Soal dan Pembahasan Statistika Matematika SMP

bBlajar matematika dasar SMP lewat soal dan pembahasan statistika pada matematika SMP. soal Ujian Sekolah matematika SMP, soal ujian seleksi akademik
Soal dan Pembahasan Himpunan Matematika SMP

Calon guru belajar matematika dasar SMP lewat soal dan pembahasan statistika pada matematika SMP. Apa yang diharapkan setelah mempelajari materi ini, yaitu dapat menyajikan dan menyelesaikan masalah yang berkaitan dengan distribusi data, nilai rata-rata, median, modus, dan sebaran data untuk mengambil kesimpulan, membuat keputusan, dan membuat prediksi.

Soal matematika dasar statistika untuk SMP kita pilih dari soal-soal yang sudah pernah diujikan pada soal Ujian Sekolah matematika SMP, soal Ujian Nasional matematika SMP, atau soal ujian seleksi akademik masuk SMA Unggulan atau SMA Plus.


STATISTIKA dan STATISTIK


Statistika merupakan ilmu yang mempelajari bagaimana mengumpulkan data, mengolah data, menyajikan data, menganalisis data, dan mengambil keputusan berdasarkan hasil analisis data tersebut.

Statistik adalah sekelompok metode atau cara untuk mengumpulkan data, mengolah data, menarik kesimpulan, dan membuat keputusan berdasarkan analisis data yang dikumpulkan.

Dari penjelasan sederhana di atas dengan kata lain dapat juga kita sebut statistika adalah ilmu tentang statistik.


RATA-RATA


Rata-rata adalah suatu bilangan yang mewakili sekumpulan data. Istilah rata-rata ini yang paling umum adalah menyatakan rataan aritmetik yang diperoleh dari jumlah data dibagikan dengan banyak data.


Rata-rata sebuah data disimbolkan dengan $\bar{x}$, sehingga untuk sebuah data $x_{1},\ x_{2},\ x_{3}, \cdots\ , x_{n}$ dapat kita tuliskan dalam bentuk:
$\bar{x} = \dfrac{x_{1} + x_{2} + x_{3} + \cdots\ + x_{n}}{n}$


MEDIAN


Median adalah nilai tengah suatu data yang telah diurutkan dari yang terkecil ke yang terbesar. Sehingga untuk sebuah data $x_{1},\ x_{2},\ x_{3}, \cdots\ , x_{n}$ mediannya adalah data ke-$\dfrac{ 1 + n }{2}$


MODUS


Modus adalah nilai yang paling sering muncul atau nilai yang frekuensinya paling banyak.


RATA-RATA GABUNGAN


Rata-rata gabungan, Untuk beberapa rata-rata data tunggal dapat digabungkan untuk menghitung rata-ratanya.
Misalnya, kelompok pertama rata-ratanya $\bar{x}_{1}$ dan banyak datanya $ {n}_{1}$, kelompok kedua rata-ratanya $\bar{x}_{2}$ dan banyak datanya $ {n}_{2}$. Jika kita gabungkan datanya maka rata-rata gabungannya adalah:
$\bar{x}_{gab}=\dfrac{\bar{x}_{1} \cdot n_{1}+\bar{x}_{2} \cdot n_{2}}{n_{1}+n_{2}}$.


PENYAJIAN DATA


Data yang sudah dikumpulkan dan dianalisa dapat disajikan dalam beberapa bentuk, antara lain:

  • Tabel frekuensi
    Nilai Frekuensi
    $4$ $a$
    $5$ $46$
    $6$ $80$
    $7$ $62$
    $8$ $24$
    Jumlah $40$
  • Diagram batang
    Diskusi Matematika Diagram batang
  • Diagram garis
    UNBK 2018 Matematika SMP (*Soal dan Pembahasan)
  • Diagram lingkaran
    Soal dan Pembahasan UNBK Matematika SMP (*Simulasi UNBK Matematika SMP)

SOAL LATIHAN dan PEMBAHASAN MATEMATIKA SMP


1. Soal UNBK Matematika SMP 2019 |*Soal Lengkap

Tim Bola Basket terdiri dari $5$ siswa memiliki rata-rata berat badan $45$ kg. Selisih berat badan terbesar dan terkecil $15$ kg. Ada satu orang terberat dan lainnya sama beratnya. Berat badan siswa yang terbesar adalah...
$\begin{align}
(A)\ & 42\ kg \\
(B)\ & 55\ kg \\
(C)\ & 57\ kg \\
(D)\ & 60\ kg \\
\end{align}$
Alternatif Pembahasan:

