50+ Soal dan Pembahasan Matematika SMA Statistika Data Berkelompok

Penerapan statistik data berkelompok dalam kehidupan sehari-hari juga sangat banyak, diantaranya dapat dilihat pada soal-soal yang kita diskusikan di bawah ini. Mempelajari dan menggunakan aturan-aturan pada statistik data berkelompok juga sangatlah mudah, jika Anda mengikuti step by step yang kita diskusikan dibawah ini, maka anda akan dengan mudah memahami soal-soal statistik data berkelompok dan menemukan solusinya.
Sekarang kita coba diskusikan bagaimana soal-soal yang sudah pernah diujikan pada UN atau SBMPTN tentang statistika untuk data berkelompok. Statistika untuk data berkleompok lebih sering diujikan pada Ujian Nasional daripada SBMPTN atau SMMPTN. Masalah yang diujikan juga terfokus kepada ukuran pemusatan data (rata-rata, modus dan median) dan ukuran letak data (kuartil, desil dan persentil).
Soal dan Pembahasan Matematika SMA Statistika Data Berkelompok
Untuk lebih jauh mengetahui bagaimana menyelesaikan soal atau masalah statisktika untuk data berkelompok bisa kita simak dari beberapa contoh soal berikut;
1. Soal UM UNDIP 2009 Kode 192 - SPMB 2004 Kode 741 |*Soal Lengkap
Perhatikan tabel berikut!Siswa yang dinyatakan lulus jika nilai ujiannya lebih besar dari $60$. Jika banyaknya peserta ujian ada $30$ orang dan yang lulus $16$ orang, maka nilai dari $xy= \cdots$
Nilai Ujian Frekuensi $21-30$ $1$ $31-40$ $1$ $41-50$ $x$ $51-60$ $9$ $61-70$ $y$ $71-80$ $6$ $81-90$ $2$
$\begin{align} (A)\ & 18 \\ (B)\ & 20 \\ (C)\ & 24 \\ (D)\ & 25 \\ (E)\ & 30 \end{align}$
Alternatif Pembahasan:
Untuk soal ini kemampuan kita yang diharapkan adalah logika kemampuan dalam memabaca data berkelompok, karena data yang disajikan dalam tabel tidak lengkap.
- Jumlah total frekuensi adalah $19+x+y$.
- Jumlah yang lulus lebih dari $60$ yaitu $y+6+2=y+8$
- Diketahui jumlah peserta yang lulus adalah $16$ orang, maka $y+8=16\ \rightarrow y=8$.
- Diketahui jumlah peserta yang ujian adalah $30$ orang dan $y=8$, maka $19+x+y=30\ \rightarrow x=3$.
- Nilai $xy=3 \cdot 8=24$
$\therefore$ Pilihan yang sesuai $(C)\ 24$
2. Soal UM STIS 2011 |*Soal Lengkap
Daftar distribusi frekuensi pada tabel berikut merupakan hasil dari suatu tes.Jika $60\%$ siswa dinyatakan lulus, nilai terendah yang dinyatakan lulus adalah...
Nilai Ujian Frekuensi $11-20$ $3$ $21-30$ $7$ $31-40$ $10$ $41-50$ $16$ $51-60$ $20$ $61-70$ $14$ $71-80$ $10$ $81-90$ $6$ $91-100$ $4$
$\begin{align} (A)\ & 45,0 \\ (B)\ & 48,5 \\ (C)\ & 50,5 \\ (D)\ & 51,0 \\ (E)\ & 55,5 \end{align}$
Alternatif Pembahasan:
Dari tabel yang disajikan, disampaikan bahwa yang lulus adalah $60\%$ dari total keseluruhan siswa.
Siswa yang lulus adalah $60\% \times 90=54$. Jika tabel di atas kita bagi dua, dengan pembagian tabel yang lulus dengan yang tidak lulus, menjadi seperti berikut ini;
Siswa Tidak Lulus | |
---|---|
Nilai Ujian | Frekuensi |
$11-20$ | $3$ |
$21-30$ | $7$ |
$31-40$ | $10$ |
$41-50$ | $16$ |
Jumlah | $36$ |
Siswa Lulus | |
---|---|
Nilai Ujian | Frekuensi |
$51-60$ | $20$ |
$61-70$ | $14$ |
$71-80$ | $10$ |
$81-90$ | $6$ |
$91-100$ | $4$ |
Jumlah | $54$ |
$\therefore$ Pilihan yang sesuai adalah $(D)\ 51,0$
3. Soal UNBK Matematika SMA IPS 2019 |*Soal Lengkap
Tabel berikut menyajikan data nilai ulangan Bahasa Indonesia siswa kelas XII.Rata-rata nilai ulangan Bahasa Indonesia siswa kelas tersebut adalah...
Nilai Frekuensi $40-44$ $2$ $45-49$ $8$ $50-54$ $15$ $55-59$ $10$ $60-64$ $5$ $65-69$ $10$
$\begin{align} (A)\ & 53,2 \\ (B)\ & 55,8 \\ (C)\ & 56,3 \\ (D)\ & 56,8 \\ (E)\ & 58,2 \end{align}$
Alternatif Pembahasan:
Rataan data berkelompok dapat kita hitung dengan rumus:
$\begin{align}
\overline{x} = & \dfrac{\sum \limits_{i=1}^{n} \left( x_{i} \cdot f_{i} \right) }{\sum \limits_{i=1}^{n}f_{i} } \\
= & \dfrac{ x_{1} \cdot f_{1}+x_{2} \cdot f_{2}+ \cdots +x_{n} \cdot f_{n} }{f_{1}+f_{2}+\cdots+f_{n} }
\end{align}$
Dimana
- $x_{i}$ adalah titik tengah kelas ke-$i$,
$x_{i}=\dfrac{1}{2}\left( BB+BA \right)$ - $f_{i}$ frekuensi kelas ke-$i$
Nilai | Frekuensi | $x_{i}$ | $x_{i} \cdot f_{i}$ |
---|---|---|---|
$40-44$ | $2$ | $42$ | $84$ |
$45-49$ | $8$ | $47$ | $376$ |
$50-54$ | $15$ | $52$ | $780$ |
$55-59$ | $10$ | $57$ | $570$ |
$60-64$ | $5$ | $62$ | $310$ |
$65-69$ | $10$ | $67$ | $670$ |
Jumlah | $50$ | $\cdots$ | $2790$ |
$\begin{align}
\overline{x} & = \dfrac{\sum \limits_{i=1}^{n} \left( x_{i} \cdot f_{i} \right) }{\sum \limits_{i=1}^{n}f_{i} } \\
& = \dfrac{2790}{50} \\
& = 55,8
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 55,8$
4. Soal UMB 2009 Kode 416 |*Soal Lengkap
Seorang pengamat ingin mengetahui data tentang rata-rata, median, dan modus dari seluruh siswa di satu kelas SMA. Setelah dikelompokkan pengamat tersebut menyajikan data dalam tabel berikut:Nilai rata-rata distribusi frekuensi di atas adalah...
Berat Badan Frekuensi $50-54$ $6$ $55-59$ $12$ $60-64$ $20$ $65-69$ $8$ $70-74$ $4$
$\begin{align} (A)\ & 61\dfrac{1}{5} \\ (B)\ & 61\dfrac{1}{4} \\ (C)\ & 61\dfrac{1}{2} \\ (D)\ & 62 \\ (E)\ & 62\dfrac{1}{4} \\ \end{align}$
Alternatif Pembahasan:
Rataan data berkelompok dapat kita hitung dengan rumus:
$\begin{align}
\overline{x} = & \dfrac{\sum \limits_{i=1}^{n} \left( x_{i} \cdot f_{i} \right) }{\sum \limits_{i=1}^{n}f_{i} } \\
= & \dfrac{ x_{1} \cdot f_{1}+x_{2} \cdot f_{2}+ \cdots +x_{n} \cdot f_{n} }{f_{1}+f_{2}+\cdots+f_{n} }
\end{align}$
Dimana
- $x_{i}$ adalah titik tengah kelas ke-$i$,
$x_{i}=\dfrac{1}{2}\left( BB+BA \right)$ - $f_{i}$ frekuensi kelas ke-$i$
Nilai | Frekuensi | $x_{i}$ | $x_{i} \cdot f_{i}$ |
---|---|---|---|
$50-54$ | $6$ | $52$ | $312$ |
$55-59$ | $12$ | $57$ | $684$ |
$60-64$ | $20$ | $62$ | $1240$ |
$65-69$ | $8$ | $67$ | $536$ |
$70-74$ | $4$ | $72$ | $288$ |
Jumlah | $50$ | $\cdots$ | $3060$ |
$\begin{align}
\overline{x} & = \dfrac{\sum \limits_{i=1}^{n} \left( x_{i} \cdot f_{i} \right) }{\sum \limits_{i=1}^{n}f_{i} } \\
& = \dfrac{3060}{50} \\
& = 61,2
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(A)\ 61\dfrac{1}{5}$
5. Soal SMB Politeknik Negeri Bandung 2017 |*Soal Lengkap
Rata-rata skor hasil tes IQ $100$ orang siswa pada tabel di bawah adalah...$\begin{align} (A)\ & 92,5 \\ (B)\ & 92,9 \\ (C)\ & 102 \\ (D)\ & 102,5 \\ (E)\ & 102,9 \end{align}$
Nilai Frekuensi $89-97$ $30$ $98-106$ $40$ $107-115$ $20$ $116-124$ $10$
Alternatif Pembahasan:
Rataan data berkelompok dapat kita hitung dengan rumus:
$\begin{align}
\overline{x} = & \dfrac{\sum \limits_{i=1}^{n} \left( x_{i} \cdot f_{i} \right) }{\sum \limits_{i=1}^{n}f_{i} } \\
= & \dfrac{ x_{1} \cdot f_{1}+x_{2} \cdot f_{2}+ \cdots +x_{n} \cdot f_{n} }{f_{1}+f_{2}+\cdots+f_{n} }
\end{align}$
Dimana
- $x_{i}$ adalah titik tengah kelas ke-$i$,
$x_{i}=\dfrac{1}{2}\left( BB+BA \right)$ - $f_{i}$ frekuensi kelas ke-$i$
Nilai | Frekuensi | $x_{i}$ | $x_{i} \cdot f_{i}$ |
---|---|---|---|
$89-97$ | $30$ | $93$ | $2790$ |
$98-106$ | $40$ | $102$ | $4080$ |
$107-115$ | $20$ | $111$ | $2220$ |
$116-124$ | $10$ | $120$ | $1200$ |
Jumlah | $100$ | $\cdots$ | $10290$ |
$\begin{align} \overline{x} & = \dfrac{\sum \limits_{i=1}^{n} \left( x_{i} \cdot f_{i} \right) }{\sum \limits_{i=1}^{n}f_{i} } \\ & = \dfrac{10290}{100} \\ & = 102,9 \end{align}$
$\therefore$ Pilihan yang sesuai adalah $(E)\ 102,9$
6. Soal SNMPTN 2007 Kode 741 |*Soal Lengkap
Rataan dari distribusi frekuensi berikut adalah:$\begin{align} (A)\ & 45,5 \\ (B)\ & 45,75 \\ (C)\ & 46 \\ (D)\ & 46,5 \\ (E)\ & 46,75 \end{align}$
Nilai Frekuensi $21-30$ $2$ $31-40$ $4$ $41-50$ $4$ $51-60$ $2$ $61-70$ $4$
Alternatif Pembahasan:
Rataan data berkelompok dapat kita hitung dengan rumus:
$\begin{align}
\overline{x} = & \dfrac{\sum \limits_{i=1}^{n} \left( x_{i} \cdot f_{i} \right) }{\sum \limits_{i=1}^{n}f_{i} } \\
= & \dfrac{ x_{1} \cdot f_{1}+x_{2} \cdot f_{2}+ \cdots +x_{n} \cdot f_{n} }{f_{1}+f_{2}+\cdots+f_{n} }
\end{align}$
Dimana
- $x_{i}$ adalah titik tengah kelas ke-$i$,
$x_{i}=\dfrac{1}{2}\left( BB+BA \right)$ - $f_{i}$ frekuensi kelas ke-$i$
Nilai | Frekuensi $f_{i}$ | $x_{i}$ | $x_{i} \cdot f_{i}$ |
---|---|---|---|
$21-30$ | $2$ | $25,5$ | $51$ |
$31-40$ | $4$ | $35,5$ | $142$ |
$41-50$ | $4$ | $45,5$ | $182$ |
$51-60$ | $2$ | $55,5$ | $111$ |
$61-70$ | $4$ | $65,5$ | $262$ |
Jumlah | $16$ | $\cdots$ | $748$ |
$\begin{align}
\overline{x} & = \dfrac{\sum \limits_{i=1}^{n} \left( x_{i} \cdot f_{i} \right) }{\sum \limits_{i=1}^{n}f_{i} } \\
& = \dfrac{748}{16} \\
& = 46,75
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(E)\ 46,75$
7. Soal UM STIS 2017 |*Soal Lengkap
Berikut adalah data jumlah penduduk menurut kelompok umur si suatu wilayah,Jika diketahui rata-rata umur penduduk di wilayah tersebut $14$ tahun, maka jumlah penduduk kelompok umur $20-24$ tahun adalah...
