \times n_{p} \\
8 \times 33 &= 11 \times n_{p} \\
n_{p} &= \dfrac{8 \times 33}{11} \\
n_{p} &= 8 \times 3=24
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 24\ \text{orang}$
17. Soal TUK Masuk SMA Unggul DEL 2022 |*Soal Lengkap
Grafik di bawah menunjukkan jumlah Home Run yang dilakukan oleh Barry Bond dari tahun $1993$ sampai $2003$.
Selisih Home Run Barry Bond antara tahun $1998$ sampai $1999$ adalah...
Alternatif Pembahasan:
Berdasarkan informasi pada grafik, banyak Home Run yang dilakukan Barry Bond tahun $1998$ adalah $37$ kali dan tahun $1999$ adalah $31$ kali. Sehingga selisihnya adalah $6$.
$\therefore$ Pilihan yang sesuai adalah $(D)\ 6$
18. Soal TUK Masuk SMA Unggul DEL 2022 |*Soal Lengkap
$500$ keluarga disurvey terkait jumlah komputer yang ada dirumahnya. Diagram lingkaran berikut menujukkan hasil survey tersebut.
Jumlah keluarga yang tidak memiliki komputer dan memiliki lebih dari $3$ komputer adalah... keluarga
Alternatif Pembahasan:
Berdasarkan informasi pada grafik, banyak keluarga yang tidak memiliki komputer adalah $\dfrac{20}{100} \times 500=100$ keluarga.
Banyak keluarga yang memiliki komputer lebih dari $3$ adalah $\dfrac{5}{100} \times 500=25$ keluarga.
Jumlah keluarga yang tidak memiliki komputer dan memiliki lebih dari $3$ komputer adalah $100+25=125$ keluarga
$\therefore$ Pilihan yang sesuai adalah $(D)\ 125$
19. Soal TUK Masuk SMA Unggul DEL 2022 |*Soal Lengkap
Dita berlari dengan kecepatan berbeda pada program latihan fisiknya, Grafik di bawah ini menunjukkan denyut jantung per satuan waktu selama sesi latihannya.
Interval dimana denyut jantung Dita konstan lalu lalu menurun tajam adalah....
Alternatif Pembahasan:
Berdasarkan informasi pada grafik, Interval dimana denyut jantung Dita konstan lalu lalu menurun tajam adalah pada menit Diantara $90 - 100$ menit.
$\therefore$ Pilihan yang sesuai adalah $(D)\ \text{Diantara}\ 90 - 100\ \text{menit}$
20. Soal TUK Masuk SMA Unggul DEL 2022 |*Soal Lengkap
Delapan bilangan asli memiliki rata-rata $6,5$. Empat dari delapan bilangan tersebut adalah $4,5,7,\ \text{dan}\ 8$. Selisih antara bilangan terbesar dan terkecil adalah $10$. Jika kedelapan bilangan diurutkan dari kecil ke besar, maka banyak susunannya ada...
Alternatif Pembahasan:
Dari informasi pada soal, kita misalkan kedelapan data adalah $x_{1}$, $x_{2}$, $x_{3}$, $x_{4}$, $x_{5}$, $x_{6}$, $x_{7}$, dan $x_{8}$ dimana rata-rata $6,5$, maka dapat kita peroleh:
$\begin{align}
\bar{x} &= \dfrac{x_{1} + x_{2} + x_{3} + \cdots\ + x_{8}}{8} \\
6,5 &= \dfrac{x_{1} + x_{2} + x_{3} + \cdots\ + x_{8}}{8} \\
(6,5)(8) &= x_{1} + x_{2} + x_{3} + \cdots\ + x_{8} \\
52 &= x_{1} + x_{2} + x_{3} + \cdots\ + x_{8}
\end{align} $
Empat diantara data adalah $4,5,7,\ \text{dan}\ 8$ dan sehingga dapat kita tuliskan:
$\begin{align}
x_{1} + x_{2} + x_{3} + \cdots\ + x_{8} &= 52 \\
x_{a} + x_{b} + x_{c} + x_{d}+4+5+7+8 &= 52 \\
x_{a} + x_{b} + x_{c} + x_{d}+ 24 &= 52 \\
x_{a} + x_{b} + x_{c} + x_{d} &= 28
\end{align} $
Data sudah diketahui $4,5,7,8$, berikutnya kita harus menemukan empat data yang mungkin yang belum diketahui dengan syarat $x_{a} + x_{b} + x_{c} + x_{d} = 28$ dan jangkauan $10$
- Jika $x_{a}=1$ maka $x_{d}=11$, dan kemungkinan nilai $x_{b} + x_{c} =16$.
Pasangan $\left(x_{b},x_{c} \right)$ yang mungkin adalah $\left( 5,11 \right)$, $\left( 6,10 \right)$, $\left( 7,9 \right)$, dan $\left( 8,8 \right)$.
Ada $4$ susunan yang mungkin jika data diurutkan dari yang terkecil ke yang terbesar. - Jika $x_{a}=2$ maka $x_{d}=12$, dan kemungkinan nilai $x_{b} + x_{c} =14$.
Pasangan $\left(x_{b},x_{c} \right)$ yang mungkin adalah $\left( 2,12 \right)$, $\left( 3,11 \right)$, $\left( 4,10 \right)$, $\left( 5,9 \right)$, $\left( 6,8 \right)$ dan $\left( 7,7 \right)$.
Ada $6$ susunan yang mungkin jika data diurutkan dari yang terkecil ke yang terbesar. - Jika $x_{a}=3$ maka $x_{d}=13$, dan kemungkinan nilai $x_{b} + x_{c} =12$.
Pasangan $\left(x_{b},x_{c} \right)$ yang mungkin adalah $\left( 3,9 \right)$, $\left( 4,8 \right)$, $\left( 5,7 \right)$, dan $\left( 6,6 \right)$.
Ada $4$ susunan yang mungkin jika data diurutkan dari yang terkecil ke yang terbesar. - Jika $x_{a}=4$ maka $x_{d}=14$, dan kemungkinan nilai $x_{b} + x_{c} =10$.
Pasangan $\left(x_{b},x_{c} \right)$ yang mungkin adalah $\left( 4,6 \right)$ dan $\left( 5,5 \right)$.
Ada $2$ susunan yang mungkin jika data diurutkan dari yang terkecil ke yang terbesar yaitu $4, 4, 4, 5, 6, 7, 8, 14$ dan $4, 4, 5, 5, 5, 7, 8, 14$.
Total banyak susunan adalah $4+6+4+2=16$ susunan.
$\therefore$ Pilihan yang sesuai
21. Soal UN Matematika SMP 2018 |*Soal Lengkap
Perhatikan data berat badan $\text{(kg)}$ dari $16$ siswa berikut!
$63$, $58$, $46$, $57$, $64$, $52$, $60$, $46$, $54$, $55$, $58$, $65$, $46$, $46$, $62$, $56$
Median dari data tersebut adalah...
Alternatif Pembahasan:
Median adalah nilai tengah suatu data atau suatu nilai yang membagi data menjadi dua bagian yang sama setelah diurutkan dari yang terkecil ke terbesar.
Data di atas kita urutkan terlebih dahulu dari yang terkecil ke yang terbesar.
$46$, $46$, $46$, $46$, $52$, $54$, $55$, $56$, $57$, $58$, $58$, $60$, $62$, $63$, $64$, $65$
Nilai tengah adalah $\dfrac{56+57}{2}=56,5$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 56,5$
22. Soal UN Matematika SMP 2018 |*Soal Lengkap
Rata-rata tinggi badan $32$ orang siswa $170,5$. Jika satu siswa yang memiliki tinggi badan $154$ disertakan, rata-rata tinggi badan seluruhnya adalah...