Kita misalkan berat badan tim bola basket adalah $ x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ dimana $ x_{1}= x_{2}= x_{3}= x_{4}$, $x_{5}-x_{1}=15$ dan $\bar{x}=43$ sehingga berlaku:
$\begin{align}
\bar{x} &= \dfrac{x_{1}+x_{2}+x_{3}+\cdots +x_{5}}{5} \\
45 &= \dfrac{x_{1}+x_{2}+x_{3}+\cdots +x_{5}}{5} \\
45 &= \dfrac{4x_{1}+x_{5}}{5} \\
45 \times 5 &= 4x_{1}+x_{5} \\
225 &= 4x_{1}+x_{5} \\
15 &= x_{5}-x_{1} \\
\hline
210 &= 5x_{1} \\
x_{1} &= \dfrac{210}{5}=42 \\
x_{5} &= 42+15=57
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 57\ kg$


2. Soal UNBK Matematika SMP 2019 |*Soal Lengkap

Perhatikan tabel berikut!
Tabel Tinggi Badan Siswa
Tinggi Badan (cm) Frekuensi (f)
$155$ $4$
$156$ $2$
$157$ $15$
$158$ $8$
$159$ $3$
Jumlah $32$
Banyak siswa yang memiliki tinggi badan di atas rata-rata adalah...
$\begin{align}
(A)\ & 26\ \text{siswa} \\
(B)\ & 15\ \text{siswa} \\
(C)\ & 11\ \text{siswa} \\
(D)\ & 6\ \text{siswa}
\end{align}$
Alternatif Pembahasan:

Jika tabel kita lengkapi menjadi seperti berikut ini;

Tabel Tinggi Badan Siswa
Tinggi Badan $(cm)$ Frekuensi $(f)$ $t \times f$
$155$ $4$ $620$
$156$ $2$ $312$
$157$ $15$ $2355$
$158$ $8$ $1264$
$159$ $3$ $477$
Jumlah $32$ $5028$
Rata-tata data di atas adalah $\bar{x} = \dfrac{5028}{32}= 157,125$, sehingga banyak siswa yang memiliki tinggi badan di atas rata-rata adalah $8+3=11$.

$\therefore$ Pilihan yang sesuai $(C)\ 11\ \text{siswa}$


3. Soal UNBK Matematika SMP 2019 |*Soal Lengkap

Data tinggi badan $20$ siswa (dalam cm) sebagai berikut.
$157$, $159$, $159$, $156$, $157$, $157$, $158$, $158$, $158$, $160$, $160$, $161$, $158$, $159$, $159$, $156$, $156$, $157$, $159$, $160$, $160$, $158$, $159$, $160$.
Modus tinggi badan siswa adalah...
$\begin{align}
(A)\ & 157\ cm \\
(B)\ & 158\ cm \\
(C)\ & 159\ cm \\
(D)\ & 160\ cm
\end{align}$
Alternatif Pembahasan:

Modus adalah nilai yang paling sering uncul atau frekuensi yang paling besar.

Dari data di atas yang paling sering muncul adalah $159$
$156: 3 \times$; $157: 4 \times$; $158: 5 \times$; $159: 6 \times$; $160: 5 \times$; $161: 1 \times$.

$\therefore$ Pilihan yang sesuai adalah $(C)\ 159$


4. Soal UNBK Matematika SMP 2019 |*Soal Lengkap

Sekolah melakukan pendataan terhadap kegiatan paling di senangi siswa setelah pulang sekolah seperti pada diagram berikut;
Soal dan Pembahasan UNBK Matematika SMP (*Simulasi UNBK Matematika SMP)
Jika banyak siswa yang di data $1.800$ anak, banyak siswa yang senang bermain bersama teman adalah...
$\begin{align}
(A)\ & 300\ \text{anak} \\
(B)\ & 350\ \text{anak} \\
(C)\ & 400\ \text{anak} \\
(D)\ & 600\ \text{anak}
\end{align}$
Alternatif Pembahasan:

Dari diagram lingkaran di atas, sudut pusat lingkaran untuk "Bermain Bersama Teman" $360^{\circ}-\left(60^{\circ}+60^{\circ}+70^{\circ}+50^{\circ}+40^{\circ} \right)$ yaitu $80^{\circ}$.