Kelompok Umur Jumlah $0-4$ $2$ $5-9$ $3$ $10-14$ $5$ $15-19$ $6$ $20-24$ $x$ $25-29$ $1$
$\begin{align} (A)\ & 2 \\ (B)\ & 3 \\ (C)\ & 4 \\ (D)\ & 5 \\ (E)\ & 6 \end{align}$
Alternatif Pembahasan:
Rataan data berkelompok dapat kita hitung dengan rumus:
$\begin{align}
\overline{x} = & \dfrac{\sum \limits_{i=1}^{n} \left( x_{i} \cdot f_{i} \right) }{\sum \limits_{i=1}^{n}f_{i} } \\
= & \dfrac{ x_{1} \cdot f_{1}+x_{2} \cdot f_{2}+ \cdots +x_{n} \cdot f_{n} }{f_{1}+f_{2}+\cdots+f_{n} }
\end{align}$
Dimana
- $x_{i}$ adalah titik tengah kelas ke-$i$,
$x_{i}=\dfrac{1}{2}\left( BB+BA \right)$ - $f_{i}$ frekuensi kelas ke-$i$
Kelompok Umur | Jumlah | $x_{i}$ | $x_{i} \cdot f_{i}$ |
---|---|---|---|
$0-4$ | $2$ | $2$ | $4$ |
$5-9$ | $3$ | $7$ | $21$ |
$10-14$ | $5$ | $12$ | $60$ |
$15-19$ | $6$ | $17$ | $102$ |
$20-24$ | $x$ | $22$ | $22x$ |
$25-29$ | $1$ | $27$ | $27$ |
Jumlah | $17+x$ | $\cdots$ | $214+22x$ |
Untuk rata-rata data $14$ maka dapat kita tuliskan:
$\begin{align}
\overline{x} & = \dfrac{\sum \limits_{i=1}^{n} \left( x_{i} \cdot f_{i} \right) }{\sum \limits_{i=1}^{n}f_{i} } \\
14 & = \dfrac{214+22x}{17+x} \\
238+14x & = 214+22x \\
238-214 & = 22x-14x \\
24 & = 8x \rightarrow x= 3
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 3$
8. Soal UM Politeknik Negeri 2011 |*Soal Lengkap
Nilai rata-rata dari tabel di atas adalah $11,5$. Nilai $x$ adalah...
Kelompok Umur Jumlah $0-4$ $9$ $5-9$ $2$ $10-14$ $6$ $15-19$ $x$ $20-24$ $7$
$\begin{align} (A)\ & 1 \\ (B)\ & 4 \\ (C)\ & 6 \\ (D)\ & 8 \\ (E)\ & 11 \end{align}$
Alternatif Pembahasan:
Rataan data berkelompok dapat kita hitung dengan rumus:
$\begin{align}
\overline{x} = & \dfrac{\sum \limits_{i=1}^{n} \left( x_{i} \cdot f_{i} \right) }{\sum \limits_{i=1}^{n}f_{i} } \\
= & \dfrac{ x_{1} \cdot f_{1}+x_{2} \cdot f_{2}+ \cdots +x_{n} \cdot f_{n} }{f_{1}+f_{2}+\cdots+f_{n} }
\end{align}$
Dimana
- $x_{i}$ adalah titik tengah kelas ke-$i$,
$x_{i}=\dfrac{1}{2}\left( BB+BA \right)$ - $f_{i}$ frekuensi kelas ke-$i$
Kelompok Umur | Jumlah | $x_{i}$ | $x_{i} \cdot f_{i}$ |
---|---|---|---|
$0-4$ | $9$ | $2$ | $18$ |
$5-9$ | $2$ | $7$ | $14$ |
$10-14$ | $6$ | $12$ | $72$ |
$15-19$ | $x$ | $17$ | $17x$ |
$20-24$ | $7$ | $22$ | $154$ |
Jumlah | $24+x$ | $\cdots$ | $258+17x$ |
Untuk rata-rata data $11,5$ maka dapat kita tuliskan:
$\begin{align}
\overline{x} & = \dfrac{\sum \limits_{i=1}^{n} \left( x_{i} \cdot f_{i} \right) }{\sum \limits_{i=1}^{n}f_{i} } \\
11,5 & = \dfrac{258+17x}{24+x} \\
276+11,5x & = 258+17x \\
276-258 & = 17x-11,5x \\
18 & = 4,5x \rightarrow x= 4
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 4$
9. Soal UM Politeknik Negeri 2010 |*Soal Lengkap
Diketahui data mengenai upah buruh suatu industri kecil yang tersaji pada tabel distribusi frekuensi di bawah ini dalam puluhan ribu rupiah, maka rata-rata upah (mean) buruh industri kecil tersebut adalah...$\begin{align} (A)\ & Rp1.145.000,- \\ (B)\ & Rp1.050.000,- \\ (C)\ & Rp985.000,- \\ (D)\ & Rp895.000,- \\ (E)\ & Rp750.000,- \\ \end{align}$
Upah Frekuensi $40-59$ $6$ $60-79$ $8$ $80-99$ $22$ $100-119$ $8$ $120-139$ $6$
Alternatif Pembahasan:
Rataan data berkelompok dapat kita hitung dengan rumus:
$\begin{align}
\overline{x} = & \dfrac{\sum \limits_{i=1}^{n} \left( x_{i} \cdot f_{i} \right) }{\sum \limits_{i=1}^{n}f_{i} } \\
= & \dfrac{ x_{1} \cdot f_{1}+x_{2} \cdot f_{2}+ \cdots +x_{n} \cdot f_{n} }{f_{1}+f_{2}+\cdots+f_{n} }
\end{align}$
Dimana
- $x_{i}$ adalah titik tengah kelas ke-$i$,
$x_{i}=\dfrac{1}{2}\left( BB+BA \right)$ - $f_{i}$ frekuensi kelas ke-$i$
Upah | Frekuensi | $x_{i}$ | $x_{i} \cdot f_{i}$ |
---|---|---|---|
$40-59$ | $6$ | $49,5$ | $297$ |
$60-79$ | $8$ | $69,5$ | $556$ |
$80-99$ | $22$ | $89,5$ | $1.969$ |
$100-119$ | $8$ | $109,5$ | $876$ |
$120-139$ | $6$ | $129,5$ | $777$ |
Jumlah | $50$ | $\cdots$ | $4.475$ |
Rata-rata upah (mean) buruh industri kecil tersebut adalah:
$\begin{align}
\overline{x} & = \dfrac{\sum \limits_{i=1}^{n} \left( x_{i} \cdot f_{i} \right) }{\sum \limits_{i=1}^{n}f_{i} } \\
& = \dfrac{4.475}{50} \\
& = 89,5
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(D)\ Rp895.000,- $
10. Soal UNBK Matematika SMA IPA 2019 |*Soal Lengkap
Tabel berikut menyatakan hasil penilaian guru terhadap kemampuan pelajaran fisika dari $70$ orang siswa.Modus dari data pada tabel tersebut adalah...
Nilai Frekuensi $34-38$ $5$ $49-43$ $9$ $44-48$ $14$ $49-53$ $20$ $54-58$ $16$ $59-63$ $6$
$\begin{align} (A)\ & 49,5 \\ (B)\ & 50,5 \\ (C)\ & 51,5 \\ (D)\ & 52,5 \\ (E)\ & 53,5 \end{align}$
Alternatif Pembahasan:
Modus data berkelompok dirumuskan seperti berikut ini;
$Mo = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c$
- $Tb_{mo}:$Tepi bawah kelas modus, dan Kelas modus adalah kelas dengan frekuensi paling besar.
Kelas yang memiliki frekuensi $20$ adalah yang tertinggi, maka kelas modusnya adalah kelas ke-4 dengan interval $49-53$, $\left( Tb_{mo} = 49 - 0,5 = 48,5 \right)$; - $d_{1}:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus, $\left(d_{1}=20-14=6 \right)$;
- $d_{2}:$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus, $\left(d_{2}=20-16=4 \right)$;
- $c:$ Panjang Kelas $\left( c=53,5-48,5=5 \right)$.
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Mo & = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c \\
& = 48,5 + \left( \dfrac{6}{4 + 6} \right) \cdot 5 \\
& = 48,5 + \left( \dfrac{4}{10} \right) \cdot 5 \\
& = 48,5 + \dfrac{20}{10} \\
& = 48,5 + 2 \\
& = 50,5
\end{align} $
$\therefore$ Pilihan yang sesuai $(B)\ 50,5$
11. Soal UMB 2009 Kode 416 |*Soal Lengkap
Seorang pengamat ingin mengetahui data tentang rata-rata, median, dan modus dari seluruh siswa di satu kelas SMA. Setelah dikelompokkan pengamat tersebut menyajikan data dalam tabel berikut:Modus distribusi frekuensi di atas adalah...
Berat Badan Frekuensi $50-54$ $6$ $55-59$ $12$ $60-64$ $20$ $65-69$ $8$ $70-74$ $4$
$\begin{align} (A)\ & 61\dfrac{1}{5} \\ (B)\ & 61\dfrac{1}{4} \\ (C)\ & 61\dfrac{1}{2} \\ (D)\ & 62 \\ (E)\ & 62\dfrac{1}{4} \\ \end{align}$
Alternatif Pembahasan:
Modus data berkelompok dirumuskan seperti berikut ini;
$Mo = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c$
- $Tb_{mo}:$Tepi bawah kelas modus, dan Kelas modus adalah kelas dengan frekuensi paling besar.
Kelas yang memiliki frekuensi $20$ adalah yang tertinggi, maka kelas modusnya adalah kelas ke-$4$ dengan interval $60-64$; $\left(Tb_{mo} = 60 - 0,5 = 59,5 \right)$; - $d_{1}:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus, $\left(d_{1}=20-12=8 \right)$;
- $d_{2}:$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus, $\left(d_{2}=20-8=12 \right)$;
- $c:$ Panjang Kelas $\left(c=64,5-59,5=5\right)$.
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Mo & = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c \\
& = 59,5 + \left( \dfrac{8}{8 + 12} \right) \cdot 5 \\
& = 59,5 + \left( \dfrac{8}{20} \right) \cdot 5 \\
& = 59,5 + 2 \\
& = 61,5
\end{align} $
$\therefore$ Pilihan yang sesuai $(C)\ 61\dfrac{1}{2}$
12. Soal UM STIS 2010 |*Soal Lengkap
Tabel di atas adalah hasil ujian matematika di suatu kelas, maka modus dari nilai ujian tersebut adalah...
Berat Badan Frekuensi $31-36$ $4$ $37-42$ $6$ $43-48$ $9$ $49-54$ $14$ $55-60$ $10$ $61-66$ $5$ $67-71$ $2$
$\begin{align} (A)\ & 51,28 \\ (B)\ & 51,83 \\ (C)\ & 52,33 \\ (D)\ & 56 \\ (E)\ & 57,83 \end{align}$
Alternatif Pembahasan:
Modus data berkelompok dirumuskan seperti berikut ini;
$Mo = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c$
- $Tb_{mo}:$Tepi bawah kelas modus, dan Kelas modus adalah kelas dengan frekuensi paling besar.
Kelas yang memiliki frekuensi $14$ adalah yang tertinggi, maka kelas modusnya adalah kelas ke-$4$ dengan interval $49-54$; $\left( Tb_{mo} = 49 - 0,5 = 48,5 \right)$; - $d_{1}:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus, $\left( d_{1}=14-9=5 \right)$;
- $d_{2}:$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus, $\left( d_{2}=14-10=4 \right)$;
- $c:$ Panjang Kelas $\left( c=54,5-48,5=6 \right)$.
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Mo & = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c \\
& = 48,5 + \left( \dfrac{5}{5 + 4} \right) \cdot 6 \\
& = 48,5 + \left( \dfrac{5}{9} \right) \cdot 6 \\
& = 48,5 + \dfrac{30}{9} \\
& = 48,5 +3,33=51,83
\end{align} $
$\therefore$ Pilihan yang sesuai $(B)\ 51,83$
13. Soal UM Politeknik Negeri 2014 |*Soal Lengkap
Diketahui hasil ulangan matematika dari suatu kelas adalah sebagai berikut:Modus dari data tersebut adalah...
Nilai $f\left( x \right)$ $44-49$ $2$ $50-55$ $6$ $56-61$ $4$ $62-67$ $12$ $68-73$ $10$ $74-79$ $6$
$\begin{align} (A)\ & 63,3 \\ (B)\ & 65,3 \\ (C)\ & 65,5 \\ (D)\ & 69,3 \\ (E)\ & 69,5 \end{align}$
Alternatif Pembahasan:
Modus data berkelompok dirumuskan seperti berikut ini;
$Mo = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c$
- $Tb_{mo}:$Tepi bawah kelas modus, dan Kelas modus adalah kelas dengan frekuensi paling besar.
Kelas yang memiliki frekuensi $12$ adalah yang tertinggi, maka kelas modusnya adalah kelas ke-$4$ dengan interval $62-67$; $\left( Tb_{mo} = 62 - 0,5 = 61,5 \right)$; - $d_{1}:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus, $\left( d_{1}=12-4=8 \right)$;
- $d_{2}:$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus, $\left( d_{2}=12-10=2 \right)$;
- $c:$ Panjang Kelas $\left( c=67,5-62,5=5 \right)$.
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Mo & = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c \\
& = 61,5 + \left( \dfrac{8}{8 + 2} \right) \cdot 5 \\
& = 61,5 + \left( \dfrac{8}{10} \right) \cdot 5 \\
& = 61,5 + 4 \\
& = 65,5
\end{align} $
$\therefore$ Pilihan yang sesuai $(C)\ 65,5$
14. Soal UNBK Matematika IPS 2018 |*Soal Lengkap
Perhatikan tabel berikut!Modus dari tabel tersebut adalah...
Nilai Frekuensi $40-44$ $3$ $45-49$ $4$ $50-54$ $11$ $55-59$ $15$ $60-64$ $7$
$\begin{align} (A)\ & 51,12 \\ (B)\ & 55,17 \\ (C)\ & 55,72 \\ (D)\ & 56,17 \\ (E)\ & 56,67 \end{align}$
Alternatif Pembahasan:
Modus data berkelompok dirumuskan seperti berikut ini;
$Mo = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c$
- $Tb_{mo}:$Tepi bawah kelas modus, dimana Kelas modus adalah kelas dengan frekuensi paling besar.