Alternatif Pembahasan:
Rata-rata $(\bar{x})$ adalah jumlah nilai dibagikan dengan banyak nilai.
$\bar{x} = \dfrac{x_{1}+x_{2}+x_{3}+\cdots+x_{7}+x_{n}}{n}$
Untuk $32$ orang siswa rata-ratanya $170,5$, maka dapat kita peroleh:
$\begin{align}
\bar{x} & = \dfrac{x_{1}+x_{2}+x_{3}+\cdots+x_{7}+x_{32}}{32} \\
170,5 & = \dfrac{x_{1}+x_{2}+x_{3}+\cdots+x_{7}+x_{32}}{32} \\
170,5 \times 32 & = x_{1}+x_{2}+x_{3}+\cdots+x_{7}+x_{32} \\
5.456 & = x_{1}+x_{2}+x_{3}+\cdots+x_{7}+x_{32} \\
\end{align}$
Lalu satu siswa yang memiliki tinggi badan $154$ disertakan, sehingga rata-ratanya adalah:
$\begin{align}
\bar{x} & = \dfrac{x_{1}+x_{2}+x_{3}+\cdots+x_{7}+x_{32}+x_{33}}{33} \\
\bar{x} & = \dfrac{5.456+154}{33} \\
& = \dfrac{5.610}{33}=170
\end{align}$
Cara Alternatif lain!
Dengan mengunakan rata-rata gabungan, dimana $\bar{x}_{1}=170,5$ dan $n_{1}=32$ sedangkan $\bar{x}_{2}=154$ dan $n_{2}=1$, sehingga saat dua kelompok digabungkan dapat kita peroleh:
$\begin{align}
\bar{x}_{gab} &= \dfrac{\bar{x}_{1} \times n_{1}+\bar{x}_{2} \times n_{2}}{n_{1}+n_{2}} \\
&= \dfrac{170,5 \times 32+154 \times 1}{33} \\
&= \dfrac{5.456+154 }{33} \\
&= \dfrac{5.610}{33}=170
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 170\ \text{cm}$
23. Soal UN Matematika SMP 2018 |*Soal Lengkap
Diagram berikut menyatakan kegemaran siswa "SMP TARUNA". Jika banyak siswa yang gemar voli $54$ orang, banyak siswa yang gemar futsal adalah...
Alternatif Pembahasan:
Dari diagram lingkaran di atas, sudut pusat lingkaran untuk siswa gemar "Voli" $90^{\circ}$ setara dengan $54\ \text{orang}$, sehingga untuk siswa gemar "Futsal" dapat kita peroleh:
$\begin{align}
\text{Futsal} & = 360^{\circ}- \left( 90^{\circ}+60^{\circ}+75^{\circ} \right) \\
& = 360^{\circ}- \left( 225^{\circ} \right) \\
& = 135^{\circ} \\
\hline
\text{Futsal} & = \dfrac{135^{\circ}}{90^{\circ}} \times 54\ \text{orang} \\
& = \dfrac{135^{\circ}}{90^{\circ}} \times 54\ \text{orang} \\
& = \dfrac{3}{2} \times 54\ \text{orang} \\
& = 81
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 81\ \text{orang}$
24. Soal UN Matematika SMP 2018 |*Soal Lengkap
Buku Matematika SMP/Mts Kelas IX Semester 1 terdiri dari $6\ \text{BAB}$ yang semuanya berjumlah $170\ \text{halaman}$, dengan rincian: $\text{Judul dan katalog} =2\ \text{halaman}$, $\text{Penjelasan Buku} =1\ \text{halaman}$, $\text{Kata Sambutan} =1\ \text{halaman}$, $\text{Kata Pengantar} =1\ \text{halaman}$, $\text{Daftar Isi} =1\ \text{halaman}$, $\text{Kunci Jawaban} =1\ \text{halaman}$, $\text{Daftar Simbol} =1\ \text{halaman}$, $\text{Glosarium} =1\ \text{halaman}$, $\text{Indeks} =2\ \text{halaman}$, $\text{Daftar Pustaka} =1\ \text{halaman}$, $\text{Tes Kemampuan} =4\ \text{halaman}$ yang masing-masing $\text{BAB}$ jumlah halamannya disajikan dalam diagram di bawah ini:
Banyak halaman pada $\text{BAB IV}$ adalah...
Alternatif Pembahasan:
Dari informasi pada soal dan diagram batang di atas kita peroleh banyak halaman yang sudah diketahui adalah:
$\begin{align}
\text{Pendukung}\ &= 16\ \text{halaman} \\
\text{BAB I}\ &= 30\ \text{halaman} \\
\text{BAB II}\ &= 26\ \text{halaman} \\
\text{BAB III}\ &= 32\ \text{halaman} \\
\text{BAB V}\ &= 24\ \text{halaman} \\
\text{BAB VI}\ &= 20\ \text{halaman}\ \ (+) \\
\hline
\text{Jumlah}\ &= 148\ \text{halaman}
\end{align}$
Jumlah halaman buku keseluruhan adalah $170$ sedangkan halaman buku yang sudah diketahui $148$ sehingga banyak halaman $\text{BAB IV}$ adalah $170-148=22$.
$\therefore$ Pilihan yang sesuai adalah $(B)\ 22\ \text{halaman}$
25. Soal UN Matematika SMP 2017 |*Soal Lengkap
Perhatikan data tinggi badan siswa berikut!
Median dari data di atas adalah...
Tinggi Badan (cm) $155$ $156$ $157$ $158$ $159$ $160$ Frekuensi $3$ $5$ $2$ $3$ $4$ $3$
Alternatif Pembahasan:
Jika tabel kita lengkapi dengan posisi datum dapat menjadi seperti berikut ini;
Tinggi Badan (cm) | $155$ | $156$ | $157$ | $158$ | $159$ | $160$ |
Frekuensi | $3$ | $5$ | $2$ | $3$ | $4$ | $3$ |
Datum ke- | $x_{1}-x_{3}$ | $x_{4}-x_{8}$ | $x_{9}-x_{10}$ | $x_{11}-x_{13}$ | $x_{14}-x_{17}$ | $x_{18}-x_{20}$ |
Median adalah nilai tengah suatu data yang telah diurutkan dari yang terkecil ke yang terbesar. Sehingga untuk sebuah data $x_{1},\ x_{2},\ x_{3}, \cdots\ , x_{n}$ mediannya adalah datum $\text{ke}-\dfrac{ n+1 }{2}$
Untuk data di atas $n=20$, maka nilai tengah adalah datum $\text{ke}-\dfrac{ n+1 }{2}=\dfrac{ 20+1 }{2}=10,5$, artinya nilai tengah berada diantara $x_{10}$ dan $x_{11}$ yaitu $\dfrac{x_{10}+x_{11}}{2}=\dfrac{157+158}{2}=157,5$
$\therefore$ Pilihan yang sesuai
26. Soal UN Matematika SMP 2017 |*Soal Lengkap
Rata-rata nilai siswa putri $80$ dan rata-rata nilai siswa putra $75$. Jika rata-rata nilai seluruh siswa $78$. Sedangkan jumlah seluruh siswa $30$ orang, banyak siswa putri adalah...
Alternatif Pembahasan:
Rata-rata gabungan!
