Calon Guru belajar matematika dasar SMA lewat Soal dan Pembahasan Matematika Dasar Barisan dan Deret Geometri. Catatan ini untuk melengkapi catatan belajar kita terkait matematika dasar barisan dan deret. Barisan dan deret kita bagi menjadi tiga catatan, yaitu matematika dasar barisan dan deret aritmatika, matematika dasar barisan dan deret aritmatika dan matematika dasar deret geometri tak hingga.
Penerapan barisan dan deret geometri dalam kehidupan sehari-hari juga sangat banyak, diantaranya dapat dilihat pada soal-soal yang akan kita diskusikan. Mempelajari dan menggunakan aturan-aturan pada barisan dan deret geometri sangatlah mudah, jika Anda mengikuti step by step yang kita diskusikan di bawah ini, maka anda akan dengan mudah memahami soal-soal barisan dan deret geometri dan menemukan solusinya.
Barisan dan deret salah satu materi matematika yang dipelajari pada SMA dan SMP, bahkan dalam bentuk soal cerita atau matematika realistik, soal tentang barisan dan deret sudah disisipkan pada materi matematika untuk tingkat SD.
BARISAN DAN DERET BILANGAN
Barisan Bilangan adalah urutan bilangan-bilangan yang disusun berdasarkan pola tertentu.
Secara simbol sederhana barisan dapat kita tuliskan;
$U_{1}, U_{2}, U_{3}, \cdots ,U_{n}$
$U_{1}$ kita sebut Bilangan Pertama/Suku Pertama,
$U_{2}$ kita sebut Bilangan Kedua/Suku Kedua,
$U_{3}$ kita sebut Bilangan ketiga/Suku Ketiga,
$ \cdots $
$U_{n}$ kita sebut Bilangan ke-n/Suku ke-n,
Penggunaan istilah Suku Pertama, Suku Kedua dan seterusnya lebih familiar dibanding istilah Bilangan Pertama, Bilangan Kedua, jadi untuk berikutnya kita pakai istilah Suku Pertama,$ \cdots $ Suku ke-n.
Deret Bilangan merupakan penjumlahan dari suku-suku barisan.
Secara simbol sederhana deret bilangan dapat kita tuliskan;
$U_{1}+ U_{2}+ U_{3}+ \cdots +U_{n}$
$S_{1}$ kita sebut Jumlah satu suku pertama.
$S_{1}=U_{1}$
$S_{2}$ kita sebut Jumlah dua suku pertama.
$S_{2}=U_{1}+U_{2}$
$S_{3}$ kita sebut Jumlah tiga suku pertama.
$S_{3}=U_{1}+U_{2}+U_{3}$
$ \cdots $
$S_{n}$ kita sebut Jumlah $n$ suku pertama,
$S_{n}=U_{1}+U_{2}+U_{3}+ \cdots +U_{n}$
BARISAN DAN DERET GEOMETRI
Setelah dapat memahami tentang barisan dan deret bilangan, sekarang coba kita diskusikan tentang Barisan dan Deret Bilangan Geometri yang sering disebut hanya Barisan Geometri. Suatu barisan bilangan dikatakan sebagai Barisan Geometri ($BG$) jika perbandingan antara suatu suku dan suku sebelumnya sama besar.
Perbandingan antara suatu suku dan suku sebelumnya dinamakan dengan $rasio$ ($r$).
Contoh,
$2, 4, 8, 16, 32,...$ (Barisan Geometri dengan $r=2$)
$27, 9, 3, 1, \dfrac{1}{3}, \dfrac{1}{9}...$ (Barisan Geometri dengan $r=\dfrac{1}{3}$)
Pada Barisan Geometri jika suku pertama diberi simbol dengan $a$ dan rasio dengan $r$ maka suku-suku Barisan Geometri secara umum dapat kita tuliskan menjadi;
$a,\ ar,\ ar^{2},\ ar^{3},\cdots, ar^{n-1}$
Sedangkan jika Barisan Geometri kita tuliskan menjadi Deret Geometri, penulisan menjadi;
$a+\ ar+\ ar^{2}+\ ar^{3}+\cdots+ ar^{n-1}$
Dari bentuk umum diatas kita peroleh,
- rasio=$r$
$r=\dfrac{U_{2}}{U_{1}}=\dfrac{U_{3}}{U_{2}}=\dfrac{U_{7}}{U_{6}}$
$r=\dfrac{U_{n}}{U_{n-1}}$ - Suku ke-n
$U_{n}=ar^{n-1}$ - Jumlah n suku pertama
$S_{n}=\dfrac{a \left (r^{n}-1 \right )}{r-1}$
$S_{n}=\dfrac{a \left (1-r^{n} \right )}{1-r}$ - Suku Tengah berlaku untuk $n$ bilangan ganjil
$U_{t}=\sqrt{U_{1} \cdot U_{n}}$
SOAL DAN PEMBAHASAN BARDER GEOMETRI
Barisan dan Deret Geometri untuk beberapa buku memakai istilah dengan sebutan Deret Ukur. untuk memahami Barisan dan Deret Geomtri ini coba kita diskusikan beberapa contoh soal yang pernah diujikan pada Ujian Nasional dan SBMPTN.
1. Soal Ujian Nasional 2007 |*Soal Lengkap
Bakteri jenis $A$ berkembang biak menjadi dua kali lipat setiap lima menit. Pada waktu lima belas menit pertama banyaknya bakteri ada $400$. Banyak bakteri pada waktu tiga puluh lima menit pertama adalah...
$\begin{align} (A)\ & 640\ \text{bakteri} \\ (B)\ & 3.200\ \text{bakteri} \\ (C)\ & 6.400\ \text{bakteri} \\ (D)\ & 12.800\ \text{bakteri} \\ (E)\ & 32.000\ \text{bakteri} \end{align}$
Alternatif Pembahasan:
Dari informasi pada soal, lima belas menit pertama banyaknya bakteri ada $400$, sehingga kita peroleh $20$ menit pertama bakteri ada $800$, $25$ menit pertama bakteri ada $1600$, $30$ menit pertama bakteri ada $3200$, dan $35$ menit pertama bakteri ada $6400$.
$\therefore$ Pilihan yang sesuai adalah $(C)\ 6.400\ \text{bakteri}$
Sebagai alternatif jika yang ditanyakan nantinya setelah $100$ jam pertama. Tentunya cara yang di atas membutuhkan energi yang extra. Kita bisa gunakan rumus-rumus yang ada yaitu sebagai berikut.
Diketahui bakteri jenis $A$ berkembang biak menjadi dua kali lipat setiap lima menit. Sehingga jika kita misalkan pada lima menit pertama banyaknya $a$, maka sepuluh menit pertama jadi $2a$, dan lima belas menit pertama jadi $4a$.
Diketahui juga bahwa lima belas menit pertama banyaknya bakteri ada $400$ sehingga $4a=400 \rightarrow a=100$.
Dengan mengikuti pola diatas juga banyak bakteri pada $35$ menit pertama sama dengan suku ke-$7$, yaitu:
$\begin{align}
U_{n}\ &= ar^{n-1} \\
U_{7}\ &= (100)(2)^{7-1} \\
&= (100)(2)^{6} \\
&= (100) (64) = 6.400
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 6.400\ \text{bakteri}$
2. Soal SM-UNPAD 2007
Sepotong kawat yang panjangnya 124 cm dipotong menjadi 5 bagian sehingga panjang setiap potongnya membentuk Barisan Geometri. Jika potongan kawat yang paling pendek adalah 4 cm, potongan kawat yang paling panjang adalah...
$\begin{align} (A)\ & 60\ cm\\ (B)\ & 64\ cm\\ (C)\ & 68\ cm\\ (D)\ & 72\ cm\\ (E)\ & 76\ cm \end{align}$
Alternatif Pembahasan:
Keterangan yang dapat kita ambil dari soal adalah panjang seluruh tali yang dibagi menjadi 5 bagian adalah 124.