Banyak anak yang senang Bermain Bersama Teman adalah:
$\begin{align}
\dfrac{80^{\circ}}{360^{\circ}} \times 1.800 & = \dfrac{2}{9} \times 1.800 \\
& = \dfrac{2}{9} \times 1.800 \\
& = 400
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 400\ \text{anak}$


5. Soal Simulasi UNBK Matematika SMP 2019 |*Soal Lengkap

Hasil panen padi suatu daerah selama $5$ tahun tergambar pada diagram berikut.
Soal dan Pembahasan UNBK Matematika SMP 2020 (*Simulasi UNBK 2020)
Jika total hasil panen selama $5$ tahun $195$ ton, besar panen pada tahun 2014 adalah...
$\begin{align}
(A)\ & 60\ \text{ton} \\
(B)\ & 55\ \text{ton} \\
(C)\ & 50\ \text{ton} \\
(D)\ & 45\ \text{ton}
\end{align}$
Alternatif Pembahasan:

Dari grafik kita peroleh data hasil panen sebagai berikut:

  • 2011: $40$
  • 2012: $30$
  • 2013: $45$
  • 2013: $x$
  • 2015: $25$
Total yang ada di grafik adalah $40+30+45+x+25=140+x$.
Jumlah hasil panen adalah $190$, sehingga panen tahun 2014 adalah $x=190-140=50$

$\therefore$ Pilihan yang sesua adalah $(C)\ 50\ \text{ton}$


6. Soal Simulasi UNBK Matematika SMP 2019 |*Soal Lengkap

Diagram lingkaran di bawah menunjukkan pendidikan orangtua siswa di suatu sekolah. Jika jumlah orang tua siswa di sekolah tersebut $900$ orang, banyak orang tua siswa yang berpendidikan SMP adalah...
Soal dan Pembahasan UNBK Matematika SMP (*Simulasi Ujian Sekolah Matematika SMP)
$\begin{align}
(A)\ & 385\ \text{orang} \\
(B)\ & 375\ \text{orang} \\
(C)\ & 350\ \text{orang} \\
(D)\ & 315\ \text{orang}
\end{align}$
Alternatif Pembahasan:

Dari gambar kita peroleh beberapa data,

  • SD $45 \%$, banyak orangtua SD adalah $\frac{45}{100} \times 900= 405$
  • SMA $12 \%$, banyak orangtua SMA adalah $\frac{12}{100} \times 900= 108$
  • PT $8 \%$, banyak orangtua PT adalah $\frac{8}{100} \times 900= 72$
  • SMP $35 \%$, banyak orangtua SMP adalah $\frac{35}{100} \times 900= 315$

$\therefore$ Pilihan yang sesuai adalah $(D)\ 315\ \text{orang}$


7. Soal Simulasi UNBK Matematika SMP 2019 |*Soal Lengkap

Nilai rata-rata dari $16$ orang siswa adalah $6,3$. Satu siswa yang mempunyai nilai $7,8$ tidak disertakan dari kelompok tersebut. Nilai rata-rata yang baru adalah...
$\begin{align}
(A)\ & 9,8 \\
(B)\ & 7,2 \\
(C)\ & 6,2 \\
(D)\ & 6,1
\end{align}$
Alternatif Pembahasan:

Rata-rata $(\bar{x})$ adalah jumlah nilai dibagikan dengan banyak nilai.
$\begin{align}
\bar{x} & = \frac{x_{1}+x_{2}+x_{3}+\cdots+x_{15}+x_{16}}{16} \\
6,3 & = \frac{x_{1}+x_{2}+x_{3}+\cdots+x_{15}+x_{16}}{8} \\
6,3 \times 16 & = x_{1}+x_{2}+x_{3}+\cdots+x_{15}+x_{16} \\
100,8 & = x_{1}+x_{2}+x_{3}+\cdots+x_{15}+x_{16}
\end{align}$
Karena satu siswa yang nilainya $7,8$ tidak disertakan maka $x_{1}+x_{2}+x_{3}+\cdots+x_{15}=100,8-7,8=93$.
Rata-rata yang baru untuk $15$ siswa adalah
$\begin{align}
\bar{x} & = \frac{x_{1}+x_{2}+x_{3}+\cdots+x_{15}}{15} \\
& = \frac{93}{15} \\
& = \frac{31}{5} \\
& = 6,2
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 6,2$