Jika kelompok pertama rata-ratanya $\bar{x}_{1}$ dan banyak anggotanya $n_{1}$ sedangkan kelompok kedua rata-ratanya $\bar{x}_{2}$ dan banyak anggotanya $n_{2}$, sehingga saat dua kelompok digabungkan dapat kita peroleh:
$\begin{align}
\bar{x}_{gab} &= \dfrac{\bar{x}_{1} \times n_{1}+\bar{x}_{2} \times n_{2}}{n_{1}+n_{2}}
\end{align}$
Untuk soal di atas $\bar{x}_{pi}=80$, $\bar{x}_{pa}=75$, $\bar{x}_{gab}=78$, $n_{pi}+n_{pa}=30$ atau $n_{pa}=30-n_{pi}$, sehingga dapat kita peroleh:
$\begin{align}
\bar{x}_{gab} &= \dfrac{\bar{x}_{pa} \times n_{pa}+\bar{x}_{pi} \times n_{pi}}{n_{pa}+n_{pi}} \\
78 &= \dfrac{75 \times \left( 30-n_{pi} \right)+80 \times n_{pi}}{30} \\
78 \left( 30 \right) &= 75 \times \left( 30 \right) - 75 n_{pi}+80 n_{pi} \\
78 \left( 30 \right)-75 \left( 30 \right) &= - 75 n_{pi}+80 n_{pi} \\
3 \left( 30 \right) &= 5 n_{pi} \\
n_{pi} &= \dfrac{3 \left( 30 \right)}{5} \\
&= 3 \left( 6 \right) =18
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 18\ \text{orang}$
27. Soal UN Matematika SMP 2017 |*Soal Lengkap
Tabel berikut adalah data nilai ulangan matematika suatu kelas.
Banyak siswa yang mendapat nilai kurang dari $7$ adalah...
Nilai $4$ $5$ $6$ $7$ $8$ $9$ $10$ Frekuensi $6$ $11$ $10$ $8$ $5$ $1$ $1$
Alternatif Pembahasan:
Dari informasi pada tabel di atas banyak siswa yang mendapat nilai kurang dari $7$ adalah $6+11+10=27$.
Nilai | $4$ | $5$ | $6$ |
Frekuensi | $6$ | $11$ | $10$ |
$\therefore$ Pilihan yang sesuai
28. Soal UN Matematika SMP 2017 |*Soal Lengkap
Data pengunjung perpustakaan dalam satu minggu.
Selisih pengunjung perpustakaan pada hari Rabu dan Sabtu adalah...
Alternatif Pembahasan:
Dari informasi pada soal dan diagram batang di atas kita peroleh banyak pengunjung perpustakaan adalah:
$\begin{align}
\text{Senin}\ &= 80\ \text{orang} \\
\text{Selasa}\ &= 40\ \text{orang} \\
\text{Rabu}\ &= 30\ \text{orang} \\
\text{Kamis}\ &= 20\ \text{orang} \\
\text{Jumat}\ &= 60\ \text{orang} \\
\text{Sabtu}\ &= 90\ \text{orang} \\
\text{minggu}\ &= 100\ \text{orang}
\end{align}$
Selisih pengunjung perpustakaan pada hari Rabu dan Sabtu adalah $90-30=60$.
$\therefore$ Pilihan yang sesuai adalah $(B)\ 60\ \text{orang}$
29. Soal UN Matematika SMP 2016 |*Soal Lengkap
Nilai remedial ulangan harian matematika sebagai berikut:
$60$, $70$, $50$, $60$, $80$, $50$, $75$, $80$, $70$, $75$, $70$, $90$, $60$, $75$, $70$.
Modus dan rata-rata nilai tersebut adalah...
Alternatif Pembahasan:
Data di atas jika kita urutkan adalah $50$, $50$, $60$, $60$, $60$, $70$, $70$, $70$, $70$, $75$, $75$, $75$, $80$, $80$, $90$. Modus adalah nilai data yang paling sering muncul atau nilai yang frekuensinya paling banyak, dari data di atas sudah dapat kita peroleh yaitu $70$ yang muncul sebanyak empat kali.
Rata-rata data di atas adalah:
$ \begin{align}
\bar{x} & =\dfrac{x_{1}+x_{2}+ \cdots +x_{n}}{n} \\
\bar{x} & =\dfrac{50+50+60+60+60+70+70+70+70+75+75+75+80+80+90}{15} \\
& =\dfrac{100+180+280+225+160+90}{15} \\
& =\dfrac{1035}{15} \\
& = 69
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(C)\ 70\ \text {dan}\ 69$
30. Soal UN Matematika SMP 2016 |*Soal Lengkap
Rata-rata tinggi siswa wanita $135\ \text{cm}$ dan rata-rata tinggi siswa pria $138\ \text{cm}$. Jika banyak siswa $30$ orang dan rata-rata tinggi adalah $137\ \text{cm}$, maka banyak siswa wanita adalah...
Alternatif Pembahasan:
Rata-rata gabungan!
Jika kelompok pertama rata-ratanya $\bar{x}_{1}$ dan banyak anggotanya $n_{1}$ sedangkan kelompok kedua rata-ratanya $\bar{x}_{2}$ dan banyak anggotanya $n_{2}$, sehingga saat dua kelompok digabungkan dapat kita peroleh:
$\begin{align}
\bar{x}_{gab} &= \dfrac{\bar{x}_{1} \times n_{1}+\bar{x}_{2} \times n_{2}}{n_{1}+n_{2}}
\end{align}$
Untuk soal di atas $\bar{x}_{p}=138$, $\bar{x}_{w}=135$, $\bar{x}_{gab}=137$, $n_{p}+n_{w}=30$ atau $n_{p}=30-n_{w}$, sehingga dapat kita peroleh:
$\begin{align}
\bar{x}_{gab} &= \dfrac{\bar{x}_{p} \times n_{p}+\bar{x}_{w} \times n_{w}}{n_{p}+n_{w}} \\
137 &= \dfrac{138 \times n_{p}+135 \times n_{w}}{30} \\
137 \times 30 &= 138 \times \left(30-n_{w} \right)+135 \times n_{w} \\
137 \times 30 &= 138 \times 30 - 138 \times n_{w} + 135 \times n_{w} \\
137 \times 30-138 \times 30 &= -138 \times n_{w} + 135 \times n_{w} \\
-1 \times 30 &= -3 \times n_{w} \\
30 &= 3 n_{w} \\
n_{w} &= \dfrac{30}{3} \\
n_{p} &= 10
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 10\ \text{orang}$
31. Soal UN Matematika SMP 2015 |*Soal Lengkap
Pada suatu kelas terdapat $14$ orang siswa laki-laki dan $16$ orrang siswa perempuan. Jika rata-rata berat badan siswa laki-laki $54\ \text{kg}$ dan rata-rata berat badan siswa perempuan $48\ \text{kg}$, rata-rata berat badan seluruh siswa dalam kelas tersebut adalah...
Alternatif Pembahasan:
Rata-rata gabungan!
Jika kelompok pertama rata-ratanya $\bar{x}_{1}$ dan banyak anggotanya $n_{1}$ sedangkan kelompok kedua rata-ratanya $\bar{x}_{2}$ dan banyak anggotanya $n_{2}$, sehingga saat dua kelompok digabungkan dapat kita peroleh:
$\begin{align}
\bar{x}_{gab} &= \dfrac{\bar{x}_{1} \times n_{1}+\bar{x}_{2} \times n_{2}}{n_{1}+n_{2}}
\end{align}$
Untuk soal di atas $\bar{x}_{l}=54$, $\bar{x}_{p}=48$, $n_{l}=14$ atau $n_{p}=16$, sehingga dapat kita peroleh:
$\begin{align}
\bar{x}_{gab} &= \dfrac{\bar{x}_{l} \times n_{l}+\bar{x}_{p} \times n_{p}}{n_{l}+n_{p}} \\
&= \dfrac{54 \times 14+48 \times 16}{16+14} \\
&= \dfrac{756+768}{30} \\
&= \dfrac{1.524}{30} = 50,8
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 50,8\ \text{kg}$
32. Soal UN Matematika SMP 2015 |*Soal Lengkap
Diketahui kelompok data: $35$, $30$, $45$, $20$, $40$, $25$, $40$, $35$, $35$. Pernyataan yang benar adalah...
