Soal dan Pembahasan Teorema Pythagoras Matematika SMP

belajar matematika dasar SMP lewat soal dan pembahasan himpunan pada matematika SMP. soal Ujian Sekolah matematika SMP, soal ujian seleksi akademik
Soal dan Pembahasan teorema Pythagoras Matematika SMP

Calon guru belajar matematika dasar SMP lewat soal dan pembahasan himpunan pada matematika SMP. Apa yang diharapkan setelah mempelajari materi ini, yaitu dapat menyelesaikan masalah yang berkaitan dengan teorema Pythagoras dan tripel Pythagoras.

Soal matematika dasar teorema Pythagoras untuk SMP kita pilih dari soal-soal yang sudah pernah diujikan pada soal Ujian Sekolah matematika SMP, soal Ujian Nasional matematika SMP, atau soal ujian seleksi akademik masuk SMA Unggulan atau SMA Plus.


TEOREMA PYTHAGORAS


Teorema Pythagoras adalah kuadrat panjang sisi miring sebuah segitiga siku-siku sama dengan jumlah kuadrat panjang sisi-sisi penyikunya.

Nama tripel Pythagoras diberikan karena Pythagoras, atau setidaknya para muridnya, diyakini sebagai orang yang pertama kali membuktikan bahwa persamaan $a^{2} + b^{2} = c^{2}$ sesungguhnya berlaku secara umum pada sembarang segitiga siku-siku dengan sisi-sisi tegak $a$ dan $b$ dan sisi miring $c$ (di sini $a,\ b,$ dan $c$ tidak harus merupakan bilangan bulat, tetapi sembarang bilangan real positif). Dalil ini pun kemudian dikenal sebagai Dalil Pythagoras.

TRYPEL PYTHAGORAS


Berikut beberapa contoh bilangan tripel Pythagoras.

$\begin{align}
(1):\ & - \\
(2):\ & - \\
(3):\ & (3,4,5) \\
(4):\ & (4,3,5) \\
(5):\ & (5,12,13) \\
(6):\ & (6,8,10) \\
(7):\ & (7,24,25) \\
(8):\ & (8,15,17) \\
(9):\ & (9,40,41) \\
(10):\ & (10,24,26) \end{align}$

Jika tertarik untuk melihat $50$ bilangan asli pertama dalam Tripel Pythagoras silahkan disimak Contoh dan Cara Mudah Susun Bilangan Tripel Pythagoras.


SOAL LATIHAN dan PEMBAHASAN MATEMATIKA SMP


1. Soal UNBK Matematika SMP 2018 |*Soal Lengkap

Perhatikan gambar!
Jika panjang $BD = 12\ cm$, keliling bidang $ABCD$ adalah...
Soal dan Pembahasan UNBK Matematika SMP 2018 (*Simulasi Ujian Sekolah Tahun 2021)
$\begin{align}
(A)\ & 66\ cm \\
(B)\ & 60\ cm \\
(C)\ & 55\ cm \\
(D)\ & 54\ cm
\end{align}$
Alternatif Pembahasan:

Dengan memperhatikan gambar, kita dapat dua segitiga siku-siku yaitu $ABD$ dan $BCD$.
$\bigtriangleup\ ABD$ siku-siku di $D$,
$\begin{align} AB^{2} & = AD^{2}+BD^{2} \\
20^{2} & = AD^{2}+12^{2} \\
400 & = AD^{2}+144 \\
400-144 & = AD^{2} \\
\sqrt{256} & = AD \\
16 & = AD \end{align}$

$\bigtriangleup\ BCD$ siku-siku di $B$,
$\begin{align} CD^{2} & = BC^{2}+BD^{2} \\
& = 5^{2}+12^{2} \\
& = 25+144 \\
CD & = \sqrt{169} \\
& = 13
\end{align}$
Keliling bidang adalah $AB+BC+CD+DA$=$20+5+13+16=54$

$\therefore$ keliling bidang $ABCD$ adalah $(D)\ 54\ cm$


2. Soal Masuk Asrama YASOP - SMAN 2 Balige 2018 |*Soal Lengkap

Perhatikan gambar berikut ini!
Matematika SMP, Seleksi Akademik Masuk Asrama YASOP SMAN 2 Balige
Jika $AE=12\ cm$, $BE=15\ cm$, $BC=7\ cm$, dan $BD=25\ cm$ maka $CD-CE=\cdots cm$
$\begin{align}
(A)\ & 8 \\
(B)\ & 7 \\
(C)\ & 4 \\
(D)\ & 2
\end{align}$
Alternatif Pembahasan:

Dari gambar di atas ada beberapa segitiga siku-siku, sehingga untuk menghitung unsur-unsur segitiga yang belum diketahui kita cari dengan menggunakan teorema phytagoras.