Karena tali dibagi menjadi 5 bagian dengan mengikuti pola Barisan Geometri, maka jika kita urutkan dari panjang tali yang terkecil menjadi,
$a,\ ar,\ ar^{2},\ ar^{3},\ ar^{4}$
barisan di atas panjang tali terpendek kita misalkan $a$ panjangnya adalah 4 dan jumlah barisan adalah 124, sehingga dapat kita tuliskan menjadi,
$a+ ar+ ar^{2}+ ar^{3}+ ar^{4}=124$
$S_{5}=124$
$\dfrac{a \left (r^{5}-1 \right )}{r-1}=124$
$\dfrac{4 \left (r^{5}-1 \right )}{r-1}=124$
$\dfrac{\left (r^{5}-1 \right )}{r-1}=31$
$\dfrac{\left (r^{4}+r^{3}+r^{2}+r+1 \right )\left (r-1 \right )}{r-1}=31$
$r^{4}+r^{3}+r^{2}+r+1=31$
$\left (r^{3}+3r^{2}+7r+15 \right )\left ( r-2 \right )=0$
salah satu nilai $r$ yang memenuhi adalah $r=2$
Potongan kawat yang paling panjang,
$U_{5}=ar^{5-1}$
$U_{5}=4 \cdot 2^{4}$
$U_{5}=4 \cdot 16$
$U_{5}=64$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 64\ cm$
3. Soal SPMB 2004 |*Soal Lengkap
Suku ke-4 suatu Barisan Geometri sama dengan suku ke-8 suatu Barisan Aritmetika. Kedua barisan tersebut mempunyai suku pertama sama dengan 2. Jika rasio Barisan Geometri sama dengan beda BA dan keduanya merupakan bilangan bulat, suku ke-5 Barisan Geometri dikurangi suku ke-11 BA sama dengan...
$\begin{align}
(A)\ & 2 \\ (B)\ & 8 \\ (C)\ & 10 \\ (D)\ & 14 \\ (E)\ & 16 \end{align}$
Alternatif Pembahasan:
$U_{4} [Barisan Geometri]=U_{8} [BA]$
$ar^{3}=a+7b$
untuk nilai $a=2$ dan $r=b$ maka kita peroleh,
$2r^{3}=2+7r$
$2r^{3}-7r-2=0$
$(r-2)(2r^{2}+4r+1)=0$
$(r-2)(2r-1)^{2}=0$
$r=2$ atau $r=\frac{1}{2}$
Nilai $r$ yang bulat adalah yang memenuhi, $r=2$.
Nilai suku ke-5 Barisan Geometri dikurangi suku ke-11 BA adalah,
$\begin{align}
U_{5} [Barisan Geometri]-U_{11} [BA] &= ar^{4}-(a+10b) \\
&= (2)(2)^{4}-(2+10(2)) \\
&= 32-22 \\
&= 10
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 10$
4. Soal SBMPTN 2018 Kode 526 |*Soal Lengkap
Empat bilangan membentuk suatu barisan aritmetika. Jika bilangan pertama dan bilangan kedua tetap, serta bilangan ketiga ditambah bilangan pertama dan bilangan keempat dikalikan 2, maka terbentuk suatu barisan geometri. Jika beda suku-suku pada barisan aritmetika adalah 2, maka jumlah empat bilangan pertama pada barisan geometri tersebut adalah...
$\begin{align} (A)\ & 8 \\ (B)\ & 20 \\ (C)\ & 24 \\ (D)\ & 30 \\ (E)\ & 36 \end{align}$
Alternatif Pembahasan:
Untuk soal ini ada penggabungan materi antara barisan aritmetika dan barisan geometri, jadi sedikit materi dari barisan aritmetika harus kita ketahui;
Misalkan $BA$ dengan $b=2$ adalah $(a),\ (a+2),\ (a+4),\ (a+6)$.
Barisan Geometri yang terbentuk:
$(a),\ (a+2),\ (a+4)+(a),\ 2(a+6)$.
$(a),\ (a+2),\ (2a+4),\ (2a+12)$.
dengan menggunakan ciri khas dari Barisan Geometri, kita peroleh
$\begin{align}
u_{2}^{2} & =u_{1} \cdot u_{3} \\
(a+2)^{2} & = a \cdot (2a+4) \\
a^{2}+4a+4 & = 2a^{2}+4a \\
a^{2}-4 & =0 \\
(a-2)(a+2) & =0 \\
a=2\ & \text{atau}\ a=-2
\end{align}$
Untuk $a=-2$ barisan adalah: $-2,\ 0,\ 0,\ 8$ bukan Barisan Geometri.
Untuk $a=2$ barisan adalah: $2,\ 4,\ 8,\ 16$ merupakan Barisan Geometri sehingga jumlahnya adalah $30$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 30$
5. Soal SBMPTN 2018 Kode 527 |*Soal Lengkap
Diketahui suatu barisan geometri yang terdiri atas empat suku dengan rasio $\dfrac{1}{2}$ dan suatu barisan aritmetika yang terdiri atas tiga suku dengan beda $b$. Jumlah semua suku barisan geometri tersebut dan jumlah semua suku barisan aritmetika tersebut masing-masing bernilai $1$. Jika suku pertama barisan geometri tersebut sama dengan suku ketiga barisan aritmetika, maka nilai $b$ adalah...
$\begin{align} (A)\ & \dfrac{1}{15} \\ (B)\ & \dfrac{2}{15} \\ (C)\ & \dfrac{1}{5} \\ (D)\ & \dfrac{1}{3} \\ (E)\ & \dfrac{8}{15} \end{align}$
Alternatif Pembahasan:
Untuk soal ini ada penggabungan materi antara barisan aritmetika dan barisan geometri, jadi sedikit materi dari barisan aritmetika harus kita ketahui;
Misalkan: Barisan Geometri dengan $r=\dfrac{1}{2}$ adalah $a,\ \dfrac{1}{2}a,\ \dfrac{1}{4}a,\ \dfrac{1}{8}a$.
$\begin{align}
a+ \dfrac{1}{2}a+ \dfrac{1}{4}a+ \dfrac{1}{8}a & = 1 \\
\dfrac{8}{8}a+ \dfrac{4}{8}a+ \dfrac{2}{8}a+ \dfrac{1}{8}a & = 1 \\
\dfrac{8+4+2+1}{8}a & = 1 \\
15a & = 8 \\
a & = \dfrac{8}{15}
\end{align}$
Misalkan $BA$ dengan $b=b$ adalah $u_{1}-b,\ u_{1},\ u_{1}+b$.
$\begin{align}
u_{1}-b+ u_{1}+ u_{1}+b & = 1 \\
3u_{1} & = 1 \\
u_{1} & = \dfrac{1}{3}
\end{align}$
Karena $u_{1}$ Barisan Geometri sama dengan $u_{3}$ $BA$, maka
$\begin{align}
u_{1}+b & = a \\
\dfrac{1}{3}+b & = \dfrac{8}{15} \\
b & = \dfrac{8}{15}-\dfrac{1}{3} \\
& = \dfrac{8}{15}-\dfrac{5}{15} \\
& = \dfrac{3}{15}=\dfrac{1}{5}
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ \dfrac{1}{5}$
6. Soal SBMPTN 2018 Kode 408 |*Soal Lengkap
Jika $-2,\ a+3,\ a-1$ membentuk barisan geometri, maka jumlah $11$ suku pertama yang mungkin adalah...