Kelas yang memiliki frekuensi $15$ adalah yang tertinggi, maka kelas modusnya adalah kelas ke-$4$ dengan interval $55-59$, $\left(Tb_{mo} = 55 - 0,5 = 54,5 \right)$; - $d_{1}:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus, $\left(d_{1}=15-11=4 \right)$;
- $d_{2}:$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus, $\left(d_{2}=15-7=8 \right)$;
- $c:$ Panjang Kelas $\left(c=59,5-54,5=5 \right)$.
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Mo & = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c \\
& = 54,5 + \left( \dfrac{4}{4 + 8} \right) \cdot 5 \\
& = 54,5 + \left( \dfrac{4}{12} \right) \cdot 5 \\
& = 54,5 + \dfrac{20}{12} \\
& = 54,5 + 1,67 \\
& = 56,17
\end{align} $
$\therefore$ Pilihan yang sesuai $(D)\ 56,17$
15. Soal SPM UNNES 2018 Kode 1832 |*Soal Lengkap
Hasil ujian matematika siswa disajikan dalam tabel berikutModus dari data tersebut $84,5$ terletak dalam kelas interval ke-$3$. Banyaknya siswa yang nilainya dalam rentang $71$ sampai dengan $80$ adalah...
Berat Badan Frekuensi $61-70$ $8$ $71-80$ $x$ $81-90$ $22$ $91-100$ $10$
$\begin{align} (A)\ & 10 \\ (B)\ & 14 \\ (C)\ & 16 \\ (D)\ & 18 \\ (E)\ & 20 \end{align}$
Alternatif Pembahasan:
Modus data berkelompok dirumuskan seperti berikut ini;
$Mo = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c$
- $Tb_{mo}:$Tepi bawah kelas modus, dan Kelas modus adalah kelas dengan frekuensi paling besar.
Kelas yang memiliki frekuensi $22$ adalah yang tertinggi, maka kelas modusnya adalah kelas ke-$3$ dengan interval $81-90$; $\left( Tb_{mo} = 81 - 0,5 = 80,5 \right)$; - $d_{1}:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus, $\left( d_{1}=22-x \right)$;
- $d_{2}:$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus, $\left( d_{2}=22-10=12 \right)$;
- $c:$ Panjang Kelas $\left( c=90,5-80,5=10 \right)$.
$ \begin{align} Mo & = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c \\ 84,5 & = 80,5 + \left( \dfrac{22-x}{22-x+12} \right) \cdot 10 \\ 84,5-80,5 & = \left( \dfrac{22-x}{34-x} \right) \cdot 10 \\ 4 & = \dfrac{220-10x}{34-x} \\ 136-4x & = 220-10x \\ 10x-4x & = 220-136 \\ 6x & = 84 \rightarrow x=\dfrac{84}{6}=14 \end{align} $
$\therefore$ Pilihan yang sesuai $(B)\ 14$
16. Soal UM Politeknik Negeri 2018 |*Soal Lengkap
Diketahui frekuensi dari pengelompokan diameter silinder (dalam satuan mm) pada histogram di bawah ini.Modus diameter siliender tersebut adalah...
$\begin{align} (A)\ & 31,9 \\ (B)\ & 34,1 \\ (C)\ & 34,3 \\ (D)\ & 35,8 \\ (E)\ & 36,0 \end{align}$
Alternatif Pembahasan:
Modus data berkelompok dirumuskan seperti berikut ini;
$Mo = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c$
- $Tb_{mo}:$Tepi bawah kelas modus, dan Kelas modus adalah kelas dengan frekuensi paling besar.
Kelas yang memiliki frekuensi $25$ adalah yang tertinggi, maka kelas modusnya adalah kelas ke-$4$ dengan interval $34-37$; $\left( Tb_{mo} = 34 - 0,5 = 33,5 \right)$; - $d_{1}:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus, $\left( d_{1}=25-23=2 \right)$;
- $d_{2}:$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus, $\left( d_{2}=25-17=8 \right)$;
- $c:$ Panjang Kelas $\left( c=37,5-33,5=4 \right)$.
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Mo & = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c \\
& = 33,5 + \left( \dfrac{2}{2 + 8} \right) \cdot 4 \\
& = 33,5 + \left( \dfrac{2}{10} \right) \cdot 4 \\
& = 33,5 + \dfrac{8}{10} \\
& = 33,5 + 0,8 =34,3
\end{align} $
$\therefore$ Pilihan yang sesuai $(C)\ 34,3$
17. Soal UM STIS 2012 |*Soal Lengkap
Berikut ini adalah data penduduk suatu RT di Kelurahan Pondok bambu tahun 1985. Penduduk terbanyak terdapat pada kelompok umur $20-24$ tahun.Jika modus umur penduduk $19,5+\frac{20}{7}$ tahun, jumlah penduduk pada kelompok umur $15-19$ tahun lebih banyak $6$ orang dari kelompok umur sebelumnya dan jumlah penduduk pada kelompok umur $25-29$ tahun lebih banyak $18$ orang dari kelompok umur sesuddahnya, maka jumlah penduduk pada kelompok umur modus adalah...
Kelompok Umur Jumlah Penduduk $0-4$ $5$ $5-9$ $15$ $10-14$ $18$ $15-19$ $\cdots$ $20-24$ $x$ $25-29$ $\cdots$ $30-34$ $7$
$\begin{align} (A)\ & 25 \\ (B)\ & 26 \\ (C)\ & 27 \\ (D)\ & 28 \\ (E)\ & 29 \end{align}$
Alternatif Pembahasan:
Modus data berkelompok dirumuskan seperti berikut ini;
$Mo = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c$
- $Tb_{mo}:$Tepi bawah kelas modus, dan Kelas modus adalah kelas dengan frekuensi paling besar.
Kelas yang memiliki frekuensi yang tertinggi, maka kelas modusnya adalah kelas ke-$5$ dengan interval $20-24$; $\left( Tb_{mo} = 20 - 0,5 = 19,5 \right)$; - $d_{1}:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus, $\left( d_{1}=x-(6+18)=x-24 \right)$;
- $d_{2}:$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus, $\left( d_{2}=x-(18+7)=x-25 \right)$;
- $c:$ Panjang Kelas $\left( c=24,5-19,5=5 \right)$.
$ \begin{align} Mo & = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c \\ 19,5+\dfrac{20}{7} & = 19,5 + \left( \dfrac{x-24}{x-24+x-25} \right) \cdot 5 \\ \dfrac{20}{7} & = \left( \dfrac{x-24}{2x-49} \right) \cdot 5 \\ \dfrac{20}{7} & = \dfrac{5x-120}{2x-49} \\ 40x-980 & = 35x-840 \\ 5x & = 140 \rightarrow x= 28 \end{align} $
$\therefore$ Pilihan yang sesuai $(D)\ 28$
18. Soal SIPENCATAR STMKG 2010 |*Soal Lengkap
Data gempa yang pernah terjadi di kota Bengkulu pada bulan Januari hingga Maret ditunjukkan oleh histogram sebagai berikut. Modus data ini adalah...$\begin{align} (A)\ & 4,0 \\ (B)\ & 5,0 \\ (C)\ & 5,1 \\ (D)\ & 6,0 \\ (E)\ & 6,1 \end{align}$
Alternatif Pembahasan:
Modus data berkelompok dirumuskan seperti berikut ini;
$Mo = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c$
- $Tb_{mo}:$Tepi bawah kelas modus, dan Kelas modus adalah kelas dengan frekuensi paling besar.
Kelas yang memiliki frekuensi $20$ adalah yang tertinggi, maka kelas modusnya adalah kelas ke-$4$ dengan interval $5-6$; $\left( Tb_{mo} = 5 - 0,5 = 4,5 \right)$; - $d_{1}:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus, $\left( d_{1}=20-15=5 \right)$;
- $d_{2}:$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus, $\left( d_{2}=20-17=3 \right)$;
- $c:$ Panjang Kelas $\left( c=5,5-4,5=1 \right)$.
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Mo & = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c \\
& = 4,5 + \left( \dfrac{5}{5 + 3} \right) \cdot 1 \\
& = 4,5 + \left( \dfrac{5}{8} \right) \\
& = 4,5 + 0,625 \\
& = 5,125
\end{align} $
$\therefore$ Pilihan yang sesuai $(C)\ 5,1$
19. Soal UM Politeknik Negeri 2018 |*Soal Lengkap
Modus dari data pada tabel distribusi frekuensi berikut adalah...$\begin{align} (A)\ & 71,68 \\ (B)\ & 72,68 \\ (C)\ & 73,68 \\ (D)\ & 74,68 \\ (E)\ & 75,68 \end{align}$
Nilai Frekuensi $61-65$ $6$ $66-70$ $4$ $71-75$ $18$ $76-80$ $10$ $81-85$ $2$
Alternatif Pembahasan:
Modus data berkelompok dirumuskan seperti berikut ini;
$Mo = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c$
- $Tb_{mo}:$Tepi bawah kelas modus, dimana Kelas modus adalah kelas dengan frekuensi paling besar.
Kelas yang memiliki frekuensi $18$ adalah yang tertinggi, maka kelas modusnya adalah kelas ke-$3$ dengan interval $71-75$, $\left(Tb_{mo} = 71 - 0,5 = 70,5 \right)$; - $d_{1}:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus, $\left(d_{1}=18-4=14 \right)$;
- $d_{2}:$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus, $\left(d_{2}=18-10=8 \right)$;
- $c:$ Panjang Kelas $\left(c=75,5-70,5=5 \right)$.
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Mo & = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c \\
& = 70,5 + \left( \dfrac{14}{14 + 8} \right) \cdot 5 \\
& = 70,5 + \left( \dfrac{14}{22} \right) \cdot 5 \\
& = 70,5 + \dfrac{70}{22} \\
& = 70,5 + 3,18 \\
& = 73,68
\end{align} $
$\therefore$ Pilihan yang sesuai $(C)\ 73,68$
20. Soal UM Politeknik Negeri 2018 |*Soal Lengkap
Modus dari data pada tabel distribusi frekuensi berikut adalah...$\begin{align} (A)\ & 30,10 \\ (B)\ & 30,50 \\ (C)\ & 32,75 \\ (D)\ & 33,50 \\ (E)\ & 34,00 \end{align}$
Nilai Frekuensi $21-25$ $3$ $26-30$ $17$ $31-35$ $20$ $36-40$ $18$ $41-45$ $5$ $46-50$ $4$
Alternatif Pembahasan:
Modus data berkelompok dirumuskan seperti berikut ini;
$Mo = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c$
- $Tb_{mo}:$Tepi bawah kelas modus, dimana Kelas modus adalah kelas dengan frekuensi paling besar.
Kelas yang memiliki frekuensi $20$ adalah yang tertinggi, maka kelas modusnya adalah kelas ke-$3$ dengan interval $31-35$, $\left(Tb_{mo} = 31 - 0,5 = 30,5 \right)$; - $d_{1}:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus, $\left(d_{1}=20-17=3 \right)$;
- $d_{2}:$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus, $\left(d_{2}=20-18=2 \right)$;
- $c:$ Panjang Kelas $\left(c=35,5-30,5=5 \right)$.
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Mo & = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c \\
& = 30,5 + \left( \dfrac{3}{2 + 3} \right) \cdot 5 \\
& = 30,5 + \left( \dfrac{3}{5} \right) \cdot 5 \\
& = 30,5 + 3 \\
& = 33,5
\end{align} $
$\therefore$ Pilihan yang sesuai $(D)\ 33,50$
21. Soal UM Politeknik Negeri 2018 |*Soal Lengkap
Nilai median pada tabel di bawah ini adalah...$\begin{align} (A)\ & 56,5 \\ (B)\ & 57,5 \\ (C)\ & 58,5 \\ (D)\ & 59,5 \\ (E)\ & 60,5 \end{align}$
Ukuran Frekuensi $40-46$ $5$ $47-53$ $7$ $54-60$ $14$ $61-67$ $10$ $68-74$ $4$
Alternatif Pembahasan:
Median adalah suatu nilai pembatas yang membagi data menjadi dua bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Median $(Me)$ sama nilainya dengan kuartil kedua $(Q_{2})$, jadi proses kerjanya adalah sama.
- Jumlah frekuensi pada tabel di atas adalah $40$. Untuk menentukan letak $Me$ ada pada data ke- $\left[\frac{1}{2}(n+1) \right]$
$Me$ terletak pada data ke- $\left[\frac{1}{2}(40+1) \right]=20,5$ - $Me$ pada data ke-$20,5$ artinya $Me$ berada pada kelas interval $54-60$
- Tepi bawah kelas $Me$ yaitu $t_{b}= 54 - 0,5 = 53,5 $
- Frekuensi kumulatif sebelum kelas $Me$, yaitu $f_{k}= 7+5=12$
- Frekuensi kelas $Me$, $f_{Me}=14$
- Panjang kelas $c=60,5-53,5=7$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Me & = t_{b} + \left( \dfrac{\frac{1}{2}n - f_{k}}{f_{Me}} \right) \cdot c \\
& = 53,5 + \left( \dfrac{\frac{1}{2} \cdot 40 - 12}{14} \right) \cdot 7 \\
& = 53,5 + \left( \dfrac{20 - 12}{14} \right) \cdot 7 \\
& = 53,5 + \left( \dfrac{8}{14} \right) \cdot 7 \\
& = 53,5 + 4 \\
& = 57,5
\end{align} $
$\therefore$ Pilihan yang sesuai $(B)\ 57,5$
22. Soal SPMB 2007 Kode 341 |*Soal Lengkap
Hasil ujian $20$ siswa diperlihatkan tabel berikut:Median dari distribusi frekuensi di atas adalah...
Titik Tengah $\left(x_{i} \right)$ Frekuensi $\left(f_{i} \right)$ $4$ $2$ $9$ $4$ $14$ $8$ $19$ $5$ $24$ $1$
$\begin{align} (A)\ & 11,5 \\ (B)\ & 12 \\ (C)\ & 12,5 \\ (D)\ & 13,5 \\ (E)\ & 14 \end{align} $
Alternatif Pembahasan:
Pada tabel yang disajikan adalah titik tengah kelas dan frekuensi.
