60+ Soal dan Pembahasan Matematika Dasar Matriks

Mempelajari dan menggunakan aturan-aturan pada matriks juga sangatlah mudah, jika Anda mengikuti step by step yang kita diskusikan dibawah ini, maka anda akan dengan mudah memahami soal-soal matriks dan menemukan solusinya.
Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu susunan berbentuk persegipanjang. Susunan bilangan itu diletakkan di dalam kurung biasa $"(\ \ )"$ atau kurung siku $"[\ \ ]"$.
Masing-masing bilangan dalam matriks disebut entri atau elemen. Umumnya penamaan suatu matriks dinyatakan dengan huruf kapital, misalnya $A,\ B,\ C,\ D, \cdots $ dan seterusnya.
Soal-soal yang berkembang pada matriks dapat juga dikaitkan dengan materi pokok matematika lainnya, seperti: Eksponen, Bentuk Akar, Logaritma, Trigonometri, dan materi lainnya berpeluang dikaitkan dengan matriks.
Soal berikut yang kita diskusikan kita sadur dari soal-soal SBMPTN (Seleksi Bersama Masuk Perguruan Tinggi Negeri) atau SMMPTN (Seleksi Mandiri Masuk Perguruan Tinggi Negeri) dan UN (Ujian Nasional).
1. Soal SIMAK UI 2013 kode 333 (*Soal Lengkap)
Sebuah matriks dikatakan matriks ortogonal jika $A^{-1}=A^{T}$.
Jika diketahui
$\begin{bmatrix} a& \frac{2}{3}& \frac{2}{3}\\ \frac{2}{3}& b& \frac{1}{3}\\ -\frac{2}{3}& -\frac{1}{3}& c \end{bmatrix}$
adalah matriks ortogonal,$a^{2}+b^{2}+c^{2}=...$
$\begin{align} (A)\ & -1 \\ (B)\ & 0 \\ (C)\ & \dfrac{1}{9} \\ (D)\ & \dfrac{4}{9} \\ (E)\ & 1 \end{align}$
Show
Sekilas untuk mengerjakan soal di atas, kita harus menghitung invers matriks $3\times3$ lalu kita samakan dengan transpose matriks sesuai dengan yang didefenisikan sebuah matriks dikatakan matriks ortogonal jika $A^{-1}=A^{T}$.
Tetapi untuk anak SMA, menentukan invers matriks $3\times3$ adalah masalah baru. Untuk menghindari tercipta masalah baru, kita coba menyelesaikan soal di atas dengan sedikit eksplorasi dan mengikuti defenisi matriks ortogonal yaitu $A^{-1}=A^{T}$.
Eksplorasi yang kita lakukan yaitu:
$\begin{align}
A^{-1} &= A^{T} \\
& \text{(*kalikan dengan matriks A)} \\
A \times A^{-1} &= A \times A^{T} \\
I & = A \times A^{T}
\end{align}$
Sehingga kita peroleh persamaan;
$\begin{bmatrix}
a& \frac{2}{3}& \frac{2}{3}\\