Alternatif Pembahasan:
Data di atas jika kita urutkan adalah $20$, $25$, $30$, $35$, $35$, $35$, $40$, $40$, $45$. Modus adalah nilai data yang paling sering muncul atau nilai yang frekuensinya paling banyak, dari data di atas sudah dapat kita peroleh yaitu $35$ yang muncul sebanyak tiga kali.
$\therefore$ Pilihan yang sesuai adalah $(B)\ \text{modus}=35,\ \text{yaitu data yang memiliki frekuensi terbanyak}$
34. Soal UN Matematika SMP 2015 |*Soal Lengkap
Diagram berikut menunjukkan pendidikan orang tua siswa. Jika banyak orang tua siswa yang berpendidikan SMP $180$ orang, banyak orang tua siswa yang berpendidikan Strata 2 (S2) adalah...
Alternatif Pembahasan:
Dari diagram lingkaran di atas, sudut pusat lingkaran untuk "SMP" $90^{\circ}$ setara dengan $180\ \text{orang}$, sehingga untuk "S2" dapat kita peroleh:
$\begin{align}
\text{S2} & = 360^{\circ}- \left( 90^{\circ}+30^{\circ}+80^{\circ}+120^{\circ} \right) \\
& = 360^{\circ}- \left( 320^{\circ} \right) \\
& = 40^{\circ} \\
\hline
\text{S2} & = \dfrac{40^{\circ}}{90^{\circ}} \times 180\ \text{orang} \\
& = \dfrac{4}{9} \times 180\ \text{orang} \\
& = 80\ \text{orang}
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 80\ \text{orang}$
35. Soal UN Matematika SMP 2014 |*Soal Lengkap
Data nilai ulangan matematika siswa kelas IX C disajikan pada tabel berikut:
Siswa yang memperoleh nilai kurang dari nilai rata-rata harus mengikuti remedial. Banyak siswa yang ikut remedial adalah...
Nilai $5$ $6$ $7$ $8$ $9$ $10$ Frekuensi $4$ $5$ $7$ $13$ $6$ $5$
Alternatif Pembahasan:
Data pada tabel kita tambah satu baris yaitu hasil perkalian nilai dengan freuensi seperti berikut ini.
Nilai | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
Frekuensi | $4$ | $5$ | $7$ | $13$ | $6$ | $5$ |
$x_{i} \times f_{1}$ | $20$ | $30$ | $49$ | $104$ | $54$ | $50$ |
Rata-rata data di atas adalah:
$\begin{align}
\bar{x} &= \dfrac{\left( f_{1} \times x_{1} \right)+\left( f_{2} \times x_{2} \right)+ \cdots + \left( f_{6} \times x_{6} \right)}{ f_{1} + f_{2} + \cdots + f_{i}} \\
\bar{x} &= \dfrac{20+30+49+104+54+50}{4+5+7+13+6+5} \\
&= \dfrac{307}{40} =7,675
\end{align}$
Banyak siswa yang ikut remedial adalah siswa dengan nilai kurang dari $7,675$ yaitu $9\ \text{siswa}$.
$\therefore$ Pilihan yang sesuai
36. Soal UN Matematika SMP 2014 |*Soal Lengkap
Ada $25$ murid perempuan dalam sebuah kelas. Tinggi rata-rata mereka adalah $130\ \text{cm}$. Bagaimana cara menghitung tinggi rata-rata tersebut?
Alternatif Pembahasan:
Dari informasi pada soal dan dari pilihan yang diberikan, yang paling cocok ada pada pilihan yang $(B)$ Jika $23$ orang dari murid perempuan tersebut tingginya masing-masing $130\ \text{cm}$ dan satu orang tingginya $133\ \text{cm}$, maka satu orang lagi tingginya $127\ \text{cm}$.
$\therefore$ Pilihan yang sesuai $(B)$ Jika $23$ orang dari murid perempuan tersebut tingginya masing-masing $130\ \text{cm}$ dan satu orang tingginya $133\ \text{cm}$, maka satu orang lagi tingginya $127\ \text{cm}$.
37. Soal UN Matematika SMP 2014 |*Soal Lengkap
Median dari data: $9$, $4$, $5$, $3$, $8$, $7$, $5$, $6$, $7$, $4$, $9$, $7$ adalah...
Median dari data tersebut adalah...
Alternatif Pembahasan:
Median adalah nilai tengah suatu data atau suatu nilai yang membagi data menjadi dua bagian yang sama setelah diurutkan dari yang terkecil ke terbesar.
Data di atas kita urutkan terlebih dahulu dari yang terkecil ke yang terbesar.
$3$, $4$, $4$, $5$, $5$, $6$, $7$, $7$, $7$, $8$, $9$, $9$
Nilai tengah adalah $\dfrac{6+7}{2}=6,5$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 6,5$
38. Soal UN Matematika SMP 2014 |*Soal Lengkap
Diagram berikut menunjukkan penyusutan penyusutan harga mobil setelah dipakai dalam kurun waktu $5$ tahun. Penyusutan antara tahun $2010$ dan $2011$ adalah...
Alternatif Pembahasan:
Dari diagram garis di atas, pada tahun $2010$ harga sudah menjadi $\text{Rp}200.000.000$ lalu tahun $2011$ harga sudah berada diantara $\text{Rp}190.000.000 - \text{Rp}195.000.000$ sehingga penyusutan harga yang paling cocok turun sekitar $\text{Rp}7.500.000,00$.
$\therefore$ Pilihan yang sesuai adalah $(D)\ \text{Rp}7.500.000,00$
39. Soal UN Matematika SMP 2013 |*Soal Lengkap
Modus data: $6$, $8$, $7$, $8$, $5$, $6$, $5$, $8$, $9$, $7$, $8$, $6$ adalah...
Alternatif Pembahasan:
Data di atas jika kita urutkan adalah $5$, $5$, $6$, $6$, $6$, $7$, $7$, $8$, $8$, $8$, $8$, $9$. Modus adalah nilai data yang paling sering muncul atau nilai yang frekuensinya paling banyak, dari data di atas sudah dapat kita peroleh yaitu $8$ yang muncul sebanyak empat kali.
$\therefore$ Pilihan yang sesuai adalah $(A)\ 8$
40. Soal UN Matematika SMP 2013 |*Soal Lengkap
Rata-rata $8$ buah bilangan adalah $72$ dan rata-rata $12$ buah bilangan lain adalah $84$. Rata-rata $20$ buah bilangan adalah...
Alternatif Pembahasan:
Rata-rata gabungan!
Jika kelompok pertama rata-ratanya $\bar{x}_{1}$ dan banyak anggotanya $n_{1}$ sedangkan kelompok kedua rata-ratanya $\bar{x}_{2}$ dan banyak anggotanya $n_{2}$, sehingga saat dua kelompok digabungkan dapat kita peroleh:
$\begin{align}
\bar{x}_{gab} &= \dfrac{\bar{x}_{1} \times n_{1}+\bar{x}_{2} \times n_{2}}{n_{1}+n_{2}}
\end{align}$
Untuk soal di atas $\bar{x}_{1}=72$, $\bar{x}_{2}=84$, $n_{1}=8$ atau $n_{2}=12$, sehingga dapat kita peroleh:
$\begin{align}
\bar{x}_{gab} &= \dfrac{\bar{x}_{1} \times n_{1}+\bar{x}_{2} \times n_{2}}{n_{1}+n_{2}} \\
&= \dfrac{72 \times 8+84 \times 12}{8+12} \\
&= \dfrac{576+1.008}{20} \\
&= \dfrac{1.584}{20} = 79,2
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(A)\ 79,2$
41. Soal UN Matematika SMP 2013 |*Soal Lengkap
Diagram batang di bawah ini menunjukkan produksi minyak bumi (dalam ribuan $m^{3}$) pada tahun $2000-2005$
Selisih produksi tahun $2002$ dan tahun $2005$ adalah...