Jika masih terbiasa dengan tabel yang umum (*dibangun dengan menggunakan aturan sturgess) maka tabel bisa kita ubah terlebih dahul ke bentuk yang umum.
Panjang kelas pada tabel diatas adalah $5$ yang kita peroleh dari selisih titik tengah kelas pertama dan kelas kedua yaitu $9-4=5$.
Titik tengah kelas adalah setengah dari Batas Atas ditambah Batas Bawah.
$x_{i}=\frac{1}{2} (BA+BB)$
Untuk kelas 1:
$4=\frac{1}{2} (BA+BB)$
Cari bilangan dimana nilai tengahnya $4$ dengan panjang kelas $5$ (*jika panjang kelas $5$ maka selisihnya adalah $4$), yaitu $4-2=2$ dan $4+2=6$.
kita peroleh kelas 1: $2-6$
Untuk kelas 2:
$9=\frac{1}{2} (BA+BB)$
Cari bilangan dimana nilai tengahnya $9$ dengan panjang kelas $5$ (*jika panjang kelas $5$ maka selisihnya adalah $4$), yaitu $9-2=7$ dan $9+2=11$.
kita peroleh kelas 2: $7-11$
dan seterusnya tabel lengkapnya seperti dibawah ini;
Nilai | Frekuensi |
---|---|
$2-6$ | $2$ |
$7-11$ | $4$ |
$12-16$ | $8$ |
$17-21$ | $ 5$ |
$22-26$ | $1 $ |
Median $(Me)$ sama nilainya dengan kuartil kedua $(Q_{2})$, jadi proses kerjanya adalah sama.
- Data pada tabel dapat kita hitung yaitu total frekuensi adalah $n=20$.
- Untuk menentukan letak $Me$ ada pada data ke- $\left[\frac{1}{2}(n+1) \right]$
$Me$ terletak pada data ke- $\left[\frac{1}{2}(20+1) \right]=10,5$ - $Me$ pada data ke-$10,5$ artinya $Me$ berada pada kelas interval $12-16$
- Tepi bawah kelas $Me$: $12-16$, $t_{b}= 12 - 0,5 = 11,5 $
- Frekuensi kumulatif sebelum kelas $Me$, $f_{k}= 2+4=6$
- Frekuensi kelas $Me$, $f_{Me}=8$
- Panjang kelas $c=16,5-11,5=5$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Me & = t_{b} + \left( \frac{\frac{1}{2}n - f_{k}}{f_{Me}} \right)c \\
& = 11,5 + \left( \frac{\frac{1}{2} \cdot 20 - 6}{8} \right)5 \\
& = 11,5 + \left( \frac{10 - 6}{8} \right)5 \\
& = 11,5 + \left( \frac{4}{8} \right)5 \\
& = 11,5 + \frac{5}{2} \\
& = 14
\end{align} $
$\therefore$ Pilihan yang sesuai $(E)\ 14$
23. Soal UNBK Matematika SMA IPS 2019 |*Soal Lengkap
Histogram berikut menyatakan data nilai tes peserta didik kelas XI.Median dari data tersebut adalah...
$\begin{align} (A)\ & 70,5 \\ (B)\ & 71,2 \\ (C)\ & 71,5 \\ (D)\ & 75,5 \\ (E)\ & 79,5 \end{align}$
Alternatif Pembahasan:
Median adalah suatu nilai pembatas yang membagi data menjadi dua bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Median $(Me)$ sama nilainya dengan kuartil kedua $(Q_{2})$, jadi proses kerjanya adalah sama.
Data pada histogram menunjukkan bahwa banyak kelas adalah $5$. Tetapi jika membaca data belum bisa dapat merubah data histogram mejadi dalam bentuk tabel distribusi frekuensi, yaitu:
Nilai | Frekuensi |
---|---|
$40-49$ | $5$ |
$50-59$ | $4$ |
$60-69$ | $5$ |
$70-79$ | $10$ |
$80-89$ | $6$ |
Jumlah | $30$ |
- Untuk menentukan letak $Me$ ada pada data ke- $\left[\frac{1}{2}(n+1) \right]$
$Me$ terletak pada data ke- $\left[\frac{1}{2}(30+1) \right]=15,5$ - $Me$ pada data ke-$15,5$ artinya $Me$ berada pada kelas interval $70-79$
- Tepi bawah kelas $Me$ yaitu $t_{b}= 70 - 0,5 = 69,5 $
- Frekuensi kumulatif sebelum kelas $Me$, yaitu $f_{k}= 5+4+5=14$
- Frekuensi kelas $Me$, $f_{Me}=10$
- Panjang kelas $c=49,5-39,5=10$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Me & = t_{b} + \left( \dfrac{\frac{1}{2}n - f_{k}}{f_{Me}} \right)c \\
& = 69,5 + \left( \dfrac{\frac{1}{2} \cdot 30 - 14}{10} \right) \cdot 10 \\
& = 69,5 + \left( \dfrac{15 - 14}{10} \right) \cdot 10 \\
& = 69,5 + \left( \dfrac{1}{10} \right) \cdot 10 \\
& = 69,5 + \dfrac{10}{10} \\
& = 70,5
\end{align} $
$\therefore$ Pilihan yang sesuai $(A)\ 70,5$
24. Soal UMB 2009 Kode 416 |*Soal Lengkap
Seorang pengamat ingin mengetahui data tentang rata-rata, median, dan modus dari seluruh siswa di satu kelas SMA. Setelah dikelompokkan pengamat tersebut menyajikan data dalam tabel berikut:Median distribusi frekuensi di atas adalah...
Berat Badan Frekuensi $50-54$ $6$ $55-59$ $12$ $60-64$ $20$ $65-69$ $8$ $70-74$ $4$
$\begin{align} (A)\ & 61\dfrac{1}{5} \\ (B)\ & 61\dfrac{1}{4} \\ (C)\ & 61\dfrac{1}{2} \\ (D)\ & 62 \\ (E)\ & 62\dfrac{1}{4} \\ \end{align}$
Alternatif Pembahasan:
Data-data yang kita perlukan untuk menghitung median pada data berkelumpok:
- Letak median $Me$ ada pada data ke- $\left[\frac{1}{2}(n+1) \right]$
$Me$ terletak pada data ke- $\left[\frac{1}{2}(50+1) \right]=25,5$ - $Me$ pada data ke-$25,5$ artinya $Me$ berada pada kelas interval $60-64$
- Tepi bawah kelas $Me$ yaitu $t_{b}= 60 - 0,5 = 59,5 $
- Frekuensi kumulatif sebelum kelas $Me$, yaitu $f_{k}= 12+6=18$
- Frekuensi kelas $Me$, $f_{Me}=20$
- Panjang kelas $c=64,5 -59,5=5$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Me & = t_{b} + \left( \dfrac{\frac{1}{2}n - f_{k}}{f_{Me}} \right)c \\
& = 59,5 + \left( \dfrac{\frac{1}{2} \cdot 50 - 18}{20} \right) \cdot 5 \\
& = 59,5 + \left( \dfrac{25 - 18}{20} \right) \cdot 5 \\
& = 59,5 + \left( \dfrac{7}{20} \right) \cdot 5 \\
& = 59,5 + \dfrac{7}{4} \\
& = 61\dfrac{1}{4}
\end{align} $
$\therefore$ Pilihan yang sesuai $(B)\ 61\dfrac{1}{4} $
25. Soal SPMB 2004 |*Soal Lengkap
Data di atas adalah tinggi badan sekelompok siswa. Jika median data di atas adalah $163,5\ cm$, maka nilai $k$ adalah...
Tinggi (cm) Frekuensi $151-155$ $5$ $156-160$ $20$ $161-165$ $k$ $166-170$ $26$ $171-175$ $7$
$\begin{align} (A)\ & 40 \\ (B)\ & 42 \\ (C)\ & 44 \\ (D)\ & 46 \\ (E)\ & 48 \end{align} $
Alternatif Pembahasan:
Diketahui median adalah $163,5\ cm$, sehingga kelas median adalah $161-165$.
- Tepi bawah kelas $Me$: $161-165$, $t_{b}= 161 - 0,5 = 160,5 $
- Frekuensi kumulatif sebelum kelas $Me$, $f_{k}= 20+5=25$
- Frekuensi kelas $Me$, $f_{Me}=k$
- Panjang kelas $c=165,5-160,5=5$
Dari data pada tabel dapat kita hitung total frekuensi adalah $n=58+k$.
Dengan aturan menghitung median pada data berkelompok, dapat kita tuliskan:
$ \begin{align}
Me & = t_{b} + \left( \dfrac{\frac{1}{2}n - f_{k}}{f_{Me}} \right)c \\
163,5 & = 160,5 + \left( \dfrac{\frac{1}{2} \cdot \left( 58+k \right) - 25}{k} \right) 5 \\
163,5- 160,5 & = \left( \dfrac{29 + \frac{k}{2} - 25}{k} \right)5 \\
3k & = 29 \cdot 5 + \frac{k}{2} \cdot 5 - 25 \cdot 5 \\
3k - \frac{5k}{2} & = 145 - 125 \\
\frac{k}{2} & = 20 \\
k & = 40
\end{align} $
$\therefore$ Pilihan yang sesuai $(A)\ 40$
26. Soal UM Politeknik Negeri 2011 |*Soal Lengkap
Diketahui data tentang besarnya lala yang diperoleh suatu industri kecil dalam jutaaan rupaiah pada tabel berikut. Nilai Mediannya adalah...$\begin{align} (A)\ & 16,5 \\ (B)\ & 15,5 \\ (C)\ & 13,5 \\ (D)\ & 10,5 \\ (E)\ & 7,5 \end{align}$
Laba (Juta) Banyaknya $2-7$ $4$ $8-13$ $8$ $14-19$ $9$ $20\ \text{lebih}$ $9$
Alternatif Pembahasan:
Median adalah suatu nilai pembatas yang membagi data menjadi dua bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Median $(Me)$ sama nilainya dengan kuartil kedua $(Q_{2})$, jadi proses kerjanya adalah sama.
- Jumlah frekuensi pada tabel di atas adalah $30$. Untuk menentukan letak $Me$ ada pada data ke- $\left[\frac{1}{2}(n+1) \right]$
$Me$ terletak pada data ke- $\left[\frac{1}{2}(30+1) \right]=15,5$ - $Me$ pada data ke-$15,5$ artinya $Me$ berada pada kelas interval $14-19$
- Tepi bawah kelas $Me$ yaitu $t_{b}= 14 - 0,5 = 13,5 $
- Frekuensi kumulatif sebelum kelas $Me$, yaitu $f_{k}= 8+4=12$
- Frekuensi kelas $Me$, $f_{Me}=9$
- Panjang kelas $c=19,5-13,5=6$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Me & = t_{b} + \left( \dfrac{\frac{1}{2}n - f_{k}}{f_{Me}} \right) \cdot c \\
& = 13,5 + \left( \dfrac{\frac{1}{2} \cdot 30 - 12}{9} \right) \cdot 6 \\
& = 13,5 + \left( \dfrac{15 - 12}{9} \right) \cdot 6 \\
& = 13,5 + \left( \dfrac{3}{9} \right) \cdot 6 \\
& = 13,5 + 2 \\
& = 15,5
\end{align} $
$\therefore$ Pilihan yang sesuai $(B)\ 15,5$
27. Soal SIPENCATAR STMKG 2010 |*Soal Lengkap
Kecepatan angin dasarian bulan Juni Kota Pacitan ditunjukkan oleh tabel sebagai berikut ini:Median data ini adalah...
Kec. Angin (knot) Frekuensi $0-9$ $40$ $10-19$ $50$ $20-29$ $60$ $30-39$ $45$ $40-49$ $25$ $50-59$ $15$ $60-69$ $5$
$\begin{align} (A)\ & 60,0 \\ (B)\ & 55,0 \\ (C)\ & 45,0 \\ (D)\ & 24,5 \\ (E)\ & 25 \end{align}$
Alternatif Pembahasan:
Median adalah suatu nilai pembatas yang membagi data menjadi dua bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Median $(Me)$ sama nilainya dengan kuartil kedua $(Q_{2})$, jadi proses kerjanya adalah sama.
- Jumlah frekuensi pada tabel di atas adalah $240$. Untuk menentukan letak $Me$ ada pada data ke- $\left[\frac{1}{2}(n+1) \right]$
$Me$ terletak pada data ke- $\left[\frac{1}{2}(240+1) \right]=120,5$ - $Me$ pada data ke-$120,5$ artinya $Me$ berada pada kelas interval $20-29$
- Tepi bawah kelas $Me$ yaitu $t_{b}= 20 - 0,5 = 19,5 $
- Frekuensi kumulatif sebelum kelas $Me$, yaitu $f_{k}= 40+50=90$
- Frekuensi kelas $Me$, $f_{Me}=60$
- Panjang kelas $c=29,5-19,5=10$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Me & = t_{b} + \left( \dfrac{\frac{1}{2}n - f_{k}}{f_{Me}} \right) \cdot c \\
& = 19,5 + \left( \dfrac{\frac{1}{2} \cdot 240 - 90}{60} \right) \cdot 10 \\
& = 19,5 + \left( \dfrac{120 - 90}{60} \right) \cdot 10 \\
& = 19,5 + \left( \dfrac{30}{60} \right) \cdot 10 \\
& = 19,5 + 5 \\
& = 24,5
\end{align} $
$\therefore$ Pilihan yang sesuai $(D)\ 24,5$
28. Soal UM Politeknik Negeri 2012 |*Soal Lengkap
Tabel di bawah ini adalah daftar nilai ulangan matematika suatu kelompok siswa.Jika median data di atas $68,5$ maka $n$ adalah...