\frac{2}{3}& b& \frac{1}{3}\\
-\frac{2}{3}& -\frac{1}{3}& c
\end{bmatrix}\times \begin{bmatrix}
a & \frac{2}{3}& -\frac{2}{3}\\
\frac{2}{3}& b& -\frac{1}{3}\\
\frac{2}{3}& \frac{1}{3}& c
\end{bmatrix}$$=\begin{bmatrix}
1& 0& 0\\
0& 1& 0\\
0& 0& 1
\end{bmatrix}$
dari perkalian matriks di atas dapat kita peroleh persamaan sebagai berikut;
$a^{2}+\dfrac{4}{9}+\dfrac{4}{9}=1 \cdots \left (pers. 1 \right )$
$\dfrac{4}{9}+b^{2}+\dfrac{1}{9}=1 \cdots \left (pers. 2 \right )$
$\dfrac{4}{9}+\dfrac{1}{9}+c^{2}=1 \cdots \left (pers. 3 \right )$
Apabila persamaan $\left (1 \right )$,$\left (2 \right )$, dan $\left (3 \right )$ kita jumlahkan,
maka akan kita peroleh persamaan berikut;
$a^{2}+b^{2}+c^{2}+\dfrac{18}{9}=3$
$a^{2}+b^{2}+c^{2}=1$
$\therefore$ Pilihan yang sesuai adalah $(E)\ 1$
2. Soal SIMAK UI 2013 kode 333 (*Soal Lengkap)
Jika $A=\begin{bmatrix}
4&3\\ 2&5
\end{bmatrix}$ dan $A^{2}-xA+yI=\begin{bmatrix}
0 &0 \\ 0& 0
\end{bmatrix}$ maka $x+y=...$
$\begin{align}
(A)\ & 9 \\ (B)\ & 14 \\ (C)\ & 19 \\ (D)\ & 23 \\ (E)\ & 25
\end{align}$
Show
Untuk mencoba menyelesaikan masalah diatas, bisa kita lakukan dengan mengerjakan sedikit demi sedikit apa yang dibutuhkan,
$A^{2}=A\times A$
$A^{2}=\begin{bmatrix}
4&3\\
2&5
\end{bmatrix}\times \begin{bmatrix}
4&3\\
2&5
\end{bmatrix}$
$A^{2}=\begin{bmatrix}
22&27\\
18&31
\end{bmatrix}$
$xA=\begin{bmatrix}
4x&3x\\
2x&5x
\end{bmatrix}$
$yI=\begin{bmatrix}
y&0\\
0&y
\end{bmatrix}$
Apa yang sudah kita ketahui diatas kita substitusi ke persamaan
$A^{2}-xA+yI=\begin{bmatrix}
0 &0 \\
0& 0
\end{bmatrix}$
$\begin{bmatrix}
22&27\\
18&31
\end{bmatrix}-\begin{bmatrix}
4x&3x\\
2x&5x
\end{bmatrix}+\begin{bmatrix}
y&0\\
0&y
\end{bmatrix}$$=\begin{bmatrix}
0 &0 \\
0& 0
\end{bmatrix}$
Dari operasi matriks dan kesamaan matriks diatas, kita dapat beberapa persamaan, diantaranya:
$\begin{align}
18-2x+0 &= 0 \\
18 &= 2x \\
9 &=x \\
\hline
31-5x+y &=0 \\
31-45+y &=0 \\
-14+y &=0 \\
y &=14 \\
\hline
x+y &= 23
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 23$
3. Soal UNBK Matematika IPS 2018 (*Soal Lengkap)
Diketahui matriks $A=\begin{pmatrix}
3 & 0\\ 2 & 0
\end{pmatrix}$; $B=\begin{pmatrix}
2 & 1\\ 3 & 2
\end{pmatrix}$; dan $A+B=C$. Invers matriks $C$ adalah...