$\begin{align} (A)\ & -2 \\ (B)\ & -1 \\ (C)\ & 0 \\ (D)\ & 1 \\ (E)\ & 2 \end{align}$
Alternatif Pembahasan:
Dari Barisan Geometri $-2,\ a+3,\ a-1$ kita peroleh;
$\begin{align}
u_{2}^{2} & = u_{1} \cdot u_{3} \\
(a+3)^{2} & = -2 \cdot (a-1) \\
a^{2}+6a+9 & = -2a+2 \\
a^{2}+8a+7 & = 0 \\
(a+1)(a+7) & = 0 \\
(a+1)=0\ & \text{atau}\ (a+7)=0 \\
a=-1\ & \text{atau}\ a=-7
\end{align}$
Untuk $a=-1$ maka Barisan Geometri: $-2,\ 2,\ -2,\ \cdots$
Jumlah $11$ suku pertama adalah
$\begin{align}
S_{n} & = \dfrac{a \left (r^{n}-1 \right )}{r-1} \\
S_{11} & = \dfrac{-2 \left ((-1)^{11}-1 \right )}{-1-1} \\
& = \dfrac{-2 \left (-1-1 \right )}{-1-1} \\
& = \dfrac{4}{-2} \\
& = -2
\end{align}$
Untuk $a=-7$ maka Barisan Geometri: $-2,\ -4,\ -8,\ \cdots$
Jumlah $11$ suku pertama adalah
$\begin{align}
S_{n} & = \dfrac{a \left (r^{n}-1 \right )}{r-1} \\
S_{11} & = \dfrac{-2 \left ((2)^{11}-1 \right )}{-1-1} \\
& = \dfrac{-2 \left (2^{11}-1 \right )}{-2} \\
& = 2^{11}-1
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(A)\ -2$
7. Soal SBMPTN 2018 Kode 417 |*Soal Lengkap
Diberikan barisan geometri $u_{n}$, dengan $u_{3}+u_{4}=4(u_{1}+u_{2})$ dan $u_{1}u_{4}=4u_{2}$. Jumlah $4$ suku pertama yang mungkin adalah...
$\begin{align} (A)\ & -2 \\ (B)\ & -1 \\ (C)\ & 5 \\ (D)\ & 10 \\ (E)\ & 15 \end{align}$
Alternatif Pembahasan:
Dari Barisan Geometri yang memenuhi $u_{3}+u_{4}=4(u_{1}+u_{2})$ dan $u_{1}u_{4}=4u_{2}$ kita peroleh;
$\begin{align}
u_{3}+u_{4} & = 4(u_{1}+u_{2}) \\
ar^{2}+ar^{3} & = 4(a+ar) \\
ar^{2}+ar^{3} & = 4a+4ar \\
r^{2}+r^{3} & = 4+4r \\
r^{3}+r^{2}-4r-4 & = 0 \\
(r+1)(r+2)(r-2) & = 0 \\
r=-1,\ r=-2,\ & \text{atau}\ r=2 \\
\end{align}$
$\begin{align}
u_{1}u_{4} & = 4u_{2} \\
a \cdot ar^{3} & = 4(ar) \\
a \cdot ar^{3} & = 4ar \\
ar^{2} & = 4
\end{align}$
Untuk $r=-1$ maka $a=4$ Barisan Geometri: $4,\ -4,\ 4,\ -4,\ \cdots$
Untuk $r=-2$ maka $a=1$ Barisan Geometri: $1,\ -2,\ 4,\ -8,\ \cdots$
Untuk $r=2$ maka $a=1$ Barisan Geometri: $1,\ 2,\ 4,\ 8,\ \cdots$
Jumlah $4$ suku pertama yang mungkin adalah: $0$, $-5$ atau $15$
$\therefore$ Pilihan yang sesuai adalah $(E)\ 15$
8. Soal SBMPTN 2017 Kode 226 |*Soal Lengkap
Perbandingan suku ke-6 terhadap suku pertama suatu barisan geometri adalah $\dfrac{1}{32}$. Jika jumlah suku ke-3 dan suku ke-4 adalah $15$, maka jumlah $3$ suku pertama barisan tersebut adalah...
$\begin{align}
(A)\ & 30 \\ (B)\ & 40 \\ (C)\ & 50 \\ (D)\ & 60 \\ (E)\ & 70
\end{align}$
Alternatif Pembahasan:
Dari Barisan Geometri yang disampaikan pada soal, dapat kita peroleh;
$\begin{align}
\dfrac{u_{6}}{u_{1}} & = \dfrac{1}{32} \\
\dfrac{ar^{5}}{a} & = \left( \dfrac{1}{2} \right)^{5} \\
r^{5} & = \left( \dfrac{1}{2} \right)^{5} \\
r & = \dfrac{1}{2} \\
u_{3}+u_{4} & = 15 \\
ar^{2}+ar^{3} & = 15 \\
\dfrac{1}{4}a+\dfrac{1}{8}a & = 15 \\
\dfrac{3}{8}a & = 15 \\
a & = \dfrac{120}{3}=40
\end{align}$
Barisan geometri adalah $40,\ 20,\ 10,\ 5, \cdots$ dan jumlah $3$ suku pertama barisan tersebut adalah $70$.
$\therefore$ Pilihan yang sesuai adalah $(E)\ 70$
9. Soal UM UGM 2014 Kode 522 |*Soal Lengkap
Jika tiga bilangan $x,y,\ \text{dan}\ z$ membentuk barisan geometri, maka $\dfrac{1}{x-y}- \dfrac{1}{y-z}=\cdots$
$\begin{align}
(A)\ & \dfrac{1}{x} \\ (B)\ & -\dfrac{1}{y} \\ (C)\ & \dfrac{1}{z} \\ (D)\ & \dfrac{1}{x+z} \\ (E)\ & \dfrac{1}{x-z}
\end{align}$
Alternatif Pembahasan:
Tiga bilangan $x,y,z$ membentuk barisan geometri, sehingga berlaku:
$\begin{align}
U_{2}^{2} &= U_{3} \cdot U_{1} \\
y^{2} &= z \cdot x \\
\hline
\dfrac{1}{x-y}- \dfrac{1}{y-z} &= \dfrac{(y-z)-(x-y)}{(x-y)(y-z)} \\
&= \dfrac{2y-x-z}{xy-xz-y^{2}+yz} \\
&= \dfrac{2y-x-z}{xy-y^{2}-y^{2}+yz} \\
&= \dfrac{2y-x-z}{xy-2y^{2}+yz} \\
&= \dfrac{2y-x-z}{ y(x -2y + z)} \\
&= \dfrac{2y-x-z}{-y(2y-x-z)} \\
&= \dfrac{1}{-y}
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(B)\ -\dfrac{1}{y}$
10. Soal UMB-PT 2014 Kode 522 |*Soal Lengkap
Suku ke-n suatu deret geometri adalah $u_{n}$. Jika $u_{1}+u_{2}=\dfrac{9}{2}$ dan ${}^3\!\log u_{1}+{}^3\!\log u_{2}+{}^3\!\log u_{3}=3$, maka $u_{n}=\cdots$
$\begin{align}
(A)\ & \dfrac{3}{4}2^{n-1} \\ (B)\ & \dfrac{3}{4}2^{n } \\ (C)\ & \dfrac{3}{4}2^{n+1} \\ (D)\ & \dfrac{3}{4}3^{n-1} \\ (E)\ & \dfrac{3}{4}3^{n}
\end{align}$
Alternatif Pembahasan:
Deret geometri $a, ar, ar^{2}, \cdots, ar^{n-1}$
$\begin{align}
u_{1}+u_{2} &= \dfrac{9}{2} \\
a+ar &= \dfrac{9}{2}
\end{align}$
$\begin{align}
{}^3\!\log u_{1}+{}^3\!\log u_{2}+{}^3\!\log u_{3} &= 3 \\
{}^3\!\log \left( u_{1} \cdot u_{2} \cdot u_{3} \right) &= {}^3\!\log 3^{3} \\
{}^3\!\log \left( a \cdot ar \cdot ar^{2} \right) &= {}^3\!\log 3^{3} \\
{}^3\!\log \left( ar \right)^{3} &= {}^3\!\log 3^{3} \\
ar &= 3 \\
\hline
a+ar &= \dfrac{9}{2} \\
a+3 &= \dfrac{9}{2} \\
a &= \dfrac{9}{2} -3 \\
a &= \dfrac{3}{2} \\
r &= 2
\end{align}$
$\begin{align}
u_{n} &= ar^{n-1} \\
&= \dfrac{3}{2} \cdot 2^{n-1} \\
&= \dfrac{3}{2} \cdot 2^{n } \cdot 2^{-1} \\
&= \dfrac{3}{4} \cdot 2^{n }
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ \dfrac{3}{4}2^{n }$
11. Soal SBMPTN 2014 Kode 631 |*Soal Lengkap
Diketahui $p,\ x,\ y$ merupakan bilangan real dengan $x \gt 0$. Jika $p,\ x,\ y,\ \dfrac{1}{5}x^{2}$ membentuk barisan geometri, maka $p^{6}x^{-3}=\cdots$
$\begin{align}
(A)\ & 125 \\ (B)\ & 50 \\ (C)\ & 25 \\ (D)\ & 7 \\ (E)\ & 5
\end{align}$
Alternatif Pembahasan:
Ciri khas barisan geometri yang kita pakai untuk menyelesaikan soal di atas adalah $U_{2}^{2}=U_{1} \cdot U_{3}$ atau $U_{3}^{2}=U_{2} \cdot U_{4}$. Sehingga untuk barisan $p,\ x,\ y,\ \dfrac{1}{5}x^{2}$, berlaku:
$\begin{align}
U_{2}^{2} &= U_{1} \cdot U_{3} \\
x^{2} &= py \\
y &= \dfrac{x^{2}}{p} \\
\hline
U_{3}^{2} &= U_{2} \cdot U_{4} \\
y^{2} &= \dfrac{1}{5}x^{2} \cdot x \\
\left( \dfrac{x^{2}}{p} \right) ^{2} &= \dfrac{1}{5}x^{3} \\
\dfrac{x^{4}}{p^{2}} &= \dfrac{1}{5}x^{3} \\
\dfrac{x^{4}}{\dfrac{1}{5}x^{3}} &= p^{2} \\
5x &= p^{2} \\
p^{2} x^{-1} &= 5 \\
\left( p^{2} x^{-1} \right)^3 &= 5^{3} \\
p^{6} x^{-3} &= 125
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(A)\ 125$
12. Soal SBMPTN 2014 Kode 622 |*Soal Lengkap
Diketahui $u_{1}+u_{2}+\cdots$ adalah deret geometri dengan $u_{1}=x^{-2}$, $u_{5}=x^{2}$ dan $u_{6}=8$, maka nilai $u_{7}$ adalah...