Nilai $f$ $40-49$ $7$ $50-59$ $9$ $60-69$ $n$ $70-79$ $9$ $80-89$ $8$ $90-99$ $7$
$\begin{align} (A)\ & 8 \\ (B)\ & 9 \\ (C)\ & 10 \\ (D)\ & 11 \\ (E)\ & 12 \end{align}$
Alternatif Pembahasan:
Median adalah suatu nilai pembatas yang membagi data menjadi dua bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Median $(Me)$ sama nilainya dengan kuartil kedua $(Q_{2})$, jadi proses kerjanya adalah sama.
- Jumlah frekuensi pada tabel di atas adalah $40+n$. Karena median sudah diketahui yaitu $68,5$ maka letak $Me$ ada pada data kelas $60-69$
- Tepi bawah kelas $Me$ yaitu $t_{b}= 60 - 0,5 = 59,5 $
- Frekuensi kumulatif sebelum kelas $Me$, yaitu $f_{k}= 9+7=16$
- Frekuensi kelas $Me$, $f_{Me}=n$
- Panjang kelas $c=69,5-59,5=10$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Me & = t_{b} + \left( \dfrac{\frac{1}{2}n - f_{k}}{f_{Me}} \right) \cdot c \\
68,5 & = 59,5 + \left( \dfrac{\frac{1}{2} \cdot ( 40+n) - 16}{n} \right) \cdot 10 \\
68,5-59,5 & = \left( \dfrac{20 + \frac{1}{2}n-16}{n} \right) \cdot 10 \\
9 & = \left( \dfrac{4 + \frac{1}{2}n}{n} \right) \cdot 10 \\
9 & = \dfrac{40 + 5n}{n} \\
9n & = 40 + 5n \\
4n & = 40 \rightarrow n=10
\end{align} $
$\therefore$ Pilihan yang sesuai $(C)\ 10$
29. Soal UM UNDIP 2011 |*Soal Lengkap
Diberikan tabel distribusi frekuensi sebagai berikut:Median dari tabel di atas adalah...
Titik Tengah Frekuensi $31$ $2$ $36$ $3$ $41$ $6$ $46$ $15$ $51$ $14$
$\begin{align} (A)\ & 46,45 \\ (B)\ & 46,50 \\ (C)\ & 46,55 \\ (D)\ & 46,65 \\ (E)\ & 46,75 \end{align} $
Alternatif Pembahasan:
Pada tabel yang disajikan adalah titik tengah kelas dan frekuensi.
Jika masih terbiasa dengan tabel yang umum (*dibangun dengan menggunakan aturan sturgess) maka tabel bisa kita ubah terlebih dahul ke bentuk yang umum.
Panjang kelas pada tabel diatas adalah $5$ yang kita peroleh dari selisih titik tengah kelas pertama dan kelas kedua.
Titik tengah kelas adalah setengah dari Batas Atas ditambah Batas Bawah.
$x_{i}=\frac{1}{2} (BA+BB)$
Untuk kelas 1:
$31=\frac{1}{2} (BA+BB)$
Cari bilangan dimana nilai tengahnya $31$ dengan panjang kelas $5$ (*jika panjang kelas $5$ maka selisihnya adalah $4$), yaitu $31-2=29$ dan $31+2=33$.
kita peroleh kelas 1: $29-33$
Untuk kelas 2:
$36=\frac{1}{2} (BA+BB)$
Cari bilangan dimana nilai tengahnya $36$ dengan panjang kelas $5$ (*jika panjang kelas $5$ maka selisihnya adalah $4$), yaitu $36-2=34$ dan $36+2=38$.
kita peroleh kelas 2: $34-38$
dan seterusnya tabel lengkapnya seperti dibawah ini;
Nilai | Frekuensi |
---|---|
$29-33$ | $2$ |
$34-38$ | $3$ |
$39-43$ | $6$ |
$44-48$ | $15$ |
$49-53$ | $14$ |
Median $(Me)$ sama nilainya dengan kuartil kedua $(Q_{2})$, jadi proses kerjanya adalah sama.
- Data pada tabel dapat kita hitung yaitu total frekuensi adalah $n=40$.
- Untuk menentukan letak $Me$ ada pada data ke- $\left[\frac{1}{2}(n+1) \right]$
$Me$ terletak pada data ke- $\left[\frac{1}{2}(40+1) \right]=20,5$ - $Me$ pada data ke-$20,5$ artinya $Me$ berada pada kelas interval $44-48$
Tepi bawah kelas $Me$: $44-48$, $t_{b}= 44 - 0,5 = 43,5 $ - Frekuensi kumulatif sebelum kelas $Me$, $f_{k}= 2+3+6=11$
- Frekuensi kelas $Me$, $f_{Me}=15$
- Panjang kelas $c=33,5-29,5=4$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Me & = t_{b} + \left( \frac{\frac{1}{2}n - f_{k}}{f_{Me}} \right)c \\
& = 43,5 + \left( \frac{\frac{1}{2} \cdot 40 - 11}{15} \right)5 \\
& = 43,5 + \left( \frac{20 - 11}{15} \right)5 \\
& = 43,5 + \left( \frac{9}{15} \right)5 \\
& = 43,5 + \frac{45}{15} \\
& = 43,5 + 3 \\
& = 46,5
\end{align} $
$\therefore$ Pilihan yang sesuai $(B)\ 46,50$
30. Soal SNMPTN 2010 Kode 326/724 |*Soal Lengkap
Distribusi frekuensi skor ujian matematika siswa kelas $A$ dan $B$ ditunjukkan pada tabel berikut.Berdasarkan data pada tabel tersebut, kesimpulan yang benar adalah...
Skor Ujian Kelas $A$ Kelas $B$ $40-49$ $7$ $1$ $50-59$ $26$ $8$ $60-69$ $15$ $1$ $70-79$ $2$ $32$ $80-89$ $0$ $8$
- Rata-rata, median, dan modus skor ujian matematika siswa kelas $A$ masing-masing lebih tinggi daripada rata-rata, median, dan modus skor ujian matematika siswa kelas $B$.
- Rata-rata, median, dan modus nilai ujian matematika seluruh siswa kelas terletak pada kelas interval yang sama.
- Rata-rata skor ujian matematika siswa kelas $A$ lebih kecil dari pada modus skor ujian matematika kelas lainnya.
- Rata-rata skor ujian matematika siswa kelas $B$ lebih besar dari pada modus skor ujian matematika kelasnya.
- Banyaknya siswa kelas $A$ yang memperoleh skor di atas rata-rata kelasnya lebih banyak daripada banyak siswa kelas $B$ yang memperoleh skor di bawah rata-rata kelasnya.
Alternatif Pembahasan:
Dari tabel yang ditampilkan di atas nilai dari rata-rata, median, dan modus untuk setiap kelas adalah sebagai berikut:


Dari perhitungan di atas yang paling sesuai adalah pernyataan pilihan $(E)$ yaitu Banyaknya siswa kelas $A$ yang memperoleh skor di atas rata-rata kelasnya lebih banyak daripada banyak siswa kelas $B$ yang memperoleh skor di bawah rata-rata kelasnya.
$\therefore$ Pilihan yang sesuai $(E)$ Banyaknya siswa kelas $A$ yang memperoleh skor di atas rata-rata kelasnya lebih banyak daripada banyak siswa kelas $B$ yang memperoleh skor di bawah rata-rata kelasnya.
31. Soal UM UNDIP 2019 Kode 324 |*Soal Lengkap
Median dari data pada tabel berikut adalah:$\begin{align} (A)\ & 82,5 \\ (B)\ & 84,75 \\ (C)\ & 85,5 \\ (D)\ & 86,75 \\ (E)\ & 88 \\ \end{align}$
Interval Frekuensi $71-75$ $4$ $76-80$ $6$ $81-85$ $9$ $86-90$ $8$ $91-90$ $12$ $96-100$ $3$
Alternatif Pembahasan:
Data-data yang kita perlukan untuk menghitung median pada data berkelumpok:
- Total frekuensi adalah $42$, letak median $Me$ ada pada data ke- $\left[\frac{1}{2}(n+1) \right]$
$Me$ terletak pada data ke- $\left[\frac{1}{2}(42+1) \right]=21,5$ - $Me$ pada data ke-$21,5$ artinya $Me$ berada pada kelas interval $86-90$
- Tepi bawah kelas $Me$ yaitu $t_{b}= 86 - 0,5 = 85,5 $
- Frekuensi kumulatif sebelum kelas $Me$, yaitu $f_{k}= 9+6+4=19$
- Frekuensi kelas $Me$, $f_{Me}=8$
- Panjang kelas $c=90,5 -85,5=5$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Me & = t_{b} + \left( \dfrac{\frac{1}{2}n - f_{k}}{f_{Me}} \right)c \\
& = 85,5 + \left( \dfrac{\frac{1}{2} \cdot 42 - 19}{8} \right) \cdot 5 \\
& = 85,5 + \left( \dfrac{21 - 19}{8} \right) \cdot 5 \\
& = 85,5 + \left( \dfrac{10}{8} \right) \\
& = 85,5 + 2,5 \\
& = 88
\end{align} $
$\therefore$ Pilihan yang sesuai $(E)\ 88$
32. Soal UM UNDIP 2010 |*Soal Lengkap
Diberikan data pada tabel berikut:Jika pada tabel ini kuartil atas adalah $75,75$. Maka nilai $x$ adalah...
Titik Tengah Frekuensi $52$ $4$ $57$ $6$ $62$ $8$ $67$ $10$ $72$ $14$ $77$ $x$ $82$ $6$
$\begin{align} (A)\ & 9 \\ (B)\ & 10 \\ (C)\ & 11 \\ (D)\ & 12 \\ (E)\ & 13 \end{align} $
Alternatif Pembahasan:
Pada tabel yang disajikan adalah titik tengah kelas dan frekuensi.
Jika masih terbiasa dengan tabel yang umum (*dibangun dengan menggunakan aturan sturgess) maka tabel bisa kita ubah terlebih dahul ke bentuk yang umum.
Panjang kelas pada tabel diatas adalah $5$ yang kita peroleh dari selisih titik tengah kelas pertama dan kelas kedua.
Titik tengah kelas adalah setengah dari Batas Atas ditambah Batas Bawah.
$x_{i}=\frac{1}{2} (BA+BB)$
Untuk kelas 1:
$52=\frac{1}{2} (BA+BB)$
Cari bilangan dimana nilai tengahnya $52$ dengan panjang kelas $5$ (*jika panjang kelas $5$ maka selisihnya adalah $4$), yaitu $52-2=50$ dan $52+2=54$.
kita peroleh kelas 1: $50-54$
Untuk kelas 2:
$57=\frac{1}{2} (BA+BB)$
Cari bilangan dimana nilai tengahnya $57$ dengan panjang kelas $5$ (*jika panjang kelas $5$ maka selisihnya adalah $4$), yaitu $57-2=55$ dan $57+2=59$.
kita peroleh kelas 2: $55-59$
dan seterusnya tabel lengkapnya seperti dibawah ini;
Nilai | Frekuensi |
---|---|
$50-54$ | $4$ |
$55-59$ | $6$ |
$60-64$ | $8$ |
$65-69$ | $10$ |
$70-74$ | $14$ |
$75-79$ | $x$ |
$80-84$ | $6$ |
Kuartil terdiri dari tiga jenis yaitu kuartil pertama $(Q_{1})$ yang disebut juga kuartil bawah, Kuartil kedua $(Q_{2})$ yang disebut juga median atau nilai tengah, dan Kuartil ketiga $(Q_{3})$ yang disebut juga kuartil atas.
- Data pada tabel dapat kita hitung yaitu total frekuensi adalah $n=48+x$.
- Karena $Q_{3}=75,75$ maka letak $Q_{3}$ berada pada kelas $75-79$.
- Tepi bawah kelas $Q_{3}$: $75-79$, $t_{b}= 75 - 0,5 = 74,5 $
- Frekuensi kumulatif sebelum kelas $Q_{3}$, $f_{k}= 4+6+8+10+14=42$
- Frekuensi kelas $Q_{3}$, $f_{Q_{3}}=x$
- Panjang kelas $c=5$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Q_{3} & = t_{b} + \left( \frac{\frac{3}{4}n - f_{k}}{f_{Q_{3}}} \right)c \\
75,75 & = 74,5 + \left( \frac{\frac{3}{4} \cdot (48+x) - 42}{x} \right)5 \\
75,75 - 74,5 & = \left( \frac{\frac{3}{4} \cdot (48+x) - 42}{x} \right)5 \\
1,25 & = \left( \frac{\frac{3}{4} \cdot (48+x) - 42}{x} \right)5 \\
1,25\ x & = \left( \frac{3}{4} \cdot (48+x) - 42 \right) 5 \\
1,25\ x & = \left( 36+ \frac{3}{4} x - 42 \right)5 \\
1,25\ x & = \left( \frac{3}{4} x - 6 \right)5 \\
1,25\ x & = 3,75\ x - 30 \\
30 & = 3,75\ x - 1,25\ x \\
30 & = 2,5\ x \\
x & = \frac{2}{5} \cdot 30 \\
x & = 12
\end{align} $
$\therefore$ Pilihan yang sesuai $(D)\ 12$
33. Soal UNBK Matematika SMA IPA 2019 |*Soal Lengkap
Perhatikan histogram data hasil pengukuran berat badan sekelompok domba berikut ini.Kuartil bawah dari data tersebut adalah...
$\begin{align} (A)\ & 43,19\ kg \\ (B)\ & 46,27\ kg \\ (C)\ & 46,88\ kg \\ (D)\ & 47,28\ kg \\ (E)\ & 56,00\ kg \end{align} $
Alternatif Pembahasan:
Kuartil adalah suatu nilai pembatas yang membagi data menjadi empat bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Kuartil terdiri dari tiga jenis yaitu kuartil pertama $(Q_{1})$ yang disebut juga kuartil bawah, Kuartil kedua $(Q_{2})$ yang disebut juga median atau nilai tengah, dan Kuartil ketiga $(Q_{3})$ yang disebut juga kuartil atas.