$\begin{align}
(A)\ & \begin{pmatrix}
\frac{2}{5} & -\frac{1}{5} \\ -1 & 1
\end{pmatrix} \\ (B)\ & \begin{pmatrix}
1 & -\frac{1}{5} \\ -1 & \frac{2}{5}
\end{pmatrix} \\ (C)\ & \begin{pmatrix}
1 & \frac{1}{5} \\ -1 & \frac{2}{5}
\end{pmatrix} \\ (D)\ & \begin{pmatrix}
\frac{2}{5} & \frac{1}{5} \\ 1 & \frac{2}{5}
\end{pmatrix} \\ (E)\ & \begin{pmatrix}
\frac{2}{5} & -1 \\ \frac{1}{5} & 1
\end{pmatrix}
\end{align}$
Show
$C=A+B$
$C=\begin{pmatrix}
3 & 0\\
2 & 0
\end{pmatrix} + \begin{pmatrix}
2 & 1\\
3 & 2
\end{pmatrix}$
$C=\begin{pmatrix}
5 & 1\\
5 & 2
\end{pmatrix}$
$C^{-1}=\frac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix}$
$C^{-1}=\frac{1}{(5)(2)-(5)(1)}\begin{pmatrix}
2 & -1\\
-5 & 5
\end{pmatrix}$
$C^{-1}=\frac{1}{5}\begin{pmatrix}
2 & -1\\
-5 & 5
\end{pmatrix}$
$C^{-1}= \begin{pmatrix}
\frac{2}{5} & -\frac{1}{5} \\
-1 & 1
\end{pmatrix}$
$\therefore$ Pilihan yang sesuai adalah $(A)\ \begin{pmatrix}
\frac{2}{5} & -\frac{1}{5} \\
-1 & 1
\end{pmatrix}$
4. Soal UNBK Matematika IPS 2018 (*Soal Lengkap)
Diketahui matriks $A=\begin{pmatrix}
1 & 3\\ 2 & 4
\end{pmatrix}$; $B=\begin{pmatrix}
-3 & a\\ b & -2
\end{pmatrix}$; $C=\begin{pmatrix}
1 & -3\\ 4 & 2
\end{pmatrix}$; dan $D=\begin{pmatrix}
-1 & 2\\ -2 & 1
\end{pmatrix}$.
Jika $A^{T}$ adalah transpose matriks $A$, nilai $2a+\frac{1}{2}b$ yang memenuhi persamaan $2A^{T}-B=CD$ adalah...
$\begin{align}
(A)\ & 3 \\ (B)\ & 7 \\ (C)\ & 12 \\ (D)\ & 17 \\ (E)\ & 31
\end{align}$
Show
$CD=\begin{pmatrix}
1 & -3\\
4 & 2
\end{pmatrix} \begin{pmatrix}
-1 & 2\\
-2 & 1
\end{pmatrix}$
$CD= \begin{pmatrix}
(1)(-1)+(-3)(-2) & (1)(2)+(-3)(1)\\
(4)(-1)+(2)(-2) & (4)(2)+(2)(1)
\end{pmatrix}$
$CD= \begin{pmatrix}
-1+6 & 2-3\\
-4-4 & 8+2
\end{pmatrix}$
$CD= \begin{pmatrix}
5 & -1\\
-8 & 10
\end{pmatrix}$
$2A^{T}-B=2\begin{pmatrix}
1 & 2\\
3 & 4
\end{pmatrix}-\begin{pmatrix}
-3 & a\\
b & -2
\end{pmatrix}$
$2A^{T}-B=\begin{pmatrix}
2 & 4\\
6 & 8
\end{pmatrix}-\begin{pmatrix}
-3 & a\\
b & -2
\end{pmatrix}$
$2A^{T}-B=\begin{pmatrix}
5 & 4-a\\
6-b & 10
\end{pmatrix}$
$2A^{T}-B=CD$
$\begin{pmatrix}
5 & 4-a\\
6-b & 10
\end{pmatrix}=\begin{pmatrix}
5 & -1\\
-8 & 10
\end{pmatrix}$
Dari kesamaan dua matriks diatas kita peroleh $4-a=-1$, $a=5$ dan $6-b=-8$, $b=14$.