Alternatif Pembahasan:
Dari diagram batang di atas, pada tahun $2002$ diproduksi sebanyak $100.000$ dan tahun $2005$ diproduksi sebanyak $40.000$ sehingga selisih produksi adalah $100.000 - 40.000$ yaitu $60.000$.
$\therefore$ Pilihan yang sesuai adalah $(B)\ 60.000\ m^{3}$
42. Soal UN Matematika SMP 2012 |*Soal Lengkap
Nilai ulangan matematika seorang siswa sebagai berikut:
$60$, $50$, $70$, $80$, $60$, $40$, $80$, $80$, $70$, $90$
Modus dari data tersebut adalah...
Alternatif Pembahasan:
Data di atas jika kita urutkan adalah $40$, $50$, $60$, $60$, $70$, $70$, $80$, $80$, $80$, $90$. Modus adalah nilai data yang paling sering muncul atau nilai yang frekuensinya paling banyak, dari data di atas sudah dapat kita peroleh yaitu $80$ yang muncul sebanyak tiga kali.
$\therefore$ Pilihan yang sesuai adalah $(A)\ 8$
43. Soal UN Matematika SMP 2012 |*Soal Lengkap
Dalam suatu kelas nilai rata-rata ulangan matematika $18$ orang siswa putri $72$. Sedangkan nilai rata-rata siswa putra $69$. Jika jumlah siswa di kelas tersebut $30$, maka nilai rata-rata ulangan matematika tersebut di kelas adalah...
Alternatif Pembahasan:
Rata-rata gabungan!
Jika kelompok pertama rata-ratanya $\bar{x}_{1}$ dan banyak anggotanya $n_{1}$ sedangkan kelompok kedua rata-ratanya $\bar{x}_{2}$ dan banyak anggotanya $n_{2}$, sehingga saat dua kelompok digabungkan dapat kita peroleh:
$\begin{align}
\bar{x}_{gab} &= \dfrac{\bar{x}_{1} \times n_{1}+\bar{x}_{2} \times n_{2}}{n_{1}+n_{2}}
\end{align}$
Untuk soal di atas $\bar{x}_{a}=69$, $\bar{x}_{i}=72$, $n_{a}=12$ dan $n_{i}=18$, sehingga dapat kita peroleh:
$\begin{align}
\bar{x}_{gab} &= \dfrac{\bar{x}_{a} \times n_{a}+\bar{x}_{i} \times n_{i}}{n_{a}+n_{i}} \\
&= \dfrac{69 \times 12+72 \times 18}{12+18} \\
&= \dfrac{828+1.296}{30} \\
&= \dfrac{2.124}{30} = 70,8
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 70,8$
44. Soal UN Matematika SMP 2012 |*Soal Lengkap
Data usia anggota klub sepakbola remaja disajikan pada tabel berikut.
Banyak anggota klub yang usianya kurang dari $17$ tahun adalah...
Usia (tahun) $13$ $14$ $15$ $16$ $17$ $18$ Frekuensi $2$ $1$ $6$ $9$ $5$ $3$
Alternatif Pembahasan:
Dari informasi pada tabel di atas banyak anggota yang berumur kurang dari $17$ adalah $2+1+6+9=18$.
Usia (tahun) | $13$ | $14$ | $15$ | $16$ |
Frekuensi | $2$ | $1$ | $6$ | $9$ |
$\therefore$ Pilihan yang sesuai
45. Soal UN Matematika SMP 2012 |*Soal Lengkap
Diagram lingkaran menunjukkan cara $120$ siswa berangkat ke sekolah. Banyak siswa berangkat ke sekolah dengan menggunakan sepeda adalah...
Alternatif Pembahasan:
Dari gambar kita peroleh data cara siswa berangkat ke sekolah yaitu: Jalan kaki $30 \%$, Motor $10 \%$, Mobil $7 \%$, Angkot $13 \%$ dan Becak $25 \%$. Total keseluruhan yang sudah diketahui adalah $85 \%$ sehingga yang naik sepeda adalah sisanya $100 \%-85 \%=15 \%$.
Banyak siswa yang naik sepeda adalah $\dfrac{15}{100} \times 120= 18$.
$\therefore$ Pilihan yang sesuai adalah $(B)\ 18\ \text{orang}$
46. Soal UN Matematika SMP 2011 |*Soal Lengkap
Nilai matematika siswa disajikan dalam tabel berikut:
Median dari data di atas adalah...
Nilai $4$ $5$ $6$ $7$ $8$ $9$ $10$ Banyak siswa $2$ $4$ $5$ $5$ $9$ $3$ $4$
Alternatif Pembahasan:
Jika tabel kita lengkapi dengan posisi datum dapat menjadi seperti berikut ini;
Nilai | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
Banyak siswa | $2$ | $4$ | $5$ | $5$ | $9$ | $3$ | $4$ |
Datum ke- | $x_{1}-x_{2}$ | $x_{3}-x_{6}$ | $x_{7}-x_{11}$ | $x_{12}-x_{16}$ | $x_{17}-x_{25}$ | $x_{26}-x_{28}$ | $x_{29}-x_{32}$ |
Median adalah nilai tengah suatu data yang telah diurutkan dari yang terkecil ke yang terbesar. Sehingga untuk sebuah data $x_{1},\ x_{2},\ x_{3}, \cdots\ , x_{n}$ mediannya adalah datum $\text{ke}-\dfrac{ n+1 }{2}$
Untuk data di atas $n=32$, maka nilai tengah adalah datum $\text{ke}-\dfrac{ n+1 }{2}=\dfrac{ 32+1 }{2}=16,5$, artinya nilai tengah berada diantara $x_{16}$ dan $x_{17}$ yaitu $\dfrac{x_{16}+x_{17}}{2}=\dfrac{7+8}{2}=7,5$
$\therefore$ Pilihan yang sesuai $(C)\ 7,5$
47. Soal UN Matematika SMP 2011 |*Soal Lengkap
Rata-rata nilai siswa kelas 9A adalah $72$. Rata-rata nilai $15$ siswa kelas 9B adalah $80$. Jika nilai digabungkan rata-ratanya menjadi $75$. Banyak siswa kelas 9A adalah...
Alternatif Pembahasan:
Rata-rata gabungan!
Jika kelompok pertama rata-ratanya $\bar{x}_{1}$ dan banyak anggotanya $n_{1}$ sedangkan kelompok kedua rata-ratanya $\bar{x}_{2}$ dan banyak anggotanya $n_{2}$, sehingga saat dua kelompok digabungkan dapat kita peroleh:
$\begin{align}
\bar{x}_{gab} &= \dfrac{\bar{x}_{1} \times n_{1}+\bar{x}_{2} \times n_{2}}{n_{1}+n_{2}}
\end{align}$
Untuk soal di atas $\bar{x}_{A}=72$, $\bar{x}_{B}=80$, $n_{A}=12$ dan $\bar{x}_{gab}=75$, sehingga dapat kita peroleh:
$\begin{align}
\bar{x}_{gab} &= \dfrac{\bar{x}_{A} \times n_{A}+\bar{x}_{B} \times n_{B}}{n_{A}+n_{B}} \\
75 &= \dfrac{72 \times n_{A}+80 \times 15}{n_{A}+15} \\
75 \times \left( n_{A}+15 \right) &= 72 \times n_{A}+80 \times 15 \\
75 \times n_{A}+ 75 \times 15 &= 72 \times n_{A}+80 \times 15 \\
75 \times n_{A}-72 \times n_{A} &= 80 \times 15 - 75 \times 15 \\
3 \times n_{A} &= 5 \times 15 \\
3 n_{A} &= 75 \\
n_{A} &= \dfrac{75}{3} = 25
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 25\ \text{orang}$
48. Soal UN Matematika SMP 2010 |*Soal Lengkap
Perhatikan tabel!