Jika histogram di atas kita sajikan dalam bentuk tabel, seperti berikut;
Berat | Frekuensi |
---|---|
$36-40$ | $3$ |
$41-45$ | $5$ |
$46-50$ | $13$ |
$51-55$ | $10$ |
$56-60$ | $6$ |
$61-65$ | $3$ |
Jumlah | $40$ |
- Untuk menentukan letak $Q_{1}$ ada pada data ke- $\left[\frac{1}{4}(n+1) \right]$
$Q_{1}$ terletak pada data ke- $\left[\frac{1}{4}(40+1) \right]=10,25$ - $Q_{1}$ pada data ke-$10,25$ artinya $Q_{1}$ berada pada kelas interval $46-50$
- Tepi bawah kelas $Q_{1}$: $46-50$, $t_{b}= 46 - 0,5 = 45,5 $
- Frekuensi kumulatif sebelum kelas $Q_{1}$, $f_{k}= 3+5=8$
- Frekuensi kelas $Q_{1}$, $f_{Q_{1}}=13$
- Panjang kelas $c=50,5-46,5=5$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Q_{1} & = t_{b} + \left( \frac{\frac{1}{4}n - f_{k}}{f_{Q_{1}}} \right)c \\
& = 45,5 + \left( \frac{\frac{1}{4} \cdot 40 - 8}{13} \right) 5 \\
& = 45,5 + \left( \frac{10 - 8}{13} \right) 5 \\
& = 45,5 + \left( \frac{2}{13} \right) 5 \\
& = 45,5 + \frac{10}{13} \\
& = 45,5+0,77 \\
& = 46,27
\end{align} $
$\therefore$ Pilihan yang sesuai $(B)\ 46,27\ kg$
34. Soal UM STIS 2013 |*Soal Lengkap
Kuartil pertama dari data yang disajikan dalam histogram berikut ini adalah...$\begin{align} (A)\ & 49,5+ \left( \frac{17}{2} \right) \\ (B)\ & 49,5+ \left( \frac{17}{3} \right) \\ (C)\ & 49,5+ \left( \frac{17}{4} \right) \\ (D)\ & 49,5- \left( \frac{17}{2} \right) \\ (E)\ & 49,5- \left( \frac{17}{4} \right) \end{align} $
Alternatif Pembahasan:
Kuartil adalah suatu nilai pembatas yang membagi data menjadi empat bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Kuartil terdiri dari tiga jenis yaitu kuartil pertama $(Q_{1})$ yang disebut juga kuartil bawah, Kuartil kedua $(Q_{2})$ yang disebut juga median atau nilai tengah, dan Kuartil ketiga $(Q_{3})$ yang disebut juga kuartil atas.
Jika histogram di atas kita sajikan dalam bentuk tabel, seperti berikut;
Berat | Frekuensi |
---|---|
$45-49$ | $5$ |
$50-54$ | $10$ |
$55-59$ | $20$ |
$60-64$ | $12$ |
$65-69$ | $7$ |
Jumlah | $54$ |
- Untuk menentukan letak $Q_{1}$ ada pada data ke- $\left[\frac{1}{4}(n+1) \right]$
$Q_{1}$ terletak pada data ke- $\left[\frac{1}{4}(54+1) \right]=13,75$ - $Q_{1}$ pada data ke-$13,75$ artinya $Q_{1}$ berada pada kelas interval $50-54$
- Tepi bawah kelas $Q_{1}$: $50-54$, $t_{b}= 50 - 0,5 = 49,5 $
- Frekuensi kumulatif sebelum kelas $Q_{1}$, $f_{k}= 5$
- Frekuensi kelas $Q_{1}$, $f_{Q_{1}}=10$
- Panjang kelas $c=54,5-49,5=5$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Q_{1} & = t_{b} + \left( \dfrac{\frac{1}{4}n - f_{k}}{f_{Q_{1}}} \right)c \\
& = 49,5 + \left( \dfrac{\frac{1}{4} \cdot 54 - 5}{10} \right) 5 \\
& = 49,5 + \dfrac{\frac{27}{2} - 5}{2} \\
& = 49,5 + \dfrac{\frac{17}{2}}{2} \\
& = 49,5 + \dfrac{17}{4} \\
\end{align} $
$\therefore$ Pilihan yang sesuai $(C)\ 49,5+ \left( \frac{17}{4} \right) $
35. Soal UNBK Matematika IPS 2018 |*Soal Lengkap
Kuartil bawah dari data pada tabel berikut adalah...$\begin{align} (A)\ & 70,0 \\ (B)\ & 70,5 \\ (C)\ & 71,0 \\ (D)\ & 72,5 \\ (E)\ & 73,0 \end{align} $
Nilai Frekuensi $51-60$ $5$ $61-70$ $4$ $71-80$ $20$ $81-90$ $7$ $91-100$ $4$
Alternatif Pembahasan:
Kuartil adalah suatu nilai pembatas yang membagi data menjadi empat bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Kuartil terdiri dari tiga jenis yaitu kuartil pertama $(Q_{1})$ yang disebut juga kuartil bawah, Kuartil kedua $(Q_{2})$ yang disebut juga median atau nilai tengah, dan Kuartil ketiga $(Q_{3})$ yang disebut juga kuartil atas.
- Data pada tabel dapat kita hitung yaitu total frekuensi adalah $n=40$.
- Untuk menentukan letak $Q_{1}$ ada pada data ke- $\left[\frac{1}{4}(n+1) \right]$
$Q_{1}$ terletak pada data ke- $\left[\frac{1}{4}(40+1) \right]=10,25$ - $Q_{1}$ pada data ke-$10,25$ artinya $Q_{1}$ berada pada kelas interval $71-80$
- Tepi bawah kelas $Q_{1}$: $71-80$, $t_{b}= 71 - 0,5 = 70,5 $
- Frekuensi kumulatif sebelum kelas $Q_{1}$, $f_{k}= 4+5=9$
- Frekuensi kelas $Q_{1}$, $f_{Q_{1}}=20$
- Panjang kelas $c=80,5-70,5=10$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Q_{1} & = t_{b} + \left( \frac{\frac{1}{4}n - f_{k}}{f_{Q_{1}}} \right)c \\
& = 70,5 + \left( \frac{\frac{1}{4} \cdot 40 - 9}{20} \right)10 \\
& = 70,5 + \left( \frac{10 - 9}{20} \right)10 \\
& = 70,5 + \left( \frac{1}{20} \right)10 \\
& = 70,5 + \frac{1}{2} \\
& = 71
\end{align} $
$\therefore$ Pilihan yang sesuai $(C)\ 71$
36. Soal SPM UNNES 2015 Kode 1522 |*Soal Lengkap
Diberikan data sebagai berikut:Jika diketahui kuartil ketiga adalah $39,5$ maka nilai $x$ adalah...
Kelas Interval Frekuensi $10-14$ $2$ $15-19$ $3$ $20-24$ $5$ $25-29$ $x$ $30-34$ $8$ $35-39$ $7$ $40-44$ $9$
$\begin{align} (A)\ & 2 \\ (B)\ & 3 \\ (C)\ & 4 \\ (D)\ & 5 \\ (E)\ & 6 \end{align} $
Alternatif Pembahasan:
Kuartil adalah suatu nilai pembatas yang membagi data menjadi empat bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Kuartil terdiri dari tiga jenis yaitu kuartil pertama $(Q_{1})$ yang disebut juga kuartil bawah, Kuartil kedua $(Q_{2})$ yang disebut juga median atau nilai tengah, dan Kuartil ketiga $(Q_{3})$ yang disebut juga kuartil atas.
- Data pada tabel dapat kita hitung yaitu total frekuensi adalah $n=34+x$.
- Karena $Q_{3}=39,5$ maka letak $Q_{3}$ berada pada kelas $35-39$ atau $40-44$, kita pilih $35-39$.
- Tepi bawah kelas $Q_{3}$: $35-39$, $t_{b}= 35 - 0,5 = 34,5 $
- Frekuensi kumulatif sebelum kelas $Q_{3}$, $f_{k}= 8+x+5+3+2=18+x$
- Frekuensi kelas $Q_{3}$, $f_{Q_{3}}=7$
- Panjang kelas $c=5$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Q_{3} & = t_{b} + \left( \frac{\frac{3}{4}n - f_{k}}{f_{Q_{3}}} \right)c \\
39,5 & = 34,5 + \left( \frac{\frac{3}{4} \cdot (34+x) - (18+x)}{7} \right)5 \\
39,5 - 34,5 & = \left( \frac{25,5+\frac{3}{4}x - 18-x}{7} \right)5 \\
5 & = \left( \frac{7,5-\frac{1}{4}x }{7} \right)5 \\
1 & = \frac{7,5-\frac{1}{4}x }{7} \\
7 & = 7,5-\frac{1}{4}x \\
\frac{1}{4}x & = 7,5-7 \\
\frac{1}{4}x & = 0,5 \\
x & = 2
\end{align} $
$\therefore$ Pilihan yang sesuai $(A)\ 2$
37. Soal SM UNY 2010 |*Soal Lengkap
Diketahui data berikut:Desil ketiga dari data itu adalah...
Nilai Frekuensi $61-65$ $12$ $66-70$ $15$ $71-75$ $17$ $76-80$ $23$ $81-85$ $13$ $86-90$ $10$ $91-95$ $6$ $96-100$ $4$
$\begin{align} (A)\ & 51,38 \\ (B)\ & 61,38 \\ (C)\ & 71,38 \\ (D)\ & 81,38 \\ (E)\ & 91,38 \end{align} $
Alternatif Pembahasan:
Desil adalah suatu nilai pembatas yang membagi data menjadi sepuluh bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Desil terdiri dari sembilan jenis yaitu Desil Kesatu $(D_{1})$ sampai Desil Kesembilan $(D_{9})$, dan Desil Kelima $(D_{5})$ sama dengan Median dan Quartil Dua.
- Data pada tabel dapat kita hitung yaitu total frekuensi adalah $n=100$.
- Untuk menentukan letak $D_{i}$ ada pada data ke- $\left[\frac{i}{10}(n+1) \right]$
$D_{3}$ terletak pada data ke- $\left[\frac{3}{10}(101) \right]=30,3$ - $D_{3}$ pada data ke-$30,3$ artinya $D_{3}$ berada pada kelas interval $71-75$ (*sampai sini sudah dapat jawabannya untuk soal dalam pilihan seperti di atas)
- Tepi bawah kelas $D_{3}$: $71-75$, $t_{b}= 71 - 0,5 = 70,5 $
- Frekuensi kumulatif sebelum kelas $D_{3}$, $f_{k}= 15+12=27$
- Frekuensi kelas $D_{3}$, $f_{D_{3}}=17$
- Panjang kelas $c=5$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
D_{3} & = t_{b} + \left( \dfrac{\frac{3}{10}n - f_{k}}{f_{D_{3}}} \right)c \\
& = 70,5 + \left( \dfrac{\frac{3}{10} \cdot 100 - 27}{17} \right)5 \\
& = 70,5+ \left( \dfrac{30 - 27}{17} \right)5 \\
& = 70,5 + \dfrac{15}{17} \\
& = 70,5 + 0,88 \\
& = 71,38
\end{align} $
$\therefore$ Pilihan yang sesuai $(C)\ 71,38$
38. Soal UN Matematika IPA 2018 |*Soal Lengkap
Kuartil bawah dari data pada tabel distribusi frekuensi di bawah adalah...$\begin{align} (A)\ & 44,50 \\ (B)\ & 45,55 \\ (C)\ & 46,50 \\ (D)\ & 46,75 \\ (E)\ & 47,75 \end{align} $
Interval Frekuensi $40-44$ $12$ $45-49$ $20$ $50-54$ $15$ $55-59$ $30$ $60-64$ $12$ $65-69$ $11$
Alternatif Pembahasan:
Kuartil adalah suatu nilai pembatas yang membagi data menjadi empat bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Kuartil terdiri dari tiga jenis yaitu kuartil pertama $(Q_{1})$ yang disebut juga kuartil bawah, Kuartil kedua $(Q_{2})$ yang disebut juga median atau nilai tengah, dan Kuartil ketiga $(Q_{3})$ yang disebut juga kuartil atas.
- Data pada tabel dapat kita hitung yaitu total frekuensi adalah $n=100$.
- Untuk menentukan letak $Q_{1}$ ada pada data ke- $\left[\frac{1}{4}(n+1) \right]$
$Q_{1}$ terletak pada data ke- $\left[\frac{1}{4}(100+1) \right]=25,25$ - $Q_{1}$ pada data ke-$25,25$ artinya $Q_{1}$ berada pada kelas interval $45-49$
- Tepi bawah kelas $Q_{1}$: $45-49$, $t_{b}= 45 - 0,5 = 44,5 $
- Frekuensi kumulatif sebelum kelas $Q_{1}$, $f_{k}= 12$
- Frekuensi kelas $Q_{1}$, $f_{Q_{1}}=20$
- Panjang kelas $c=49,5-44,5=5$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Q_{1} & = t_{b} + \left( \frac{\frac{1}{4}n - f_{k}}{f_{Q_{1}}} \right)c \\
& = 44,5 + \left( \frac{\frac{1}{4} \cdot 100 - 12}{20} \right)5 \\
& = 44,5 + \left( \frac{25 - 12}{20} \right)5 \\
& = 44,5 + \left( \frac{13}{20} \right)5 \\
& = 44,5 + \frac{13}{4} \\
& = 44,5 + 3,25 =47,75
\end{align} $
$\therefore$ Pilihan yang sesuai $(E)\ 47,75$
39. Soal UN Matematika IPA 2018 |*Soal Lengkap
Perhatikan grafik berikut!Modus dari data yang sesuai dengan histogram tersebut adalah...