Nilai $2a+\frac{1}{2}b$
$ \begin{align}
2a+\frac{1}{2}b & = 2(5)+\frac{1}{2}(14) \\
& = 10+7 \\
& = 17
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(D)\ 17$
5. Soal UNBK Matematika IPA 2018 (*Soal Lengkap)
Diketahui matriks $A=\begin{pmatrix}
2 & 1\\ 4 & -1
\end{pmatrix}$ dan $B=\begin{pmatrix}
4 & -1\\ 1 & 1
\end{pmatrix}$. Jika $C=AB$, invers matriks $C$ adalah $C^{-1}=\cdots$
$\begin{align}
(A)\ & \begin{pmatrix}
\frac{1}{6} & -\frac{1}{30} \\ \frac{1}{2} & -\frac{3}{10}
\end{pmatrix} \\ (B)\ & \begin{pmatrix}
-\frac{1}{6} & \frac{1}{2} \\ -\frac{1}{30} & -\frac{3}{10}
\end{pmatrix} \\ (C)\ & \begin{pmatrix}
\frac{1}{6} & -\frac{1}{2} \\ -\frac{1}{30} & -\frac{3}{10}
\end{pmatrix} \\ (D)\ & \begin{pmatrix}
\frac{1}{6} & -\frac{1}{30} \\ -\frac{1}{2} & \frac{3}{10}
\end{pmatrix} \\ (E)\ & \begin{pmatrix}
-\frac{1}{6} & -\frac{1}{2} \\ -\frac{1}{30} & -\frac{3}{10}
\end{pmatrix}
\end{align}$
Show
$C=AB$
$C=\begin{pmatrix}
2 & 1\\
4 & -1
\end{pmatrix} \begin{pmatrix}
4 & -1\\
1 & 1
\end{pmatrix}$
$C=\begin{pmatrix}
9 & -1\\
15 & -5
\end{pmatrix}$
$C^{-1}=\frac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix}$
$C^{-1}=\frac{1}{(9)(-5)-(15)(-1)}\begin{pmatrix}
-5 & 1\\
-15 & 9
\end{pmatrix}$
$C^{-1}=\frac{1}{-30}\begin{pmatrix}
-5 & 1\\
-15 & 9
\end{pmatrix}$
$C^{-1}= \begin{pmatrix}
\frac{1}{6} & -\frac{1}{30} \\
\frac{1}{2} & -\frac{3}{10}
\end{pmatrix}$
$\therefore$ Pilihan yang sesuai adalah $(A)\ \begin{pmatrix}
\frac{1}{6} & -\frac{1}{30} \\
\frac{1}{2} & -\frac{3}{10}
\end{pmatrix}$
6. Soal UNBK Matematika IPA 2018 (*Soal Lengkap)
Agen perjalanan "Lombok Menawan" menawarkan paket perjalanan wisata seperti tabel di bawah ini:
Bentuk matriks yang sesuai untuk menentukan biaya sewa hotel tiap malam dan biaya satu tempat wisata adalah...
--- Paket I Paket II Sewa Hotel 5 6 Tempat Wisata 4 5 Biaya Total 3.100.000,00 3.000.000,00
$\begin{align}
(A)\ & \begin{pmatrix}
x \\ y
\end{pmatrix}=\begin{pmatrix}
5 & -6\\ -4 & 5
\end{pmatrix}\begin{pmatrix}
3.100.000 \\ 3.000.000
\end{pmatrix} \\ (B)\ & \begin{pmatrix}
x \\ y
\end{pmatrix}=\begin{pmatrix}
5 & 6\\ 4 & 5
\end{pmatrix}\begin{pmatrix}
3.100.000 \\ 3.000.000
\end{pmatrix} \\ (C)\ & \begin{pmatrix}
x \\ y
\end{pmatrix}=\begin{pmatrix}
5 & 4\\ 6 & 5
\end{pmatrix}\begin{pmatrix}
3.100.000 \\ 3.000.000
\end{pmatrix} \\ (D)\ & \begin{pmatrix}
x \\ y
\end{pmatrix}=\begin{pmatrix}
5 & -4\\ -6 & 5
\end{pmatrix}\begin{pmatrix}
3.100.000 \\ 3.000.000
\end{pmatrix} \\ (E)\ & \begin{pmatrix}
x \\ y
\end{pmatrix}=\begin{pmatrix}
-4 & 5\\ 5 & -6