Median dari data di atas adalah...
Skor Banyak siswa $35$ $7$ $36$ $20$ $37$ $12$ $38$ $10$ $39$ $4$ $40$ $1$
Alternatif Pembahasan:
Jika tabel kita lengkapi dengan posisi datum dapat menjadi seperti berikut ini;
Skor | Banyak siswa | Datum ke- |
---|---|---|
$35$ | $7$ | $x_{1}-x_{7}$ |
$36$ | $20$ | $x_{8}-x_{27}$ |
$37$ | $12$ | $x_{28}-x_{39}$ |
$38$ | $10$ | $x_{40}-x_{49}$ |
$39$ | $4$ | $x_{50}-x_{53}$ |
$40$ | $1$ | $x_{54}$ |
Median adalah nilai tengah suatu data yang telah diurutkan dari yang terkecil ke yang terbesar. Sehingga untuk sebuah data $x_{1},\ x_{2},\ x_{3}, \cdots\ , x_{n}$ mediannya adalah datum $\text{ke}-\dfrac{ n+1 }{2}$
Untuk data di atas $n=54$, maka nilai tengah adalah datum $\text{ke}-\dfrac{ n+1 }{2}=\dfrac{ 54+1 }{2}=27,5$, artinya nilai tengah berada diantara $x_{27}$ dan $x_{28}$ yaitu $\dfrac{x_{27}+x_{28}}{2}=\dfrac{36+37}{2}=36,5$
$\therefore$ Pilihan yang sesuai
49. Soal UN Matematika SMP 2010 |*Soal Lengkap
Nilai rata-rata siswa wanita di suatu kelas adalah $65$, sedangkan nilai rata-rata siswa pria $72$. Jika jumlah siswa di kelas itu $35$ orang dan nilai rata-rata seluruh siswa adalah $69$, maka banyak siswa pria adalah...
Alternatif Pembahasan:
Rata-rata gabungan!
Jika kelompok pertama rata-ratanya $\bar{x}_{1}$ dan banyak anggotanya $n_{1}$ sedangkan kelompok kedua rata-ratanya $\bar{x}_{2}$ dan banyak anggotanya $n_{2}$, sehingga saat dua kelompok digabungkan dapat kita peroleh:
$\begin{align}
\bar{x}_{gab} &= \dfrac{\bar{x}_{1} \times n_{1}+\bar{x}_{2} \times n_{2}}{n_{1}+n_{2}}
\end{align}$
Untuk soal di atas $\bar{x}_{p}=72$, $\bar{x}_{w}=65$, $n_{p}+n_{w}=35$ atau $n_{w}=35-n_{p}$ dan $\bar{x}_{gab}=69$, sehingga dapat kita peroleh:
$\begin{align}
\bar{x}_{gab} &= \dfrac{\bar{x}_{p} \times n_{p}+\bar{x}_{w} \times n_{w}}{n_{p}+n_{w}} \\
69 &= \dfrac{72 \times n_{p}+65 \times \left( 35-n_{p} \right)}{35} \\
69 \times 35 &= 72 \times n_{p}+65 \times 35 - 65 \times n_{p} \\
69 \times 35 - 65 \times 35 &= 72 \times n_{p} - 65 \times n_{p} \\
4 \times 35 &= 7 \times n_{p} \\
\dfrac{4 \times 35}{7} &= n_{p} \\
4 \times 5 &= n_{p} \\
20 &= n_{p}
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 20\ \text{orang}$
50. Soal Simulasi US Matematika SMP |*Soal Lengkap
Apabila rata-rata dari data: $10$, $4$, $x$, $9$, $x^{2}$, $3$ adalah $5\dfrac{1}{3}$ maka pernyataan yang tidak benar adalah...
Alternatif Pembahasan:
Berdasarkan informasi pada soal rata-rata data: $10$, $4$, $x$, $9$, $x^{2}$, $3$ adalah $5\dfrac{1}{3}$, sehingga dapat kita peroleh:
$\begin{align}
\bar{x} &= \dfrac{x_{1}+x_{2}+x_{3}+\cdots+x_{n}}{n} \\
\bar{x} &= \dfrac{x_{1}+x_{2}+x_{3}+\cdots+x_{7}}{7} \\
5\dfrac{1}{3} &= \dfrac{10+4+x+9+x^{2}+3}{6} \\
5\dfrac{1}{3} \times 6 &= x^{2}+x+26 \\
32 &= x^{2}+x+26 \\
0 &= x^{2}+x-6 \\
0 &= \left( x+3 \right)\left( x-2 \right) \\
&x=-3\ \text{atau}\ x=2
\end{align}$
Dengan $x=2$ maka data kita adalah $10$, $4$, $x=2$, $9$, $x^{2}=4$, $3$ dan setelah diurutkan menjadi $2$, $3$, $4$, $4$, $9$, $10$.
Jangkauan $10-8=2$,
nilai tengah $\dfrac{4+4}{2}=4$,
modus $4$.
$\therefore$ Pilihan yang sesuai adalah $(C)\ \text{Nilai tengah atau median}=4,5$
51. Soal OSN-K Matematika SMP 2019 |*Soal Lengkap
Diagram batang berikut menyatakan nilai-nilai ulangan matematika kelompok siswa laki-laki dan siswa perempuan.
Jika $M_{1}$ adalah median untuk nilai ulangan kelompok Laki-laki, $M_{2}$ adalah median untuk nilai ulangan kelompok Perempuan, dan $M$ adalah median nilai ulangan keseluruhan siswa, maka $M_{1}+M_{2}+M$ adalah...
Alternatif Pembahasan:
Dari diagram batang beberapa informasi yang dapat kita ambil adalah
- Nilai $60$ , $L=5$ dan $P=10$
- Nilai $70$ , $L=12$ dan $P=3$
- Nilai $80$ , $L=1$ dan $P=8$
- Nilai $90$ , $L=6$ dan $P=6$
- Siswa laki-laki ada sebanyak $5+12+1+6=24$, sehingga mediannya berada pada datum ke-$\frac{12+13}{2}$ atau $\dfrac{x_{12}+x_{13}}{2}$.
$x_{1} - x_{5}=60$, $x_{6} - x_{17}=70$, sehingga nilai $M_{1}=\dfrac{x_{12}+x_{13}}{2}=\dfrac{70+70}{2}=70$. - Siswa perempuan ada sebanyak $10+3+8+6=27$, sehingga mediannya pada datum ke-$\frac{27+1}{2}$ atau $x_{14}$.
$x_{1} - x_{10}=60$, $x_{11} - x_{13}=70$, $x_{14} - x_{21}=80$, sehingga nilai $M_{2}=x_{14}=80$ - Siswa keseluruhan ada sebanyak $24+27=51$ sehingga mediannya pada datum ke-$\frac{51+1}{2}$ atau $x_{26}$.
$x_{1} - x_{16}=60$, $x_{17} - x_{31}=70$, sehingga nilai $M=x_{26}=70$
Nilai $M_{1}+M_{2}+M$ adalah $70+80+70=220$.