$\begin{align} (A)\ & 85,875 \\ (B)\ & 86,125 \\ (C)\ & 86,375 \\ (D)\ & 87,125 \\ (E)\ & 87,375 \end{align}$
Alternatif Pembahasan:
Modus data berkelompok dirumuskan seperti berikut ini;
$Mo = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c$
- $Tb_{mo}:$Tepi bawah kelas modus, dan Kelas modus adalah kelas dengan frekuensi paling besar.
Kelas yang memiliki frekuensi $13$ adalah yang tertinggi, maka kelas modusnya adalah kelas ke-$4$ dengan interval $86-90$; $\left( Tb_{mo} = 86 - 0,5 = 85,5 \right)$; - $d_{1}:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus, $\left( d_{1}=13-10=3 \right)$;
- $d_{2}:$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus, $\left( d_{2}=13-8=5 \right)$;
- $c:$ Panjang Kelas $\left( c=90,5-85,5=5 \right)$.
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Mo & = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c \\
& = 85,5 + \left( \dfrac{3}{3 + 5} \right) \cdot 5 \\
& = 85,5 + \left( \dfrac{3}{8} \right) \cdot 5 \\
& = 85,5 + \dfrac{15}{8} \\
& = 85,5 + 1,875 =87,375
\end{align} $
$\therefore$ Pilihan yang sesuai $(E)\ 87,375$
40. Soal UN Matematika IPA 2017 |*Soal Lengkap
Perhatikan data pada tabel berikut!Kuartil bawah dari data pada tabel tersebut adalah...
Interval Frekuensi $45-49$ $2$ $50-54$ $3$ $55-59$ $3$ $60-64$ $6$ $65-69$ $4$ $70-74$ $2$
$\begin{align} (A)\ & 47,17 \\ (B)\ & 48,50 \\ (C)\ & 50,50 \\ (D)\ & 51,83 \\ (E)\ & 54,50 \end{align} $
Alternatif Pembahasan:
Kuartil adalah suatu nilai pembatas yang membagi data menjadi empat bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Kuartil terdiri dari tiga jenis yaitu kuartil pertama $(Q_{1})$ yang disebut juga kuartil bawah, Kuartil kedua $(Q_{2})$ yang disebut juga median atau nilai tengah, dan Kuartil ketiga $(Q_{3})$ yang disebut juga kuartil atas.
- Data pada tabel dapat kita hitung yaitu total frekuensi adalah $n=20$.
- Untuk menentukan letak $Q_{1}$ ada pada data ke- $\left[\frac{1}{4}(n+1) \right]$
$Q_{1}$ terletak pada data ke- $\left[\frac{1}{4}(20+1) \right]=5,25$ - $Q_{1}$ pada data ke-$5,25$ artinya $Q_{1}$ berada pada kelas interval $55-59$
(*Jika pilihan soal seperti di atas, jawaban yang mungkin bagian dari kelas $55-59$ hanya tinggal (D) 54,50) - Tepi bawah kelas $Q_{1}$: $55-59$, $t_{b}= 55 - 0,5 = 54,5 $
- Frekuensi kumulatif sebelum kelas $Q_{1}$, $f_{k}= 3+2=5$
- Frekuensi kelas $Q_{1}$, $f_{Q_{1}}=3$
- Panjang kelas $c=59,5-54,5=5$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Q_{1} & = t_{b} + \left( \frac{\frac{1}{4}n - f_{k}}{f_{Q_{1}}} \right)c \\
& = 54,5 + \left( \frac{\frac{1}{4} \cdot 20 - 5}{3} \right)5 \\
& = 54,5 + \left( \frac{5 - 5}{3} \right)5 \\
& = 54,5 + \left( \frac{0}{3} \right)5 \\
& = 54,5 + \frac{0}{3} \\
& = 54,5 + 0 =54,5
\end{align} $
$\therefore$ Pilihan yang sesuai $(E)\ 54,50$
41. Soal UN Matematika IPA 2017 |*Soal Lengkap
Perhatikan grafik berikut!Modus dari data yang sesuai dengan histogram tersebut adalah...
$\begin{align} (A)\ & 42,17 \\ (B)\ & 43,17 \\ (C)\ & 43,50 \\ (D)\ & 43,83 \\ (E)\ & 45,50 \end{align}$
Alternatif Pembahasan:
Histogram di atas disajikan dengan menggunakan titik tengah interval kelas, jika histogram kita sajikan dalam bentuk tabel, dapat seperti berikut ini;
Berat | Frekuensi |
---|---|
$31-35$ | $4$ |
$36-40$ | $7$ |
$41-45$ | $9$ |
$46-50$ | $5$ |
$51-55$ | $2$ |
Jumlah | $27$ |
Modus data berkelompok dirumuskan seperti berikut ini;
$Mo = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c$
- $Tb_{mo}:$Tepi bawah kelas modus, dan Kelas modus adalah kelas dengan frekuensi paling besar.
Kelas yang memiliki frekuensi $9$ adalah yang tertinggi, maka kelas modusnya adalah kelas ke-$3$ dengan interval $41-45$; $\left( Tb_{mo} = 41 - 0,5 = 40,5 \right)$; - $d_{1}:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus, $\left( d_{1}=9-7=2 \right)$;
- $d_{2}:$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus, $\left( d_{2}=9-5=4 \right)$;
- $c:$ Panjang Kelas $\left( c=45,5-40,5=5 \right)$.
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Mo & = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c \\
& = 40,5 + \left( \dfrac{2}{2 + 4} \right) \cdot 5 \\
& = 40,5 + \left( \dfrac{2}{6} \right) \cdot 5 \\
& = 40,5 + \dfrac{10}{6} \\
& = 40,5 + 1,666... =42,166...
\end{align} $
$\therefore$ Pilihan yang sesuai $(A)\ 42,17$
42. Soal UN Matematika IPA 2016 |*Soal Lengkap
Perhatikan data pada tabel berikut!Kuartil bawah dari data pada tabel tersebut adalah...
Nilai Frekuensi $31-40$ $3$ $41-50$ $5$ $51-60$ $10$ $61-70$ $11$ $71-80$ $8$ $81-90$ $3$
$\begin{align} (A)\ & 48,5 \\ (B)\ & 51,5 \\ (C)\ & 52,5 \\ (D)\ & 54,5 \\ (E)\ & 58,5 \end{align} $
Alternatif Pembahasan:
Kuartil adalah suatu nilai pembatas yang membagi data menjadi empat bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Kuartil terdiri dari tiga jenis yaitu kuartil pertama $(Q_{1})$ yang disebut juga kuartil bawah, Kuartil kedua $(Q_{2})$ yang disebut juga median atau nilai tengah, dan Kuartil ketiga $(Q_{3})$ yang disebut juga kuartil atas.
- Data pada tabel dapat kita hitung yaitu total frekuensi adalah $n=40$.
- Untuk menentukan letak $Q_{1}$ ada pada data ke- $\left[\frac{1}{4}(n+1) \right]$
$Q_{1}$ terletak pada data ke- $\left[\frac{1}{4}(40+1) \right]=10,25$ - $Q_{1}$ pada data ke-$10,25$ artinya $Q_{1}$ berada pada kelas interval $51-60$
- Tepi bawah kelas $Q_{1}$: $51-60$, $t_{b}= 51 - 0,5 = 50,5 $
- Frekuensi kumulatif sebelum kelas $Q_{1}$, $f_{k}= 5+3=8$
- Frekuensi kelas $Q_{1}$, $f_{Q_{1}}=10$
- Panjang kelas $c=60,5-50,5=10$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Q_{1} & = t_{b} + \left( \frac{\frac{1}{4}n - f_{k}}{f_{Q_{1}}} \right)c \\
& = 50,5 + \left( \frac{\frac{1}{4} \cdot 40 - 8}{10} \right)10 \\
& = 50,5 + \left( \frac{10 - 8}{10} \right)10 \\
& = 50,5 + \left( \frac{2}{10} \right)10 \\
& = 50,5 + \frac{20}{10} \\
& = 50,5 + 2 =52,5
\end{align} $
$\therefore$ Pilihan yang sesuai $(C)\ 52,5$
43. Soal UN Matematika IPA 2016 |*Soal Lengkap
Modus dari data yang disajikan dalam histogram berikut adalah...
$\begin{align} (A)\ & 47,5 \\ (B)\ & 46,5 \\ (C)\ & 46,4 \\ (D)\ & 45,2 \\ (E)\ & 44,7 \end{align}$
Alternatif Pembahasan:
Modus data berkelompok dirumuskan seperti berikut ini;
$Mo = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c$
- $Tb_{mo}:$Tepi bawah kelas modus, dan Kelas modus adalah kelas dengan frekuensi paling besar.
Kelas yang memiliki frekuensi $12$ adalah yang tertinggi, maka kelas modusnya adalah kelas ke-$4$ dengan interval $45-50$; $\left( Tb_{mo} = 45 - 0,5 = 44,5 \right)$; - $d_{1}:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus, $\left( d_{1}=12-8=4 \right)$;
- $d_{2}:$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus, $\left( d_{2}=12-6=6 \right)$;
- $c:$ Panjang Kelas $\left( c=49,5-44,5=5 \right)$.
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Mo & = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c \\
& = 44,5 + \left( \dfrac{4}{4 + 6} \right) \cdot 5 \\
& = 44,5 + \left( \dfrac{4}{10} \right) \cdot 5 \\
& = 44,5 + \dfrac{20}{10} \\
& = 44,5 + 2 =46,5
\end{align} $
$\therefore$ Pilihan yang sesuai $(B)\ 46,5$
44. Soal UN Matematika IPS 2015 |*Soal Lengkap
Modus dari data tabel berikut adalah...$\begin{align} (A)\ & 64,50 \\ (B)\ & 67,00 \\ (C)\ & 67,33 \\ (D)\ & 67,83 \\ (E)\ & 69,50 \end{align}$
Nilai Frekuensi $55-59$ $6$ $60-64$ $8$ $65-69$ $16$ $70-74$ $12$ $75-79$ $6$ $80-84$ $4$ $85-89$ $2$
Alternatif Pembahasan:
Modus data berkelompok dirumuskan seperti berikut ini;
$Mo = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c$
- $Tb_{mo}:$Tepi bawah kelas modus, dan Kelas modus adalah kelas dengan frekuensi paling besar.
Kelas yang memiliki frekuensi $16$ adalah yang tertinggi, maka kelas modusnya adalah kelas ke-3 dengan interval $65-69$, $\left( Tb_{mo} = 65 - 0,5 = 64,5 \right)$; - $d_{1}:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus, $\left(d_{1}=16-8=8 \right)$;
- $d_{2}:$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus, $\left(d_{2}=16-12=4 \right)$;
- $c:$ Panjang Kelas $\left( c=69,5-64,5=5 \right)$.
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Mo & = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c \\
& = 64,5 + \left( \dfrac{8}{8 + 4} \right) \cdot 5 \\
& = 64,5 + \left( \dfrac{8}{12} \right) \cdot 5 \\
& = 64,5 + \dfrac{40}{12} \\
& = 64,5 + 3,333... \\
& = 67,833...
\end{align} $
$\therefore$ Pilihan yang sesuai $(D)\ 67,83$
45. Soal UN Matematika IPS 2015 |*Soal Lengkap
Rata-rata berat badan sejumlah siswa SD dari data yang disajikan pada tabel berikut adalah...$\begin{align} (A)\ & 39\dfrac{3}{16} \\ (B)\ & 40\dfrac{1}{8} \\ (C)\ & 40\dfrac{3}{8} \\ (D)\ & 41\dfrac{1}{7} \\ (E)\ & 41\dfrac{3}{8} \\ \end{align}$
Berat (kg) Frekuensi $21-25$ $2$ $26-30$ $3$ $31-35$ $5$ $36-40$ $8$ $41-45$ $12$ $46-50$ $8$ $51-55$ $2$
Alternatif Pembahasan:
Rataan data berkelompok dapat kita hitung dengan rumus:
$\begin{align}
\overline{x} = & \dfrac{\sum \limits_{i=1}^{n} \left( x_{i} \cdot f_{i} \right) }{\sum \limits_{i=1}^{n}f_{i} } \\
= & \dfrac{ x_{1} \cdot f_{1}+x_{2} \cdot f_{2}+ \cdots +x_{n} \cdot f_{n} }{f_{1}+f_{2}+\cdots+f_{n} }
\end{align}$
Dimana
- $x_{i}$ adalah titik tengah kelas ke-$i$,
$x_{i}=\dfrac{1}{2}\left( BB+BA \right)$ - $f_{i}$ frekuensi kelas ke-$i$
Berat (kg) | Frekuensi | $x_{i}$ | $x_{i} \cdot f_{i}$ |
---|---|---|---|
$21-25$ | $2$ | $23$ | $46$ |
$26-30$ | $3$ | $28$ | $84$ |
$31-35$ | $5$ | $33$ | $165$ |
$36-40$ | $8$ | $38$ | $304$ |
$41-45$ | $12$ | $43$ | $516$ |
$46-50$ | $8$ | $48$ | $384$ |
$51-55$ | $2$ | $53$ | $106$ |
Jumlah | $40$ | $\cdots$ | $1605$ |
$\begin{align}
\overline{x} & = \dfrac{\sum \limits_{i=1}^{n} \left( x_{i} \cdot f_{i} \right) }{\sum \limits_{i=1}^{n}f_{i} } \\
& = \dfrac{1605}{40} \\
& = 40\dfrac{5}{40}
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 40\dfrac{1}{8}$
46. Soal UN Matematika IPA 2014 |*Soal Lengkap
Kuartil atas dari data pada tabel berikut adalah...$\begin{align} (A)\ & 49,25 \\ (B)\ & 48,75 \\ (C)\ & 48,25 \\ (D)\ & 47,75 \\ (E)\ & 47,25 \end{align} $
Nilai Frekuensi $20-25$ $4$ $26-31$ $6$ $32-37$ $6$ $38-43$ $10$ $44-49$ $12$ $50-55$ $8$ $56-61$ $4$
Alternatif Pembahasan:
Kuartil adalah suatu nilai pembatas yang membagi data menjadi empat bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Kuartil terdiri dari tiga jenis yaitu kuartil pertama $(Q_{1})$ yang disebut juga kuartil bawah, Kuartil kedua $(Q_{2})$ yang disebut juga median atau nilai tengah, dan Kuartil ketiga $(Q_{3})$ yang disebut juga kuartil atas.