8. Soal Simulasi UNBK Matematika SMP 2019 |*Soal Lengkap

Data berat badan (dalm kg) peserta didik kelas IX.A sebagai berikut:
40, 36, 38, 35, 42, 39,
41, 37, 42, 38, 36, 40,
40, 38, 37, 41.
Berdasarkan data diatas median data tersebut adalah...
$\begin{align}
(A)\ & 38,0 \\
(B)\ & 38,5 \\
(C)\ & 39,0 \\
(D)\ & 39,5
\end{align}$
Alternatif Pembahasan:

Median adalah nilai tengah suatu data atau suatu nilai yang membagi data menjadi dua bagian yang sama setelah diurutkan dari yang terkecil ke terbesar.

Data di atas kita urutkan terlebih dahulu dari yang terkecil ke yang terbesar.
35, 36, 36, 37, 37, 38, 38, 38, 39, 40, 40, 40, 41, 41, 42, 42.

Nilai tengah adalah $\frac{38+39}{2}=38,5$

$\therefore$ Pilihan yang sesuai adalah $(B)\ 38,5$


9. Soal UNBK Matematika SMP 2018 |*Soal Lengkap

Diagram lingkaran di bawah berikut adalah data pekerjaan penduduk sebuah desa. Jika penduduk desa tersebut $300$ orang, banyak pengusaha di desa tersebut adalah...
Soal dan Pembahasan UNBK Matematika SMP 2018 (*Simulasi Ujian Sekolah Tahun 2021)
$\begin{align}
(A)\ & 25\ \text{orang} \\
(B)\ & 45\ \text{orang} \\
(C)\ & 75\ \text{orang} \\
(D)\ & 120\ \text{orang}
\end{align}$
Alternatif Pembahasan:

Dari gambar kita peroleh beberapa data,

  • Buruh $20 \%$, banyak buruh adalah $\frac{20}{100} \times 300= 60$
  • Pedagang $40 \%$, banyak pedagang adalah $\frac{40}{100} \times 300= 120$
  • Petani seperempat dari lingkaran, berarti $25 \%$, banyak petani adalah $\frac{25}{100} \times 300= 75$
  • Jumlah Buruh, Petani dan Pedagang adalah $60+120+75=255$, maka $300-255=45$ adalah pengusaha.
$\therefore$ banyak pengusaha di desa tersebut adalah $(B)\ 45\ \text{orang}$


10. Soal UNBK Matematika SMP 2018 |*Soal Lengkap

Nilai rata-rata dari $8$ orang siswa adalah $6,5$. Satu siswa yang mempunyai nilai $10$ keluar dari kelompok tersebut. Nilai rata-rata $7$ orang siswa adalah...
$\begin{align}
(A)\ & 6,0 \\
(B)\ & 6,5 \\
(C)\ & 7,0 \\
(D)\ & 7,5
\end{align}$
Alternatif Pembahasan:

Rata-rata $(\bar{x})$ adalah jumlah nilai dibagikan dengan banyak nilai.
$\begin{align}
\bar{x} & = \frac{x_{1}+x_{2}+x_{3}+\cdots+x_{7}+x_{8}}{8} \\
6,5 & = \frac{x_{1}+x_{2}+x_{3}+\cdots+x_{7}+x_{8}}{8} \\
6,5 \times 8 & = x_{1}+x_{2}+x_{3}+\cdots+x_{7}+x_{8} \\
52 & = x_{1}+x_{2}+x_{3}+\cdots+x_{7}+x_{8}
\end{align}$
Karena satu siswa yang nilainya $10$ keluar maka $x_{1}+x_{2}+x_{3}+\cdots+x_{7}=42$, rata-rata ketujuh siswa adalah
$\begin{align}
\bar{x} & = \frac{x_{1}+x_{2}+x_{3}+\cdots+x_{7}}{7} \\
& = \frac{42}{7} \\
& = 6
\end{align}$

$\therefore$ Nilai rata-rata $7$ orang siswa adalah $(A)\ 6,0$


11. Soal UNBK Matematika SMP 2018 |*Soal Lengkap

Data nomor sepatu dari $18$ peserta didik kelas IX SMP adalah sebagai berikut:
38, 43, 36, 37, 41, 35,
40, 37, 44, 42, 37, 40,
35, 36, 39, 40, 39, 41
Median dari data tersebut adalah...
$\begin{align}
(A)\ & 41 \\
(B)\ & 40 \\
(C)\ & 39 \\
(D)\ & 38
\end{align}$
Alternatif Pembahasan:

Median adalah nilai tengah suatu data atau suatu nilai yang membagi data menjadi dua bagian yang sama setelah diurutkan dari yang terkecil ke terbesar.