$\begin{align}
(A)\ & 4 \\ (B)\ & 9 \\ (C)\ & 16 \\ (D)\ & 27 \\ (E)\ & 32
\end{align}$
Alternatif Pembahasan:
Dari deret geometri $a+ar+ar^{2}+ \cdots+ ar^{n-1}$, dimana $u_{1}=x^{-2}$, $u_{5}=ar^{4}=x^{2}$ dan $u_{6}=ar^{5}=8$ berlaku:
$\begin{array}{c|c|cc}
a = x^{-2} & ar^{5} = 8 \\
ar^{4} = x^{2} & x^{-2} \cdot x^{5} = 8 \\
x^{-2} \cdot r^{4} = x^{2} & x^{3} = 8 \\
r^{4} = x^{2} \cdot x^{2} & x = 2 =r \\
r^{4} = x^{4} & U_{7} = U_{6} \cdot r \\
r = x & U_{7} = 8 \cdot 2 =16 \\
\end{array} $
$\therefore$ Pilihan yang sesuai adalah $(C)\ 16$
13. Soal SIMAK UI 2013 Kode 333 |*Soal Lengkap
Diketahui bilangan $a,\ b,\ c$ membentuk barisan geometri. Bilangan $a,\ b,\ c-2$ membentuk barisan aritmetika dan bilangan $a,\ b+2,\ c+10$ membentuk barisan geometri. Jumlah semua nilai yang mungkin untuk $b$ adalah...
$\begin{align}
(A)\ & \dfrac{14}{9} \\ (B)\ & \dfrac{20}{9} \\ (C)\ & \dfrac{32}{9} \\ (D)\ & \dfrac{40}{9} \\ (E)\ & \dfrac{80}{9}
\end{align}$
Alternatif Pembahasan:
Untuk soal ini ada penggabungan materi antara barisan aritmetika dan barisan geometri, jadi sedikit materi dari barisan aritmetika harus kita ketahui;
- Dari barisan geometri $a,\ b,\ c$ kita peroleh $b^{2}=ac\ \cdots \text{pers.(1)}$
- Dari barisan aritmetika $a,\ b,\ c-2$ kita peroleh $2b=a+c-2\ \cdots \text{pers.(2)}$
- Dari barisan geometri $a,\ b+2,\ c+10$ kita peroleh $(b+2)^{2}=a(c+10)\ \cdots \text{pers.(3)}$
Jika kita subsitusi $\text{pers.}(1)$ dan $(2)$ ke $\text{pers.}(3)$, sehingga kita peroleh:
$\begin{align}
(b+2)^{2} & = a(c+10) \\ b^{2}+4b+4 & = a c+10a \\ ac+2(a+c-2)+4 & = a c+10a \\ 2 a+2c-4+4 & = 10a \\ a+ c & = 5a \\ c & = 4a\ \cdots\ \text{pers.(4)} \\ 2b & = a+ c-2 \\ 2b & = a+ 4a-2 \\ 2b+2 & = 5a \\ a & = \dfrac{2b+2}{5}\ \cdots \text{pers.(5)}
\end{align}$
$\text{pers.}(4)$ dan $(5)$ kita substitusikan ke $\text{pers.}(1)$, sehingga kita peroleh:
$\begin{align}
b^{2} & = ac \\ b^{2} & = a \left( 4a \right) \\ b^{2} & = 4a^{2} \\ b^{2} & = 4\left( \dfrac{2b+2}{5} \right)^{2} \\ b^{2} & = 4\left( \dfrac{4b^{2}+8b+4}{25} \right) \\ 25b^{2} & = 16b^{2}+32b+16 \\ 9b^{2}-32b-16 & = 0
\end{align}$
Jumlah semua nilai $b$ yang mungkin adalah $b_{1}+b_{2}=-\dfrac{-32}{9}=\dfrac{32}{9}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ \dfrac{32}{9}$
14. Soal SIMAK UI 2013 Kode 331 |*Soal Lengkap
Diketahui bahwa $n$ adalah bilangan asli. Misalkan $S(n)$ menyatakan jumlah setiap digit dari $n$ (secagai contoh: $n=1234$. $S(1234)=1+2+3+4=10$), maka nilai $S\left( S(n) \right)$ yang memenuhi persamaan $n+S(n)+S\left( S(n) \right)=2013$ adalah...
$\begin{align}
(1)\ & 2 \\ (2)\ & 5 \\ (3)\ & 8 \\ (4)\ & 20
\end{align}$
Alternatif Pembahasan:
Untuk soal ini rencana mau tidak diketik, karena tidak termasuk barisan aritmetika atau barisan geometri. Tetapi karena termasuk kategori soal HOTS kita tampilkan pada barisan aritmetika dan barisan geometri;
Dari persamaan $n+S(n)+S\left( S(n) \right)=2013$;
- $n \gt S(n) \gt S\left( S(n) \right)$, berdasarkan ketidaksamaan ini agar mendapatkan hasil penjumlahan $2013$ maka $n$ adalah bilangan $4$ angka dan kurang dari $2013$
- Jika $1000 \leq n \leq 1999$, maka $S(n)_{max}=S(1999)=1+9+9+9=28$ dan $S \left( S(n) \right)_{max}=S(28)=2+8=10$
n+S(n)+S\left( S(n) \right) & \leq n + 28 +10 \\ 2013 & \leq n + 38 \\ 2013-38 & \leq n \\ 1975 & \leq n \\ 1975 & \leq n \lt 2013
\end{align}$
Dari batasan nilai $n$ di atas kita coba lakukan uji nilai $n$;
UJI NILAI | |||
---|---|---|---|
$n$ | $S(n)$ | $S \left( S(n) \right)$ | $n+S(n)+S\left( S(n) \right)$ |
$1975$ | $1+9+7+5=22$ | $2+2=4$ | $1975+22+4=2001$ |
$\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ |
$1979$ | $1+9+7+9=26$ | $2+6=8$ | $1979+26+8=2013$ |
$\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ |
$1985$ | $1+9+8+5=23$ | $2+3=5$ | $1985+23+5=2013$ |
$\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ |
$1991$ | $1+9+9+1=20$ | $2+0=2$ | $1991+20+2=2013$ |
$\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ |
$2003$ | $2+0+0+3=5$ | $5=5$ | $2003+5+5=2013$ |
$\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ |
$\therefore$ Pilihan yang sesuai adalah $(A)\ (1)\ (2)\ (3)$
15. Soal SBMPTN 2013 Kode 127 |*Soal Lengkap
Diketahui $a,\ b,\ \text{dan}\ c$ berturut-turut adalah suku ke-2, ke-3 dan ke-4 suatu barisan geometri dengan $b \gt 0$, Jika $\dfrac{ac}{2b+3}=1$, maka nilai $b$ adalah...