\end{pmatrix}\begin{pmatrix}
3.100.000 \\ 3.000.000
\end{pmatrix}
\end{align}$
Show
Dengan memisalkan Sewa Hotel=$x$ dan Tempat Wisata=$y$, maka tabel diatas jika kita sajikan dalam bentuk matriks, kurang lebih seperti berikut ini;
$5x+4y=3.100.000$
$6x+5y=3.000.000$
$\begin{pmatrix}
5 & 4\\
6 & 5
\end{pmatrix}\begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$
Untuk mendapatkan nilai $x$ dan $y$ dalam persamaan matriks, kita coba gunakan invers matriks;
$\begin{align}
A \cdot X & = B \\
A^{-1} \cdot A \cdot X & = A^{-1} \cdot B \\
I \cdot X & = A^{-1} \cdot B \\
X & = A^{-1} \cdot B \\
\end{align} $
$\begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & 4\\
6 & 5
\end{pmatrix}^{-1} \begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$
$\begin{pmatrix}
x \\
y
\end{pmatrix}=\frac{1}{(5)(5)-(6)(4)}\begin{pmatrix}
5 & -4\\
-6 & 5
\end{pmatrix} \begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$
$\begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & -4\\
-6 & 5
\end{pmatrix} \begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$
$\therefore$ Pilihan yang sesuai adalah $(A)\ \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & -6\\
-4 & 5
\end{pmatrix}\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$
7. Soal SBMPTN 2018 Kode 526 (*Soal Lengkap)
Jika $A=\begin{pmatrix}
a & 1\\ b & 2
\end{pmatrix}$, $B=\begin{pmatrix}
a & 1\\ 1 & 0
\end{pmatrix}$ dan $AB=\begin{pmatrix}
10 & a\\ 14 & b
\end{pmatrix}$. maka nilai $ab$ adalah...
$\begin{align}
(A)\ & 9 \\ (B)\ & 10 \\ (C)\ & 12 \\ (D)\ & 14 \\ (E)\ & 16
\end{align}$
Show
$\begin{align}
AB & = \begin{pmatrix}
10 & a\\
14 & b
\end{pmatrix} \\
\begin{pmatrix}
a & 1\\
b & 2
\end{pmatrix} \begin{pmatrix}
a & 1\\
1 & 0
\end{pmatrix} & = \begin{pmatrix}
10 & a\\
14 & b
\end{pmatrix} \\
\begin{pmatrix}
a^{2}+1 & a\\
ab+2 & b
\end{pmatrix} & = \begin{pmatrix}
10 & a\\
14 & b
\end{pmatrix} \\
ab+2 & = 14 \\
ab & = 12
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 12$
8. Soal SIMAK UI 2018 Kode 641 (*Soal Lengkap)
Diketahui $A=\begin{pmatrix}
a & -3\\ 1 & d
\end{pmatrix}$, Jika $A=A^{-1}$, nilai $|a-d|$ adalah...
$\begin{align}
(A)\ & 0 \\ (B)\ & 1 \\ (C)\ & 2 \\ (D)\ & 3 \\ (E)\ & 4
\end{align}$
Show
$\begin{pmatrix}
a & -3\\
1 & d
\end{pmatrix}=\dfrac{1}{ad+3}\begin{pmatrix}
d & 3\\
-1 & a
\end{pmatrix}$
$\begin{pmatrix}
a & -3\\
1 & d
\end{pmatrix}=\begin{pmatrix}
\dfrac{d}{ad+3} & \dfrac{3}{ad+3}\\
\dfrac{-1}{ad+3} & \dfrac{a}{ad+3}
\end{pmatrix}$
Kesimpulan yang bisa kita ambil dari kesamaan matriks diatas adalah...