$ \therefore $ Pilihan yang sesuai adalah $(C)\ 220$
52. Model Soal US-UM Matematika SMP 2023 |*Soal Lengkap
Diagram data produksi padi di suatu daerah dari tahun $2010$ sampai dengan $2014$
Selisih produksi padi dua tahun terakhir adalah...
Alternatif Pembahasan:
Dari diagram batang yang disajikan produksi padi dua tahun terakhir adalah $2013=200$ dan $2014=300$ sehingga selisihnya adalah $100$ ton.
$\therefore$ Pilihan yang sesuai adalah $(C)\ 100\ \text{ton}$
53. Model Soal US-UM Matematika SMP 2023 |*Soal Lengkap
Data tinggi baadan kelompok basket disajikan dalam tabel berikut:
Banyak anggota yang tingginya kurang dari $170\ cm$ adalah...
Tinggi badan (cm) $160$ $165$ $170$ $175$ Frekeunsi $3$ $6$ $5$ $9$
Alternatif Pembahasan:
Dari tabel yang diberikan banyak anggota kelompok basket yang tingginya kurang dari $170\ cm$ adalah $3+6=9$ orang.
$\therefore$ Pilihan yang sesuai
54. Model Soal US-UM Matematika SMP 2023 |*Soal Lengkap
Data nilai siswa kelas VI berturut turut adalah $8, 7, 6, 5, 6, 7, 8, 9, 10, 7$. Dari data tersebut berapakah mediannya?
Alternatif Pembahasan:
Median adalah nilai tengah suatu data yang telah diurutkan dari yang terkecil ke yang terbesar. Sehingga untuk sebuah data $x_{1},\ x_{2},\ x_{3}, \cdots\ , x_{n}$ mediannya adalah datum ke-$\dfrac{ n+1 }{2}$
Untuk data $8, 7, 6, 5, 6, 7, 8, 9, 10, 7$ setelah diurutkan dari yang terkecil ke yang terbesar adalah:
$5, 6, 6, 7,$ $7, 7,$ $8, 8, 9, 10$
Mediannya adalah $\dfrac{7+7}{2}=7$.
$\therefore$ Pilihan yang sesuai adalah $(C)\ 7$
55. Model Soal US-UM Matematika SMP 2023 |*Soal Lengkap
Nilai rata-rata ulangan matematika dari $7$ siswa adalah $6,50$. Ketika nilai satu orang siswa ditambahkan, maka rata-ratanya menjadi $6,70$. Nilai siswa yang ditambahkan adalah
Alternatif Pembahasan:
Berdasarkan informasi pada soal rata-rata ulangan matematika dari $7$ siswa adalah $6,50$, sehingga dapat kita peroleh:
$\begin{align}
\bar{x} &= \dfrac{x_{1}+x_{2}+x_{3}+\cdots+x_{n}}{n} \\
6,50 &= \dfrac{x_{1}+x_{2}+x_{3}+\cdots+x_{7}}{7} \\
45,5 &= x_{1}+x_{2}+x_{3}+\cdots+x_{7}
\end{align}$
Lalu ditambahkan satu orang, rata-rata ulangan matematika jadi $6,70$, sehingga dapat kita peroleh:
$\begin{align}
\bar{x} &= \dfrac{x_{1}+x_{2}+x_{3}+\cdots+x_{n}}{n} \\
6,70 &= \dfrac{x_{1}+x_{2}+x_{3}+\cdots+x_{7}+x_{8}}{8} \\
53,6 &= x_{1}+x_{2}+x_{3}+\cdots+x_{7}+x_{8} \\
53,6 &= 45,5+x_{8} \\
x_{8} &= 53,6- 45,5 \\
x_{8} &= 8,1
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 8,1$
56. Contoh Soal PAS Genap Matematika SMP/MTs |*Soal Lengkap
Banyak siswa laki-laki dan perempuan di SD, SMP, SMA dan SMK ditunjukkan dalam tabel berikut....
Jumlah siswa paling sedikit ada di kelas...
Alternatif Pembahasan:
Jika kita jumlahkan banyak siswa di setiap kelas mama keadaannya menjadi seperti berikut ini:

$\therefore$ Pilihan yang sesuai adalah $(B)\ 7D $
57. Contoh Soal PAS Genap Matematika SMP/MTs |*Soal Lengkap
Perhatikan gambar diagram batang berikut...
Selisih pengunjung perpustakaan pada hari Kamis dan Sabtu adalah...
Alternatif Pembahasan:
Dari diagram batang di atas, banyak pengunjung setiap hari kamis adalah $214$ dan hari sabtu adalah $345$, sehingga selisihnya adalah $345-214=131$.
$\therefore$ Pilihan yang sesuai adalah $(B)\ 7D $
58. Contoh Soal PAS Genap Matematika SMP/MTs |*Soal Lengkap
Perhatikan diagram lingkaran berikut.
Jika semua mobil yang terjual sebanyak $40.000$ unit, banyak mobil yang terjual di kota Semarang adalah...unit
Alternatif Pembahasan:
Dari diagram lingkaran di atas jika kita jabarkan data penjaulan mobil di setiap daerah adalah seperti berikut ini:
- Bandar Lampung: $\dfrac{8}{100} \times 40.000 =3.200$
- Bandung: $\dfrac{18}{100} \times 40.000 =7.200$
- Denpasar: $\dfrac{11}{100} \times 40.000 =4.400$
- Jakarta: $\dfrac{19}{100} \times 40.000 =7.600$
- Medan: $\dfrac{13}{100} \times 40.000 =5.200$
- Surabaya: $\dfrac{16}{100} \times 40.000 =6.400$
- Semarang: $\dfrac{15}{100} \times 40.000 =6.000$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 6.000 $
59. Contoh Soal PAS Genap Matematika SMP/MTs |*Soal Lengkap
Perhatikan diagram garis berikut.
Kenaikan tertinggi nilai tukar rupiah terhadap dolar AS terjadi pada hari...
Alternatif Pembahasan:
Dari diagram garis di atas jika dijabarkan nilai tukar rupiah terhadap dolar AS adalah seperti berikut ini:
- Senin – Selasa: $13.870-13.750 =120$
- Selasa – Rabu: $13.710-13.870 =-160$
- Rabu – Kamis: $13.900-13.710 =190$
- Kamis – Jum’at: $13.970-13.900 =70$
- Jumat – Sabtu: $13.820-13.970 =-250$
- Sabtu – Minggu: $13.900-13.820 =80$
$\therefore$ Pilihan yang sesuai adalah $(B)\ \text{Rabu – Kamis }$
60. Contoh Soal PAS Matematika SMP/MTs |*Soal Lengkap
Data berat badan (dalam kg) sekelompok balita di Posyandu Kasih Bunda sebagai berikut.Modus data di atas adalah...
Alternatif Pembahasan:
Jika kita urutkan data di atas dari yang terkecil menjadi seperti berikut ini:
- $16$ ada $8$ buah;
- $17$ ada $4$ buah;
- $18$ ada $5$ buah;
- $19$ ada $5$ buah;
- $20$ ada $6$ buah;
- $21$ ada $4$ buah;
Modus adalah nilai yang paling sering muncul atau nilai yang frekuensinya paling banyak. Sehingga untuk data di atas modusnya adalah $20$.
$\therefore$ Pilihan yang sesuai adalah $(D)\ 20$
61. Contoh Soal PAS Matematika SMP/MTs |*Soal Lengkap
Perhatikan tabel berikut.Median data di atas adalah...