$\begin{align} (A)\ & 1 \\ (B)\ & 2 \\ (C)\ & \dfrac{5}{2} \\ (D)\ & 3 \\ (E)\ & \dfrac{7}{2} \end{align}$
Alternatif Pembahasan:
Barisan $a,\ b,\ \text{dan}\ c$ adalah barisan geometri, sehingga berlaku:
$\begin{align}
b^{2} &= ac \\
\dfrac{ac}{2b+3} &= 1 \\
ac &= 2b+3 \\
\hline
b^{2} &= 2b+3 \\
b^{2}-2b-3 &= 0 \\
(b-3)(b+1) &= 0 \\
b=3\ \ b=-1 &
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 3$
16. Soal SBMPTN 2013 Kode 124 |*Soal Lengkap
Diketahui $a,\ b,\ \text{dan}\ c$ berturut-turut adalah suku ke-2, ke-3 dan ke-4 suatu barisan geometri dengan $b \gt 0$, Jika $\dfrac{ac}{b+2}=1$, maka nilai $b$ adalah...
$\begin{align}
(A)\ & 1 \\ (B)\ & 2 \\ (C)\ & \dfrac{5}{2} \\ (D)\ & 3 \\ (E)\ & \dfrac{7}{2}
\end{align}$
Alternatif Pembahasan:
Barisan $a,\ b,\ \text{dan}\ c$ adalah barisan geometri, sehingga berlaku:
$\begin{align}
b^{2} &= ac \\
\dfrac{ac}{b+2} &= 1 \\
ac &= b+2 \\
\hline
b^{2} &= b+2 \\
b^{2}- b-2 &= 0 \\
(b-2)(b+1) &= 0 \\
b=2\ \ b=-1 &
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 2$
17. Soal SBMPTN 2013 Kode 121 |*Soal Lengkap
Hasil kali $5$ suku pertama suatu berisan geometri adalah $32$. Jika jumlah suku ketiga dan suku keempat barisan tersebut adalah $6$, maka suku keenam barisan tersebut adalah...
$\begin{align} (A)\ & \dfrac{1}{8} \\ (B)\ & 2 \\ (C)\ & 3 \\ (D)\ & 8 \\ (E)\ & 16 \end{align}$
Alternatif Pembahasan:
Hasil kali $5$ suku pertama suatu berisan geometri adalah $32$, sehingga berlaku:
$\begin{align}
a \cdot ar \cdot ar^{2} \cdot ar^{3} \cdot ar^{4} &= 32 \\
a^{5}r^{10} &= 32 \\
\left( a r^{2} \right)^{5} &= 2^{5} \\
a r^{2} &= 2 \\
\hline
U_{3}+U_{4} &= 6 \\
ar^{2}+ar^{3} &= 6 \\
ar^{2}(1+r) &= 6 \\
2(1+r) &= 6 \\
r &= 2 \\
\hline
a r^{2} &= 2 \\
a (4) &= 2 \\
a &= \dfrac{1}{2} \\
U_{6} &= a r^{5} \\
&= \dfrac{1}{2} \cdot (2)^{5} \\
&= (2)^{4}=16
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(E)\ 16$
18. Soal SNMPTN 2012 Kode 223 |*Soal Lengkap
Jika $a$ adalah suku pertama, $r$ adalah rasio, dan $S_{n}=3 \left( 2^{n+1}-2 \right)$ adalah jumlah $n$ suku pertama deret geometri, maka nilai $a+r$ adalah..
$\begin{align}
(A)\ & 4 \\ (B)\ & 5 \\ (C)\ & 6 \\ (D)\ & 7 \\ (E)\ & 8
\end{align}$
Alternatif Pembahasan:
$S_{n}=3 \left( 2^{n+1}-2 \right)$ adalah jumlah $n$ suku pertama deret geometri, sehingga berlaku:
$\begin{align}
S_{1} &= 3 \left( 2^{(1)+1}-2 \right) \\
U_{1} &= 6 \\
\hline
S_{2} &= 3 \left( 2^{(2)+1}-2 \right) \\
U_{1}+U_{2} &= 18 \\
U_{2} &= 12 \\
\hline
S_{3} &= 3 \left( 2^{(3)+1}-2 \right) \\
U_{1}+U_{2}+U_{3} &= 42 \\
U_{3} &= 24 \\
\hline
r &= \dfrac{12}{6}=2 \\
a+r &= 6+2 \\
&= 8
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(E)\ 8$
19. Soal SNMPTN 2012 Kode 122 |*Soal Lengkap
Tiga buah bilangan positif membentuk barisan aritmetika dengan beda $6$. Jika bilangan yang terbesar ditambah $12$, maka diperoleh barisan geometri. Jumlah tiga bilangan tersebut adalah...
$\begin{align}
(A)\ & 26 \\ (B)\ & 27 \\ (C)\ & 28 \\ (D)\ & 29 \\ (E)\ & 30
\end{align}$
Alternatif Pembahasan:
Tiga buah bilangan positif membentuk barisan aritmetika dengan beda $6$, Misal bilangan itu adalah $a,\ a+6,\ a+12$ dan jika $a+12+12$ barisan $a,\ a+6,\ a+12+12$ adalah barisan geometri, sehingga berlaku:
$\begin{align}
(a+6)^{2} &= a(a+12+12) \\
a^{2}+12a+36 &= a^{2}+24a \\
12a+36-24a &= 0 \\
-12a &= -36 \\
a &= 3
\end{align}$
Jumlah bilangan adalah
$\begin{align}
a+a+6+a+12 &= 3a+18 \\
&= 3(2)+18 \\ &= 27
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 27$
20. Soal SNMPTN 2011 Kode 171 |*Soal Lengkap
Tiga buah bilangan positif membentuk barisan aritmetika dengan beda $16$. Jika bilangan yang terkecil ditambah $7$ dan bilangan yang terbesar ditambah $2$, maka diperoleh barisan geometri. Jumlah tiga bilangan tersebut adalah...
$\begin{align}
(A)\ & 56 \\ (B)\ & 54 \\ (C)\ & 52 \\ (D)\ & 50 \\ (E)\ & 48
\end{align}$
Alternatif Pembahasan:
Tiga buah bilangan positif membentuk barisan aritmetika dengan beda $16$, Misal bilangan itu adalah $a,\ a+16,\ a+32$ dan barisan berubah menjadi $a+7,\ a+16,\ a+32+2$ adalah barisan geometri, sehingga berlaku:
$\begin{align}
(a+16)^{2} &= (a+7)(a+34) \\
a^{2}+32a+256 &= a^{2}+41a+238 \\
32a-41a+256-238 &= 0 \\
-9a+18 &= 0 \\
-9a &= -18 \\
a &= 2
\end{align}$
Jumlah bilangan adalah:
$\begin{align}
a+a+16+a+32 &= 3a+48 \\
&= 3(2)+48 \\
&= 54
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 54$
21. Soal SNMPTN 2011 Kode 854 |*Soal Lengkap
Jika $a,\ b,\ c,\ d,\ e$ membentuk barisan geometri dan $a \times b \times c \times d \times e=128$, maka di antara kelima suku barisan itu yang dapat ditentukan nilainya adalah suku ke...