Data di atas kita urutkan terlebih dahulu dari yang terkecil ke yang terbesar.
35, 35, 36, 36, 37, 37, 37, 38, 39, 39, 40, 40, 40, 41, 41, 42, 43, 44

Nilai tengah adalah $\frac{39+39}{2}=39$

$\therefore$ Median dari data adalah $(C)\ 39$


12. Soal UNBK Matematika SMP 2018 |*Soal Lengkap

Berikut adalah data nilai matematika $150$ siswa
Soal dan Pembahasan UNBK Matematika SMP 2018 (*Simulasi Ujian Sekolah Tahun 2021)
Banyak siswa yang memperoleh nilai $8$ adalah...
$\begin{align}
(A)\ & 54\ \text{orang} \\
(B)\ & 50\ \text{orang} \\
(C)\ & 44\ \text{orang} \\
(D)\ & 34\ \text{orang}
\end{align}$
Alternatif Pembahasan:

Dari grafik kita peroleh data sebagai berikut:
Nilai $6$ ada sebanyak $35$ siswa,
Nilai $7$ ada sebanyak $27$ siswa,
Nilai $9$ ada sebanyak $44$ siswa,
Jumlah yang nilainya $6,\ 7,$ dan $9$ adalah $35+27+44=106$.
Jumlah ssiwa keseluruhan adalah $150$ siswa, sehingga yang nilai $8$ ada sebanyak $150-106=44$

$\therefore$ Banyak siswa yang memperoleh nilai $8$ adalah $(C)\ 44\ \text{orang}$


13. Soal Simulasi UNBK Matematika SMP 2018 |*Soal Lengkap

Parto minum $80$ mg obat untuk mengendalikan tekanan darahnya. Grafik berikut memperlihatkan banyaknya obat pada saat itu beserta banyaknya obat dalam darah Parto setelah satu, dua, tiga dan empat hari.
UNBK 2018 Matematika SMP (*Soal dan Pembahasan)

$\begin{align}
(A)\ & 6 \\ (B)\ & 12 \\ (C)\ & 26 \\ (D)\ & 32
\end{align}$
Berapa banyak obat yang masih tetap aktif pada akhir hari pertama?
Alternatif Pembahasan:

Dengan memperhatikan grafik yang dimulai dari $80$, sumbu $Y$ yang menyatakan kadar Dosis (mg) untuk satu kotak setara dengan $10\ mg$. Sumbu $X$ yang menyatakan waktu $(hari)$ setelah minum obat untuk dua kotak setara dengan $1$ hari.

Dari grafik, pada akhir hari pertama titik grafik berada pada posisi $30-40$, yang paling cocok dengan pilihan pada soal adalah $32\ mg$

$\therefore$ Pilihan yang sesuai adalah $(D)\ 32$


14. Soal Simulasi UNBK Matematika SMP 2018 |*Soal Lengkap

Suatu hari Ani menemukan sobekan koran yang memuat data pengunjung perpustakaan berupa gambar diagram batang sebagai berikut.
UNBK 2018 Matematika SMP (*Soal dan Pembahasan)
Informasi yang ada pada koran tersebut menunjukkan data pengunjung perpustakaan selama 5 hari. Ani penasaran ingin tahu tentang banyak pengunjung pada hari Rabu. Tolong bantu Ani, berapa banyak pengunjung pada hari Rabu?
$\begin{align}
(A)\ & 55\ \text{orang} \\ (B)\ & 60\ \text{orang} \\ (C)\ & 65\ \text{orang} \\ (D)\ & 70\ \text{orang}
\end{align}$
Alternatif Pembahasan:

Dari informasi yang disampaikan pada sobekan koran bahwa rata-rata pengunjung selama lima hari adalah 41.