Alternatif Pembahasan:
Median adalah nilai tengah suatu data yang telah diurutkan dari yang terkecil ke yang terbesar. Sehingga untuk sebuah data $x_{1},\ x_{2},\ x_{3}, \cdots\ , x_{n}$ jika $n$ ganjil maka mediannya adalah datum ke-$\dfrac{ n+1 }{2}$ sedangkan jika $n$ genap maka mediannya adalah $\dfrac{1}{2} \left( x_{\frac{n}{2}+1}+x_{\frac{n}{2}} \right)$.
Untuk data di atas $x_{1}-x_{2}=4$, $x_{3}-x_{6}=5$, $x_{7}-x_{11}=6$, $x_{12}-x_{16}=7$, $x_{17}-x_{25}=8$, $x_{26}-x_{28}=9$, $x_{29}-x_{32}=10$, mediannya adalah:
$\begin{align}
Me\ &= \dfrac{1}{2} \left( x_{\frac{n}{2}+1}+x_{\frac{n}{2}} \right) \\
&= \dfrac{1}{2} \left( x_{\frac{32}{2}+1}+x_{\frac{32}{2}} \right) \\
&= \dfrac{1}{2} \left( x_{17}+x_{16} \right) \\
&= \dfrac{1}{2} \left( 7+8 \right)=7,5
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 7,5$
62. Contoh Soal PAS Matematika SMP/MTs |*Soal Lengkap
Diketahui data nilai ulangan matematika dari $15$ orang siswa sebagai berikut.
$7,$ $5,$ $4,$ $6,$ $5,$ $7,$ $8,$ $6,$ $4,$ $4,$ $5,$ $9,$ $5,$ $6,$ $4$.
Banyak siswa yang nilainya di atas rata-rata adalah ... siswa.
Alternatif Pembahasan:
Rata-rata adalah suatu bilangan yang mewakili sekumpulan data. Istilah rata-rata ini yang paling umum adalah menyatakan rataan aritmetik yang diperoleh dari jumlah data dibagikan dengan banyak data.
Rata-rata sebuah data disimbolkan dengan $\bar{x}$, sehingga untuk sebuah data $x_{1},\ x_{2},\ x_{3}, \cdots\ , x_{n}$ dapat kita tuliskan dalam bentuk:
$\bar{x} = \dfrac{x_{1} + x_{2} + x_{3} + \cdots\ + x_{n}}{n}$
Dari data di atas jika kita urutkan dari yang terkecil menjadi $4$ $4,$ $4,$ $4,$ $5,$ $5,$ $5,$ $5,$ $6,$ $6,$ $6,$ $7,$ $7,$ $8,$ $9,$ rata-ratanya adalah:
$\begin{align}
\bar{x} &= \dfrac{x_{1}+x_{2}+x_{3}+\cdots+x_{n}}{n} \\
&= \dfrac{4 \times 4 + 4 \times 5 + 3 \times 6 + 2 \times 7 + 8 + 9}{15} \\
&= \dfrac{ 16 + 20 + 18 + 14 + 17}{15} \\
&= \dfrac{ 85}{15} \\
&= 53,6- 45,5 \\
&= 5,6
\end{align}$
Banyak siswa yang nilainya di atas rata-rata adalah $6,$ $6,$ $6,$ $7,$ $7,$ $8,$ $9$ yaitu $7$ siswa.
$\therefore$ Pilihan yang sesuai adalah $(C)\ 7$
63. Contoh Soal PAS Matematika SMP/MTs |*Soal Lengkap
Tabel berikut ini menunjukkan lama tidur di waktu malam (dalam jam) beberapa siswa kelas VIII.Dari tabel di atas, dibuat pernyataan sebagai berikut.
$(1)\ \text{Median} = 6$
$(2)\ Q_{1} = 5$
$(3)\ Q_{3} = 7,5$
Pernyataan yang benar adalah...
Alternatif Pembahasan:
Quartil $\left( Q_{i} \right) $ adalah nilai yang membagi data terurut dari yang terkecil sampai yang terbesar menjadi empat bagian yang sama.
Untuk menentukan quartil dengan banyak data tidak banyak, pertama kita data diurutkan dari yang terkecil ke terbesar dan kita peroleh $x_{min}$ dan $x_{max}$.
- Nilai tengah diantara data $x_{min}$ dan $x_{max}$ adalah Quartil dua atau median,
- Nilai tengah diantara data $x_{min}$ dan $Q_{2}$ adalah $Q_{1}$,
- Nilai tengah diantara data $Q_{2}$ dan $x_{max}$ adalah $Q_{3}$

Untuk data di atas $x_{1}=4$, $x_{2}-x_{3}=5$, $x_{4}-x_{6}=6$, $x_{7}-x_{8}=7$, $x_{9}-x_{10}=8$, median dan quartilnya adalah:
$\begin{align}
Q_{2}=Me\ &= \dfrac{1}{2} \left( x_{\frac{n}{2}+1}+x_{\frac{n}{2}} \right) \\
&= \dfrac{1}{2} \left( x_{\frac{10}{2}+1}+x_{\frac{10}{2}} \right) \\
&= \dfrac{1}{2} \left( x_{6}+x_{5} \right) \\
&= \dfrac{1}{2} \left( 6+6 \right)=6
\end{align}$
Nilai $Q_{1}=x_{3}=5$ dan $Q_{3}=x_{8}=7$
Pernyataan yang benar adalah $(1)\ \text{Median} = 6$ dan $(2)\ Q_{1} = 5$.
$\therefore$ Pilihan yang sesuai adalah $(A)\ (1)\ \text{dan}\ (2)$
64. Contoh Soal PAS Matematika SMP/MTs |*Soal Lengkap
Simpangan kuartil dari $7,$ $4,$ $5,$ $6,$ $7,$ $5,$ $4,$ $7,$ $8,$ $9,$ $6$ adalah...
Alternatif Pembahasan:
Quartil $\left( Q_{i} \right) $ adalah nilai yang membagi data terurut dari yang terkecil sampai yang terbesar menjadi empat bagian yang sama.
Untuk menentukan quartil dengan banyak data tidak banyak, pertama kita data diurutkan dari yang terkecil ke terbesar dan kita peroleh $x_{min}$ dan $x_{max}$.
- Nilai tengah diantara data $x_{min}$ dan $x_{max}$ adalah Quartil dua atau median,
- Nilai tengah diantara data $x_{min}$ dan $Q_{2}$ adalah $Q_{1}$,
- Nilai tengah diantara data $Q_{2}$ dan $x_{max}$ adalah $Q_{3}$
Untuk data di atas jika kita urutkan kita peroleh:
$4,$ $4,$ $(5),$ $5,$ $6$ $6,$ $7,$ $7,$ $(7),$ $8,$ $9,$ median dan quartilnya adalah:
Nilai $Q_{2}=Me= 6$, nilai $Q_{1}=x_{3}=5$ dan $Q_{3}=x_{9}=7$.
Simpangan Kuartil adalah setengah dari selisih quartil atas dengan quartil bawah.
$\begin{align}
Q_{d}\ &= \dfrac{1}{2} \left( Q_{3}-Q_{1} \right) \\
&= \dfrac{1}{2} \left( 7-5 \right) \\
&= \dfrac{1}{2} \left( 2 \right) \\
&= 1
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(A)\ 1,0$
Catatan tentang Soal dan Pembahasan Statistika Matematika SMP di atas agar lebih baik lagi perlu catatan tambahan dari Anda. Untuk catatan tambahan atau hal lain yang perlu diketahui admin, silahkan disampaikan dan contact admin 🙏 CMIIW.
JADIKAN HARI INI LUAR BIASA!
Ayo Share (Berbagi) Satu Hal Baik.