- Data pada tabel dapat kita hitung yaitu total frekuensi adalah $n=50$.
- Untuk menentukan letak $Q_{3}$ ada pada data ke- $\left[\frac{3}{4}(n+1) \right]$
$Q_{3}$ terletak pada data ke- $\left[\frac{3}{4}(50+1) \right]=38,25$ - $Q_{3}$ pada data ke-$38,25$ artinya $Q_{3}$ berada pada kelas interval $44-49$
- Tepi bawah kelas $Q_{3}$: $44-49$, $t_{b}= 44 - 0,5 = 43,5 $
- Frekuensi kumulatif sebelum kelas $Q_{3}$, $f_{k}= 10+6+6+4=26$
- Frekuensi kelas $Q_{3}$, $f_{Q_{3}}=12$
- Panjang kelas $c=49,5-43,5=6$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Q_{3} & = t_{b} + \left( \frac{\frac{3}{4}n - f_{k}}{f_{Q_{3}}} \right)c \\
& = 43,5 + \left( \frac{\frac{3}{4} \cdot 50 - 26}{12} \right)6 \\
& = 43,5 + \left( \frac{37,5 - 26}{12} \right)6 \\
& = 43,5 + \left( \frac{11,5}{12} \right) 6 \\
& = 43,5 + \frac{69}{12} \\
& = 43,5 + 5,75 =49,25
\end{align} $
$\therefore$ Pilihan yang sesuai $(A)\ 49,25$
47. Soal UN Matematika IPA 2014 |*Soal Lengkap
Perhatikan histogram berikut!Modus dari data pada histogram adalah...
$\begin{align} (A)\ & 23,25 \\ (B)\ & 23,75 \\ (C)\ & 24,00 \\ (D)\ & 25,75 \\ (E)\ & 26,25 \end{align}$
Alternatif Pembahasan:
Histogram di atas disajikan dengan menggunakan titik tengah interval kelas, jika histogram kita sajikan dalam bentuk tabel, dapat seperti berikut ini;
Data | Frekuensi |
---|---|
$3-7$ | $4$ |
$8-12$ | $6$ |
$13-17$ | $8$ |
$18-22$ | $10$ |
$23-27$ | $12$ |
$28-32$ | $6$ |
$33-37$ | $4$ |
$37-42$ | $2$ |
Jumlah | $52$ |
Modus data berkelompok dirumuskan seperti berikut ini;
$Mo = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c$
- $Tb_{mo}:$Tepi bawah kelas modus, dan Kelas modus adalah kelas dengan frekuensi paling besar.
Kelas yang memiliki frekuensi $12$ adalah yang tertinggi, maka kelas modusnya adalah kelas ke-$5$ dengan interval $23-27$; $\left( Tb_{mo} = 23 - 0,5 = 22,5 \right)$; - $d_{1}:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus, $\left( d_{1}=12-10=2 \right)$;
- $d_{2}:$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus, $\left( d_{2}=12-6=6 \right)$;
- $c:$ Panjang Kelas $\left( c=27,5-22,5=5 \right)$.
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Mo & = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c \\
& = 22,5 + \left( \dfrac{2}{2 + 6} \right) \cdot 5 \\
& = 22,5 + \left( \dfrac{2}{8} \right) \cdot 5 \\
& = 22,5 + \dfrac{10}{8} \\
& = 22,5 + 1,25 =23,75
\end{align} $
$\therefore$ Pilihan yang sesuai $(B)\ 33,75$
48. Soal UN Matematika IPS 2014 |*Soal Lengkap
Median dari data pada histogram berikut adalah...$\begin{align} (A)\ & 10,5\ \text{tahun} \\ (B)\ & 11,5\ \text{tahun} \\ (C)\ & 12,5\ \text{tahun} \\ (D)\ & 13,5\ \text{tahun} \\ (E)\ & 14,5\ \text{tahun} \end{align}$
Alternatif Pembahasan:
Histogram di atas disajikan dengan menggunakan titik tengah interval kelas, jika histogram kita sajikan dalam bentuk tabel, dapat seperti berikut ini;
Data | Frekuensi |
---|---|
$2-4$ | $2$ |
$5-7$ | $3$ |
$8-10$ | $5$ |
$11-13$ | $9$ |
$14-16$ | $10$ |
$17-19$ | $5$ |
$20-22$ | $4$ |
Jumlah | $38$ |
Median adalah suatu nilai pembatas yang membagi data menjadi dua bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Median $(Me)$ sama nilainya dengan kuartil kedua $(Q_{2})$, jadi proses kerjanya adalah sama.
- Jumlah frekuensi pada tabel di atas adalah $40$. Untuk menentukan letak $Me$ ada pada data ke- $\left[\frac{1}{2}(n+1) \right]$
$Me$ terletak pada data ke- $\left[\frac{1}{2}(38+1) \right]=19,5$ - $Me$ pada data ke-$19,5$ artinya $Me$ berada pada kelas interval $11-13$
- Tepi bawah kelas $Me$ yaitu $t_{b}= 11 - 0,5 = 10,5 $
- Frekuensi kumulatif sebelum kelas $Me$, yaitu $f_{k}= 5+3+2=10$
- Frekuensi kelas $Me$, $f_{Me}=9$
- Panjang kelas $c=13,5-10,5=3$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Me & = t_{b} + \left( \dfrac{\frac{1}{2}n - f_{k}}{f_{Me}} \right) \cdot c \\
& = 10,5 + \left( \dfrac{\frac{1}{2} \cdot 38 - 10}{9} \right) \cdot 3 \\
& = 10,5 + \left( \dfrac{19 - 10}{9} \right) \cdot 3 \\
& = 10,5 + \left( \dfrac{9}{9} \right) \cdot 3 \\
& = 10,5 + 3 = 13,5
\end{align} $
$\therefore$ Pilihan yang sesuai $(D)\ 13,5\ \text{tahun}$
49. Soal UNBK Matematika IPS 2013 |*Soal Lengkap
Tabel berikut adalah hasil pengukuran tinggi badan sekelompok siswa.Kuartil bawah dari data pada tabel tersebut adalah...
Tinggi Badan Frekuensi $150-154$ $4$ $155-159$ $10$ $160-164$ $6$ $165-169$ $8$ $170-175$ $4$ $175-179$ $8$
$\begin{align} (A)\ & 155,5\ cm \\ (B)\ & 156,5\ cm \\ (C)\ & 157,5\ cm \\ (D)\ & 158,5\ cm \\ (E)\ & 159,5\ cm \end{align} $
Alternatif Pembahasan:
Kuartil adalah suatu nilai pembatas yang membagi data menjadi empat bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Kuartil terdiri dari tiga jenis yaitu kuartil pertama $(Q_{1})$ yang disebut juga kuartil bawah, Kuartil kedua $(Q_{2})$ yang disebut juga median atau nilai tengah, dan Kuartil ketiga $(Q_{3})$ yang disebut juga kuartil atas.
- Data pada tabel dapat kita hitung yaitu total frekuensi adalah $n=40$.
- Untuk menentukan letak $Q_{1}$ ada pada data ke- $\left[\frac{1}{4}(n+1) \right]$
$Q_{1}$ terletak pada data ke- $\left[\frac{1}{4}(40+1) \right]=10,25$ - $Q_{1}$ pada data ke-$10,25$ artinya $Q_{1}$ berada pada kelas interval $155-159$
- Tepi bawah kelas $Q_{1}$: $155-159$, $t_{b}= 155 - 0,5 = 154,5 $
- Frekuensi kumulatif sebelum kelas $Q_{1}$, $f_{k}= 4$
- Frekuensi kelas $Q_{1}$, $f_{Q_{1}}=10$
- Panjang kelas $c=159,5-154,5=5$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Q_{1} & = t_{b} + \left( \frac{\frac{1}{4}n - f_{k}}{f_{Q_{1}}} \right)c \\
& = 154,5 + \left( \frac{\frac{1}{4} \cdot 40 - 4}{10} \right)5 \\
& = 154,5 + \left( \frac{10 - 4}{10} \right)5 \\
& = 154,5 + \left( \frac{6}{10} \right) 5 \\
& = 154,5 + \frac{30}{10} \\
& = 157,5
\end{align} $
$\therefore$ Pilihan yang sesuai $(C)\ 157,5\ cm$
50. Soal UN Matematika IPA 2012 |*Soal Lengkap
Data yang diberikan dalam tabel frekuensi sebagai berikut:$\begin{align} (A)\ & 49,5-\frac{40}{7} \\ (B)\ & 49,5-\frac{36}{7} \\ (C)\ & 49,5+\frac{36}{7} \\ (D)\ & 49,5+\frac{40}{7} \\ (E)\ & 49,5+\frac{48}{7} \end{align}$
Kelas Frekuensi $20-29$ $3$ $30-39$ $7$ $40-49$ $8$ $50-59$ $12$ $60-69$ $9$ $70-79$ $6$ $80-89$ $5$
Alternatif Pembahasan:
Modus data berkelompok dirumuskan seperti berikut ini;
$Mo = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c$
- $Tb_{mo}:$Tepi bawah kelas modus, dan Kelas modus adalah kelas dengan frekuensi paling besar.
Kelas yang memiliki frekuensi $12$ adalah yang tertinggi, maka kelas modusnya adalah kelas ke-4 dengan interval $50-59$, $\left( Tb_{mo} = 50 - 0,5 = 49,5 \right)$; - $d_{1}:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus, $\left(d_{1}=12-8=4 \right)$;
- $d_{2}:$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus, $\left(d_{2}=12-9=3 \right)$;
- $c:$ Panjang Kelas $\left( c=59,5-49,5=10 \right)$.
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Mo & = Tb_{mo} + \left( \dfrac{d_{1}}{d_{1} + d_{2}} \right) \cdot c \\
& = 49,5 + \left( \dfrac{4}{4 + 3} \right) \cdot 10 \\
& = 49,5 + \left( \dfrac{4}{7} \right) \cdot 10 \\
& = 49,5 + \dfrac{40}{7}
\end{align} $
$\therefore$ Pilihan yang sesuai $(D)\ 49,5+\frac{40}{7}$
51. Soal UN Matematika IPA 2008 |*Soal Lengkap
Perhatikan data berikut!Kuartil atas dari data pada tabel adalah...
Berat Badan Frekuensi $50-54$ $4$ $55-59$ $6$ $60-64$ $8$ $65-69$ $10$ $70-74$ $8$ $75-79$ $4$
$\begin{align} (A)\ & 69,50 \\ (B)\ & 70,00 \\ (C)\ & 70,50 \\ (D)\ & 70,75 \\ (E)\ & 71,00 \end{align} $
Alternatif Pembahasan:
Kuartil adalah suatu nilai pembatas yang membagi data menjadi empat bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Kuartil terdiri dari tiga jenis yaitu kuartil pertama $(Q_{1})$ yang disebut juga kuartil bawah, Kuartil kedua $(Q_{2})$ yang disebut juga median atau nilai tengah, dan Kuartil ketiga $(Q_{3})$ yang disebut juga kuartil atas.
- Data pada tabel dapat kita hitung yaitu total frekuensi adalah $n=40$.
- Untuk menentukan letak $Q_{3}$ ada pada data ke- $\left[\frac{3}{4}(n+1) \right]$
$Q_{3}$ terletak pada data ke- $\left[\frac{3}{4}(40+1) \right]=30,75$ - $Q_{3}$ pada data ke-$30,75$ artinya $Q_{3}$ berada pada kelas interval $70-74$
- Tepi bawah kelas $Q_{3}$: $70-74$, $t_{b}= 70 - 0,5 = 69,5 $
- Frekuensi kumulatif sebelum kelas $Q_{3}$, $f_{k}= 10+8+6+4=28$
- Frekuensi kelas $Q_{3}$, $f_{Q_{3}}=8$
- Panjang kelas $c=74,5-69,5=5$
Dari apa yang kita peroleh di atas dapat kita tentukan:
$ \begin{align}
Q_{3} & = t_{b} + \left( \frac{\frac{3}{4}n - f_{k}}{f_{Q_{3}}} \right)c \\
& = 69,5 + \left( \frac{\frac{3}{4} \cdot 40 - 28}{8} \right) 5 \\
& = 69,5 + \left( \frac{30 - 28}{8} \right) 5 \\
& = 69,5 + \left( \frac{2}{8} \right) 5 \\
& = 69,5 + \frac{10}{8} \\
& = 69,5 + 1,25 = 70,75
\end{align} $
$\therefore$ Pilihan yang sesuai $(D)\ 70,75$
Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan
___pythagoras
Beberapa pembahasan soal Matematika Dasar ini merupakan bagian dari catatan calon guru tentang Statistika Data Berkelompok di atas adalah coretan kreatif siswa pada:
- lembar jawaban penilaian harian matematika,
- lembar jawaban penilaian akhir semester matematika,
- presentasi hasil diskusi matematika atau
- pembahasan quiz matematika di kelas.
Untuk segala sesuatu hal yang perlu kita diskusikan terkait 50+ Soal dan Pembahasan Matematika Dasar SMA Statistika Data Berkelompok silahkan disampaikan 🙏 CMIIW😊.
Jangan Lupa Untuk Berbagi 🙏 Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