Dengan menerapkan aturan dalam menghitung rata-rata dan informasi pada soal, kesimpulan yang bisa kita ambil adalah:
$\bar{x}=\frac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}}{5}$
$41=\frac{x_{senin}+x_{selasa}+x_{rabu}+x_{kamis}+x_{Jumat}}{5}$
$41=\frac{45+40+x_{rabu}+30+20}{5}$
$41 \times 5=135+x_{rabu}$
$205=135+x_{rabu}$
$205-135=x_{rabu}$
$70=x_{rabu}$

$\therefore$ Pilihan yang sesuai adalah $(D)\ 70\ \text{orang}$


15. Soal Simulasi UNBK Matematika SMP 2018 |*Soal Lengkap

Lama pembicaraan telepon [dalam menit] yang di lakukan oleh seorang pengusaha adalah $7,\ 8,\ 10,\ 6,\ 6,\ 4,\ 5,\ 4,\ 5,\ 7,\ 9,\ 7$. Modus dan rata-rata dari pembicaraan tersebut berturut-turut adalah...
$\begin{align}
(A)\ & 7\ \text {dan}\ 6,5 \\ (B)\ & 7\ \text {dan}\ 6 \\ (C)\ & 6\ \text {dan}\ 6 \\ (D)\ & 6\ \text {dan}\ 6,5
\end{align}$
Alternatif Pembahasan:

Modus adalah nilai data yang paling sering muncul atau nilai yang frekuensinya paling banyak, dari data $7,\ 8,\ 10,\ 6,\ 6,\ 4,\ 5,\ 4,\ 5,\ 7,\ 9,\ 7$ sudah kelihatan yang paling banyak adalah $7$.

Untuk rata-rata kita gunakan;
$ \begin{align}
\bar{x} & =\frac{x_{1}+x_{2}+ \cdots +x_{11}+x_{12}}{12} \\ & =\frac{7+8+10+6+6+4+5+4+5+7+9+7}{12} \\ & =\frac{78}{12} \\ & =6,5
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(A)\ 7\ \text {dan}\ 6,5$


16. Soal Simulasi UNBK Matematika SMP 2018 |*Soal Lengkap

Data rata-rata tinggi siswa wanita 134 cm, rata-rata tinggi siswa pria 145 cm. Jika banyak siswa 33 orang dan rata-rata tinggi seluruhnya 142 cm, maka banyak siswa pria adalah...
$\begin{align}
(A)\ & 10\ \text{orang} \\ (B)\ & 12\ \text{orang} \\ (C)\ & 18\ \text{orang} \\ (D)\ & 24\ \text{orang}
\end{align}$
Alternatif Pembahasan:

Untuk menyelesaikan masalah diatas kita coba gunakan aturan dalam menghitung rata-rata gabungan.
$\bar{x}_{gab}=\frac{\bar{x}_{1} \times n_{1}+\bar{x}_{2} \times n_{2}}{n_{1}+n_{2}}$
Jika ada tiga atau $n$ kelompok silahkan ditambahkan sampai berapa kelompok yang digabung.

$\begin{align} \bar{x}_{pw} &= \frac{\bar{x}_{p} \times n_{p}+\bar{x}_{w} \times n_{w}}{n_{p}+n_{w}} \\ 142 &= \frac{145 \times n_{p}+134 \times n_{w}}{33} \\ 142 \times 33 &= 145 \times n_{p}+134 \times (33-n_{p}) \\ 142 \times 33 &= 145 \times n_{p}+134 \times 33- 134 \times n_{p} \\ 142 \times 33-134 \times 33 &= 145 \times n_{p}- 134 \times n_{p} \\ 8 \times 33 &= 145 \times n_{p}- 134 \times n_{p} \\ 8 \times 33 &= 11 \times n_{p} \\ n_{p} &= \frac{8 \times 33}{11} \\ n_{p} &= 8 \times 3=24 \\ \end{align}$


$\therefore$ Pilihan yang sesuai adalah $(D)\ 24\ \text{orang}$


Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras

Untuk segala sesuatu hal yang perlu kita diskusikan terkait Soal dan Pembahasan Himpunan Matematika SMP silahkan disampaikan 🙏 CMIIW😊.

Jangan Lupa Untuk Berbagi 🙏 Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊

© defantri.com ~ Made with ♥ in Lintongnihuta, IDN. Developed by Jago Desain