$\begin{align} (A)\ & \text{pertama} \\ (B)\ & \text{kedua} \\ (C)\ & \text{ketiga} \\ (D)\ & \text{keempat} \\ (E)\ & \text{kelima} \end{align}$
Alternatif Pembahasan:
Lima bilangan membentuk barisan geometri, sehingga berlaku:
$\begin{align}
a \times b \times c \times d \times e &= 128 \\
a \times ar \times ar^{2} \times ar^{3} \times ar^{4} &= 128 \\
a^{5}r^{10} &= 128 \\
\left( a r^{2} \right)^{5} &= 128 \\
a r^{2} &= \sqrt[5]{128} \\
U_{3} &= \sqrt[5]{128}
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ ketiga$
22. Soal UNBK Matematika IPA 2019 |*Soal Lengkap
Seorang peneliti melakukan pengamatan terhadap bakteri tertentu. Setiap $\dfrac{1}{2}$ hari bakteri membelah diri menjadi dua. Pada awal pengamatan terdapat $2$ bakteri. Jika setiap $2$ hari $\dfrac{1}{4}$ dari jumlah bakteri mati, banyak bakteri setelah tiga hari adalah...
$\begin{align} (A)\ & 48\ \text{bakteri} \\ (B)\ & 64\ \text{bakteri} \\ (C)\ & 96\ \text{bakteri} \\ (D)\ & 128\ \text{bakteri} \\ (E)\ & 192\ \text{bakteri} \end{align}$
Alternatif Pembahasan:
Pertumbuhan bakteri yang diamati pada soal di atas menggunakan konsep deret geometri dengan $r=2$. Untuk menyelesaikan soal di atas dapat digunakan rumus suku ke-n barisan geometri yaitu $U_{n}=ar^{n-1}$.
Tetapi karena yang diminta banyak bakteri dalam waktu tiga hari, kita kerjakan secara manual;
- Hari Pertama: $2 \rightarrow 4 \rightarrow 8$
- Hari Kedua: $8 \rightarrow 16 \rightarrow 32$
Bakteri mati $\dfrac{1}{4}$, sehingga tinggal $32-8=24$ - Hari Ketiga: $24 \rightarrow 48 \rightarrow 96$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 96$
23. Soal UNBK Matematika SMA IPS 2019 |*Soal Lengkap
Diketahui suku ke-3 dan suku ke-6 barisan geometri berturut-turut adalah $12$ dan $96$. Rumus suku ke-$n$ barisan tersebut adalah...
$ \begin{align}
(A)\ & U_{n}=6 \cdot 2^{n+1} \\ (B)\ & U_{n}=6 \cdot 2^{n} \\ (C)\ & U_{n}=3 \cdot 2^{n} \\ (D)\ & U_{n}=3 \cdot 2^{n-1} \\ (E)\ & U_{n}= 2^{n-1}
\end{align}$
Alternatif Pembahasan:
Kita ketahui bahwa suku ke-$n$ barisan geometri adalah $U_{n}=a \cdot r^{n-1}$.
Pada soal diberitahu bahwa pada barisan aritmetika suku ke-3 adalah $12$ sehingga berlaku $U_{3}=a \cdot r^{3-1}$ atau $12 =a r^{2}$.
Suku ke-6 adalah $96$ sehingga berlaku $U_{6}=a \cdot r^{6-1}$ atau $96 =a r^{5}$.
Dari kedua persamaan di atas dapat kita tentukan nilai $a$ dan $r$;
$\begin{align}
ar^{5} =\ & ar^{2} \cdot r^{3} \\
96 =\ & 12 \cdot r^{3} \\
\dfrac{96}{12} =\ & r^{3} \\
8 =\ & r^{3} \\
2 =\ & r \\
\hline
ar^{2} =\ & 12 \\
a(4) =\ & 12 \\
a =\ & 3 \\
\hline
U_{n}=\ & a \cdot r^{n-1} \\
U_{n}=\ & 3 \cdot 2^{n-1}
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(D)\ U_{n}=3 \cdot 2^{n-1}$
24. Soal UNBK Matematika SMA IPS 2019 |*Soal Lengkap
Modal sebesar $Rp2.000.000,00$ disimpan di bank dengan suku bunga majemuk $2\%$ per tahun. Besar modal pada akhir tahun kedua adalah...
$ \begin{align} (A)\ & Rp2.040.000,00 \\ (B)\ & Rp2.040.400,00 \\ (C)\ & Rp2.080.000,00 \\ (D)\ & Rp2.080.800,00 \\ (E)\ & Rp2.122.400,00
\end{align}$
Alternatif Pembahasan:
Dengan modal $Rp2.000.000,00$ disimpan di bank dengan suku bunga majemuk $2\%$ per tahun maka modal pada kahir tahun pertama adalah:
$\begin{align}
& 2.000.000 + 2\% \times 2.000.000 \\
=\ & 2.000.000 + \dfrac{2}{100} \times 2.000.000 \\
=\ & 2.000.000 + 40.000 \\
=\ & 2.040.000
\end{align} $
Modal pada kahir tahun kedua adalah:
$\begin{align}
& 2.040.000 + 2\% \times 2.040.000 \\
=\ & 2.040.000 + \dfrac{2}{100} \times 2.040.000 \\
=\ & 2.040.000 + 40.800 \\
=\ & 2.080.800
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(D)\ Rp2.080.800,00$
25. Soal Simulasi UTBK-SBMPTN 2021
Nilai dari $1+ 2 \cdot 2+3 \cdot 2^{2}+4 \cdot 2^{3}+ \cdots +2016 \cdot 2^{2015}$ adalah...
$ \begin{align}
(A)\ & 2016 \cdot 2^{2015} \\ (B)\ & 2016 \cdot 2^{2015} +1 \\ (C)\ & 2015 \cdot 2^{2016} \\ (D)\ & 2015 \cdot 2^{2016} + 1\\ (E)\ & 2016 \cdot 2^{2015} - 1
\end{align}$
Alternatif Pembahasan:
Pola deret bilangan pada soal tidak termasuk deret aritmetika atau deret geometri. Jika kita perhatikan ada dua pola bilangan pada deret tersebut yaitu pola $1,2,3, \cdots , 2016$ dan $2^{0},2^{1},2^{2}, \cdots , 2^{2015}$.
Untuk menyelesaiakan deret yang tidak termasuk pada deret aritmetika atau deret geometri dibutuhkan sedikit kreatifitas atau eksplorasi atau manipulasi aljabar yang tidak bertentangan dengan aturan-aturan pada matematika.
Pada deret di atas kita coba dengan manipulasi aljabar sebagai berikut ini:
$\begin{align}
A =\ & 1+ 2 \cdot 2+3 \cdot 2^{2}+4 \cdot 2^{3}+ \cdots +2016 \cdot 2^{2015} \\
2A=\ & 1 \cdot 2+ 2 \cdot 2^{2}+3 \cdot 2^{3}+4 \cdot 2^{4}+ \cdots +2016 \cdot 2^{2016} \\
\hline
A-2A =\ & 1 + \left( 2 \cdot 2 - 1 \cdot 2 \right) + \left( 3 \cdot 2^{2} - 2 \cdot 2^{2} \right) + \cdots \\
& \cdots + \left( 2016 \cdot 2^{2015} - 2015 \cdot 2^{2015} \right) + 2016 \cdot 2^{2016} \\
-A =\ & 1 + 2 + 2^{2} + 2^{3} + \cdots + 2^{2015} - 2016 \cdot 2^{2016} \\
-A =\ & \dfrac{1 \cdot \left(2^{2016}-1 \right)}{2-1} - 2016 \cdot 2^{2016} \\
-A =\ & 2^{2016}-1 - 2016 \cdot 2^{2016} \\
A =\ & -2^{2016} + 1 + 2016 \cdot 2^{2016} \\
=\ & 2016 \cdot 2^{2016} -2^{2016} + 1 \\
=\ & 2^{2016} \left( 2016 - 1 \right) + 1 \\
=\ & 2^{2016} \left( 2015 \right) + 1 \\
=\ & 2015 \cdot 2^{2016} + 1
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(D)\ 2015 \cdot 2^{2016} + 1$
26. Soal UM UGM 2019 Kode 634 |*Soal Lengkap
Tiga bilangan real $a,b,$ dan $c$ dengan $c \lt a$ membentuk barisan geometri yang hasil jumlahannnya adalah $-14$ dan hasil perkaliannya adalah $216$. Nilai $c$ adalah...