Dari $\bigtriangleup ABE$
$\begin{align}
AB^{2} & = BE^{2}-AE^{2} \\
AB^{2} & = 15^{2}-12^{2} \\
AB^{2} & = 225-144=81 \\
AB & = 9
\end{align}$

Dari $\bigtriangleup ACE$
$\begin{align}
CE^{2} & = AE^{2}+AC^{2} \\
CE^{2} & = 12^{2}+16^{2} \\
CE^{2} & = 144+256=400 \\
CE & = 20
\end{align}$

Dari $\bigtriangleup BCD$
$\begin{align}
CD^{2} & = BD^{2}-BC^{2} \\
CD^{2} & = 25^{2}-7^{2} \\
CD^{2} & = 625-49=576 \\
CD & = 24
\end{align}$

$CD-CE=24-20=4$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 4$


3. Soal Masuk Asrama YASOP - SMAN 2 Balige 2007 |*Soal Lengkap

Matematika SMP, Seleksi Akademik Masuk Asrama YASOP SMAN 2 Balige 2007
Diketahui $AC=15\ cm$, $EC=5\ cm$, $AD=6\ cm$, dan $BC=3\ cm$. Panjang AB adalah...
$\begin{align}
(A)\ & 5\sqrt{6} \\ (B)\ & 6\sqrt{5} \\ (C)\ & 10\sqrt{18} \\ (D)\ & 18\sqrt{10}
\end{align}$
Alternatif Pembahasan:

Dari gambar informasi yang bisa kita ambil adalah

  • $AC=15$ dan $EC=5$ maka $AE=10$
  • Dengan menggunakan trypel pythagoras pada $AE=10$ dan $AD=6$ maka $ED=8$
  • Dengan menggunakan teorema pythagoras pada $BC=3$ dan $EC=5$ maka $EB=4$
  • Masis dengan menggunakan teorema pythagoras pada $AD=6$ dan $BD=DE+EB=8+4=12$ maka
    $AB=\sqrt{6^{2}+12^{2}}$
    $AB=\sqrt{36+144}$
    $AB=\sqrt{180}=6\sqrt{5}$

$\therefore$ Pilihan yang sesuai adalah $(B)\ 6\sqrt{5}$


4. Soal Masuk Asrama YASOP - SMAN 2 Balige 2006 |*Soal Lengkap

Panjang sisi-sisi segitiga siku-siku adalah $x\ cm$, $(x+1)\ cm$ dan $(x+2)\ cm$, maka $x=\cdots$
$\begin{align}
(A)\ & 1\ cm \\ (B)\ & 2\ cm \\ (C)\ & 3\ cm \\ (D)\ & 4\ cm \\ \end{align}$
Alternatif Pembahasan:

Berdasarkan bilangan trypel pythagoras sisi yang terpanjang adalah sisi miring, sehingga dari sisi-sisi $x\ cm$, $(x+1)\ cm$ dan $(x+2)\ cm$ sisi miring adalah $(x+2)\ cm$.

Dengan teorema pythagoras kita peroleh:
$\begin{align}
(x+2)^{2} & = (x+1)^{2}+x^{2} \\ x^{2}+4x+4 & = x^{2}+2x+1+x^{2} \\ x^{2}+4x+4 & = 2x^{2}+2x+1 \\ 2x^{2}-x^{2}+2x-4x+1-4 & = 0 \\ x^{2}-2x-3 & = 0 \\ (x-3)(x+1)& = 0 \\ x=3\ & x=-1 (TM)
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 3\ cm$


Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras

Untuk segala sesuatu hal yang perlu kita diskusikan terkait Soal dan Pembahasan Himpunan Matematika SMP silahkan disampaikan 🙏 CMIIW😊.

Jangan Lupa Untuk Berbagi 🙏 Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊

© defantri.com ~ Made with ♥ in Lintongnihuta, IDN. Developed by Jago Desain