$\begin{align} (A)\ & -2 \\ (B)\ & -6 \\ (C)\ & -14 \\ (D)\ & -18 \\ (E)\ & -20 \end{align}$
Alternatif Pembahasan:
Bilangan real $a,b,$ dan $c$ membentuk barisan geometri sehingga berlaku $b^{2}=a \cdot c$.
Hasil perkalian ketiga bilangan adalah $216$, dapat kita peroleh:
$\begin{align}
abc & = 216 \\
b^{3} & = 216 \\
b & = 6 \\
a \cdot c & = 36 \\
\hline
a+b+c & = -14 \\
a+6+c & = -14 \\
a+ c & = -20 \\
a+ \dfrac{36}{a} & = -20 \\
a^{2}+ 36 & = -20a \\
a^{2}+20a+36 & = 0 \\
\left(a+2\right)\left(a+18 \right) & = 0 \\
a=-2\ \text{atau}\ a=-18 &
\end{align}$
Untuk $a=-2$ maka $c=-18$ atau sebaliknya, karena $c \lt a$ maka $c=-18$.
$\therefore$ Pilihan yang sesuai $(D)\ -18$
27. Soal UM UGM 2019 Kode 634 |*Soal Lengkap
Jumlah tiga suku pertama barisan geometri adalah $91$. Jika suku ketiga dikurangi $13$, maka ketiga bilangan tersebut membentuk barisan aritmetika. Suku pertama barisan tersebut adalah...
$\begin{align} (A)\ & 4\ \text{atau}\ 43 \\ (B)\ & 7\ \text{atau}\ 46 \\ (C)\ & 10\ \text{atau}\ 49 \\ (D)\ & 13\ \text{atau}\ 52 \\ (E)\ & 16\ \text{atau}\ 55 \end{align}$
Alternatif Pembahasan:
Misal tiga suku pertama barisan geometri adalah $a,\ ,b,\ c$, sehingga berlaku $a+b+c=91$
Suku ketiga dikurangi $13$, maka ketiga bilangan tersebut membentuk barisan aritmetika sehingga pada $a,\ ,b,\ c-13$ berlaku:
$\begin{align}
2u_{2} & = u_{1}+u_{2} \\
2b & = a+c-13 \\
\hline
\hline
a+b+c &= 91 \\
a+c &= 91-b \\
\hline
\hline
2b & = 91-b-13 \\
3b & = 78 \\
b & = 26 \\
\end{align}$
Untuk $b=26$ dan $a,\ b,\ c$ adalah barisan geometri sehingga dapat kiat tuliskan:
$\begin{align}
ac & = b^{2} \\
ac & = 26^{2}=676 \\
\hline
a+b+c &= 91 \\
a+26+c &= 91 \\
a+ c &= 65 \\
c &= 65-a \\
\hline
ac & = 676 \\
a \left( 65-a \right) & = 676 \\
65a-a^{2} & = 676 \\
a^{2}-65a+676 & = 0 \\
\left( a-13 \right)\left( a-52 \right) & = 0 \\
a=13\ \text{atau}\ a=52 &
\end{align}$
$\therefore$ Pilihan yang sesuai $(D)\ 13\ \text{atau}\ 52$
28. Soal UM UGM 2019 Kode 624 |*Soal Lengkap
Diketahui $a,\ \dfrac{1}{a},\ \dfrac{1}{a^{2}+2a},\ a \neq 0$, berturut-turut merupakan suku ke-$3$, $4$ dan ke-$5$ barisan geometri dengan rasio $r \neq 1$. Hasil kali lima suku pertama barisan geometri tersebut adalah...
$\begin{align} (A)\ & 42\frac{5}{8} \\ (B)\ & 32\frac{5}{8} \\ (C)\ & 32 \\ (D)\ & 24\frac{5}{8} \\ (E)\ & 24 \end{align}$
Alternatif Pembahasan:
Dari informasi pada soal, pada barisan geometri kita peroleh $u_{3}=ar^{2}=a$, $u_{4}=ar^{3}=\dfrac{1}{a}$, dan $u_{5}=ar^{4}=\dfrac{1}{a^{2}+2a}$.
Dari sifat barisan geometri kita peroleh:
$\begin{align}
u^{2}_{4} & = u_{3} \cdot u_{5} \\
\left( \dfrac{1}{a} \right)^{2} \ & = \left( a \right) \left( \dfrac{1}{a^{2}+2a} \right) \\
\dfrac{1}{a^{2}} \ & = \dfrac{1}{a+2} \\
a+2 \ & = a^{2} \\
a^{2}-a-2 \ & = 0 \\
\left( a-2 \right)\left( a+1 \right) & = 0 \\
a=2\ \text{atau}\ & a=-1\ \text{(TM)}
\end{align}$
Untuk $a=2$, maka kita peroleh barisan geometrinya $u_{3}, u_{4}, u_{5}$ adalah $2,\ \dfrac{1}{2},\ \dfrac{1}{8}$ sehingga kita peroleh $r=\dfrac{1}{4}$. Perkalian lima suku pertamanya adalah $32 \cdot 8 \cdot 2 \cdot \dfrac{1}{2} \cdot \dfrac{1}{8}$ adalah $32$.
$\therefore$ Pilihan yang sesuai $(C)\ 32$
29. Soal UM UGM 2019 Kode 624 |*Soal Lengkap
Misalkan $U_{n}$ menyatakan suku ke-$n$ dari barisan geometri. Jika $U_{3}-U_{2}=6$ dan $U_{4}-U_{2}=18$, maka $U_{5}+U_{3}=\cdots$
$\begin{align} (A)\ & 40 \\ (B)\ & 50 \\ (C)\ & 60 \\ (D)\ & 70 \\ (E)\ & 80 \end{align}$
Alternatif Pembahasan:
$U_{n}$ menyatakan suku ke-$n$ dari barisan geometri sehingga kita peroleh $U_{2}=ar$, $U_{3}=ar^{2}$, dan $U_{4}=ar^{3}$.
Dari sifat yang disampaikan pada soal, kita peroleh:
$\begin{align}
U_{3}-U_{2} & =6 \\
ar^{2}-ar & =6 \\
ar \left( r-1 \right) & =6 \\
\hline
U_{4}-U_{2} & =18 \\
ar^{3}-ar & =18 \\
ar \left( r^{2}-1 \right) & =18 \\
ar \left( r -1 \right)\left( r +1 \right) & =18 \\
6 \left( r +1 \right) & =18 \\
\left( r+1 \right) & =3 \\
r & = 2 \\
\hline
ar \left( r-1 \right) & =6 \\
a(2) \left( 2-1 \right) & =6 \\
2a & =6 \\
a & =3
\end{align}$
Untuk $a=3$ dan $r=2$, maka:
$\begin{align}
U_{5}+U_{3} & = ar^{4}+ar^{2} \\
& = (3)(2)^{4}+(3)(2)^{2} \\
& = 48+12 =60
\end{align}$
$\therefore$ Pilihan yang sesuai $(C)\ 60$
30. Soal UM UGM 2019 Kode 934 |*Soal Lengkap
Diberikan segitiga siku-siku $ABC$, dengan $\angle BAC=\alpha $. Titik $C_{1}$ merupakan titik sehingga $\bigtriangleup ACC_{1}$ siku-siku di $C$ dan $\angle CAC_{1}=\alpha $. Titik $C_{2}$ dipilih sehingga $\bigtriangleup AC_{1}C_{2}$ siku-siku di $C_{1}$ dan $\angle C_{1}AC_{2}=\alpha $, dan seterusnya. Panjang $AC_{1},\ AC_{2},\ AC_{3},\ \cdots$ , merupakan barisan geometri dengan suku pertama $a$ dan rasio $r$. Nilai $\dfrac{a}{r}$ adalah...
$\begin{align} (A)\ & 3 \\ (B)\ & 4 \\ (C)\ & 5 \\ (D)\ & 6 \\ (E)\ & 7 \end{align}$
Alternatif Pembahasan:
Pada segitiga siku-siku $ABC$ dapat kita peroleh $AC=5$, $\sin \alpha = \dfrac{BC}{AC}= \dfrac{3}{5}$, dan $\cos \alpha = \dfrac{AB}{AC}= \dfrac{4}{5}$.
Pada segitiga siku-siku $ACC_{1}$ dapat kita peroleh:
$\begin{align}
\cos \alpha & = \dfrac{AC}{AC_{1}} \\
\dfrac{4}{5} & = \dfrac{5}{AC_{1}}\ \longrightarrow AC_{1} = \dfrac{25}{4}
\end{align}$
Pada segitiga siku-siku $AC_{1}C_{2}$ dapat kita peroleh:
$\begin{align}
\cos \alpha & = \dfrac{AC_{1}}{AC_{2}} \\
\dfrac{4}{5} & = \dfrac{\frac{25}{4}}{AC_{2}}\ \longrightarrow AC_{2} = \dfrac{125}{16}
\end{align}$
Karena $AC_{1},\ AC_{2},\ AC_{3},\ \cdots$ , merupakan barisan geometri maka dapat kita peroleh $a=AC_{1}=\dfrac{25}{4}$ dan $r=\dfrac{AC_{2}}{AC_{1}}=\dfrac{\dfrac{125}{16}}{\dfrac{25}{4}}= \dfrac{125}{16} \cdot \dfrac{4}{25}=\dfrac{5}{4}$.
Sehingga nilai $\dfrac{a}{r}=\dfrac{\frac{25}{4}}{\frac{5}{4}}= \dfrac{25}{4} \cdot \dfrac{4}{5} = 5 $.
$\therefore$ Pilihan yang sesuai adalah $(C)\ 5$
31. Soal UM UGM 2019 Kode 934 |*Soal Lengkap
Diberikan barisan geometri tak konstan $a,\ b,\ c,\ \cdots$. Jika $abc=27$ dan $9a+b+c=33$ maka $6a+7b = \dots$
$\begin{align} (A)\ & 39 \\ (B)\ & 30 \\ (C)\ & 23 \\ (D)\ & 18 \\ (E)\ & 8 \end{align}$
Alternatif Pembahasan:
Dari barisan geometri tidak konstan $a,\ b,\ c,\ \cdots$, $abc=27$ dan $9a+b+c=33$ dapat kita peroleh:
$\begin{align}
u_{2}^{2} & = u_{1} \cdot u_{3} \\
b^{2} & = a \cdot c \\
b^{2} \cdot b & = a \cdot c \cdot b \\
b^{3} & = 27\ \longrightarrow b=3 \\
ac & = 9\\
\hline
9a+b+c &= 33 \\
9a+3+c &= 33 \\
c &= 30-9a \\
\hline
ac & = 9 \\
a \left( 30-9a \right) & = 9 \\
30a -9a^{2} - 9 & = 0 \\
3a^{2} - 10a + 3 & = 0 \\
\left(3a - 1 \right) \left(a -3 \right) & = 0 \\
a=\frac{1}{3}\ \text{atau}\ a=3\ \text{(TM)} &
\end{align}$
Untuk $a=\frac{1}{3}$ dan $b=3$ maka $6a+7b=2+21=23$
$\therefore$ Pilihan yang sesuai $(C)\ 23$
32. Soal TPS UTBK SBMPTN 2022 |*Soal Lengkap
Barisan $1,2,y,\cdots$ merupakan barisan geometri.
Nilai $6-y$ adalah...
$\begin{align} (A)\ & 2 \\ (B)\ & 1 \\ (C)\ & 0 \\ (D)\ & -1 \\ (E)\ & -2 \end{align}$
Alternatif Pembahasan:
Dari barisan $1,2,y,\cdots$ dapat kita tuliskan $U_{1}=1$, $U_{2}=2$, dan $U_{3}=y$.
Karena barisan tersebut merupakan barisan geometri, sehingga berlaku:
$\begin{align}
U_{2}^{2}\ &= U_{1} \cdot U_{3} \\
2^{2}\ &= 1 \cdot y \\
4\ & = y \\
\hline
\text{nilai}\ & 6-y = 6-4 =2
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(A)\ 2$
33. Soal TPS UTBK SBMPTN 2022 |*Soal Lengkap
Barisan $1,2,y,\cdots$ merupakan barisan geometri.
Jumlah lima suku pertama ditambah satu sama dengan $\dfrac{1}{4}$ kali suku...
$\begin{align} (A)\ & \text{ke}-5 \\ (B)\ & \text{ke}-6 \\ (C)\ & \text{ke}-7 \\ (D)\ & \text{ke}-8 \\ (E)\ & \text{ke}-9 \end{align}$
Alternatif Pembahasan:
Dari barisan $1,2,y,\cdots$ dapat kita tuliskan $U_{1}=1$, $U_{2}=2$, dan $U_{3}=y$.
Karena barisan tersebut merupakan barisan geometri, sehingga berlaku:
$\begin{align}
U_{2}^{2}\ &= U_{1} \cdot U_{3} \\
2^{2}\ &= 1 \cdot y \\
4\ & = y
\end{align}$
Untuk $y=4$, barisan menjadi $1,2,4,8,16,32,\cdots$, sehingga jumlah lima suku pertama adalah:
$\begin{align}
S_{5}\ &= 1+2+4+8+16 \\
S_{5}\ &= 31
\end{align}$
Jumlah $S_{5}+1= 31+1=32$ sehingga berdasarkan informasi pada soal dapat kita tuliskan:
$\begin{align}
\dfrac{1}{4} U_{n} \ &= 32 \\
U_{n} \ &= 128 \\
ar^{n-1} \ &= 128 \\
ar^{n-1} \ &= 128 \\
1 \cdot 2^{n-1} \ &= 128 \\
2^{n-1} \ &= 2^{7}\ \longrightarrow n=8
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 8$
34. Soal TPS UTBK SBMPTN 2022 |*Soal Lengkap
Barisan $1,2,y,\cdots$ merupakan barisan geometri.
Jika $3,75$ merupakan rata-rata $n$ suku pertama barisan tersebut, maka nilai $n$ adalah...
$\begin{align} (A)\ & 6 \\ (B)\ & 5 \\ (C)\ & 4 \\ (D)\ & 3 \\ (E)\ & 2 \end{align}$
Alternatif Pembahasan:
Dari barisan $1,2,y,\cdots$ dapat kita tuliskan $U_{1}=1$, $U_{2}=2$, dan $U_{3}=y$.
Karena barisan tersebut merupakan barisan geometri, sehingga berlaku:
$\begin{align}
U_{2}^{2}\ &= U_{1} \cdot U_{3} \\
2^{2}\ &= 1 \cdot y \\
4\ & = y
\end{align}$
Barisan $1,2,y,\cdots$ menjadi $1,2,4,\cdots$. Berdasarkan informasi pada soal $3,75$ merupakan rata-rata $n$ suku pertama barisan tersebut sehingga kita peroleh:
$\begin{align}
\bar{x}_{n}\ &= \dfrac{1}{n} \cdot S_{n} \\
\bar{x}_{n}\ &= \dfrac{1}{n} \cdot \dfrac{a \left (r^{n}-1 \right )}{r-1} \\
3,75\ &= \dfrac{1}{n} \cdot \dfrac{1 \left (2^{n}-1 \right )}{2-1} \\
3,75n\ &= 2^{n}-1 \\
\dfrac{375}{100}n\ &= 2^{n}-1 \\
\dfrac{15}{4}n\ &= 2^{n}-1\ \longrightarrow n=4
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 4$
Beberapa pembahasan soal Matematika Dasar SMA Barisan dan Deret Geometri di atas adalah coretan kreatif siswa pada:
- lembar jawaban penilaian harian matematika,
- lembar jawaban penilaian akhir semester matematika,
- presentasi hasil diskusi matematika atau
- pembahasan quiz matematika di kelas.
Catatan tentang Soal dan Pembahasan Matematika Dasar SMA Barisan dan Deret Geometri di atas agar lebih baik lagi perlu catatan tambahan dari Anda. Untuk catatan tambahan atau hal lain yang perlu diketahui admin, silahkan disampaikan dan contact admin 🙏 CMIIW.
Ayo Share (Berbagi) Satu Hal Baik.
Matematika adalah kemampuan menangkap pola dari sesuatu yang semula tidak terpola. Itulah kemampuan matematika yang harus ditanamkan.