$ \begin{align}
\dfrac{-1}{ad+3} & = 1 \\
-1 & = ad+3 \\
ad & = -1-3=-4
\end{align} $
$ \begin{align}
a & = \dfrac{d}{ad+3} \\
a & = \dfrac{d}{-4+3} \\
a & = -d \\
ad & = -4 \\
(-d)d & = -4 \\
-d^{2} & = -4 \\
d & = \pm \sqrt{4} =\pm 2
\end{align} $
Untuk $d=2$ maka $a=-2$
Untuk $d=-2$ maka $a=2$
Nilai $|a-d|=|2-(-2)|=4$
$\therefore$ Pilihan yang sesuai adalah $(E)\ 4$
9. Soal SIMAK UI 2009 Kode 931 (*Soal Lengkap)
Diketahui $l$ adalah garis yang dinyatakan oleh $det(A)=0$ dimana $A=\begin{pmatrix}
1 & 1 & 2\\ x & y & 1\\ 2 & 1 & 3
\end{pmatrix}$, persamaan garis yang sejajar $l$ dan melalui titik $(3,4)$ adalah...
$\begin{align}
(A)\ & x+y-7=0 \\ (B)\ & x-y+7=0 \\ (C)\ & x-y+1=0 \\ (D)\ & x+y-1=0 \\ (E)\ & x+y+1=0
\end{align}$
Show
Untuk mendapatkan persamaan garis $l$ kita mulai dengan menentukan determinan matrisk ordo $3 \times 3$ yang nilainya adalah nol.
$0=\begin{vmatrix}
1 & 1 & 2\\
x & y & 1\\
2 & 1 & 3
\end{vmatrix}\left.\begin{matrix}
1 & 1\\
x & y\\
2 & 1
\end{matrix}\right|$
Persamaan garis $l$ adalah
$(1 \cdot y \cdot 3+1 \cdot 1 \cdot 2+2 \cdot x \cdot 1)-(2 \cdot y \cdot 2+1 \cdot 1 \cdot 1+1 \cdot x \cdot 3)=0$
$(3y+2+2x)-(4y+1+3x)=0$
$ 3y+2+2x-4y-1-3x=0$
$ 1-y-x=0$
$ 1-x=y$
Persamaan garis yang sejajar ($m_{1}=m_{2}$) dengan garis $l$ melalui $(3,4)$ adalah:
$\begin{align}
m & = -1 \\
y-y_{1} & = m(x-x_{1}) \\
y-4 & = -1(x-3) \\
y-4 & = -x+3 \\
y & = -x+7 \\
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(A)\ x+y-7=0$
10. Soal SIMAK UI 2009 Kode 921 (*Soal Lengkap)
Diketahui $P=\begin{pmatrix}
2 & 1\\ 3 & 3
\end{pmatrix}$, $Q=\begin{pmatrix}
-1 & -2\\ 1 & 0
\end{pmatrix}$, dan determinan dari matriks $PQ$ adalah $k$. Jika garis $2x-y=4$ dan $3x-2y=5$ berpotongan di $A$, maka persamaan garis yang melalui $A$ dengan gradien $k$ adalah...
$\begin{align}
(A)\ & 6x+y-20=0 \\ (B)\ & 2x-3y-6=0 \\ (C)\ & 3x-2y-4=0 \\ (D)\ & x-6y+16=0 \\ (E)\ & 6x-y-16=0
\end{align}$
Show
Unsur-unsur yang dibutuhkan untuk membentuk sebuah persamaan garis adalah sebuah titik dan gradien, $m=k=|PQ|$
$\begin{align}
m & = |PQ| \\
& = \left | \begin{pmatrix}
2 & 1\\
3 & 3
\end{pmatrix} \begin{pmatrix}
-1 & -2\\
1 & 0
\end{pmatrix} \right | \\
& = \begin{vmatrix}
-1 & -4\\
0 & -6
\end{vmatrix} \\
& = 6-0=6
\end{align}$
Titik $A$
$\begin{array}{c|c|cc}
2x-y = 4 & (\times 2) \\
3x-2y = 5 & (\times 1) \\
\hline
4x-2y = 8 & \\
3x-2y = 5 & (-) \\
\hline
x = 3 & \\
3x-2y = 5 & \\
3(3)-2y = 5 & \\
y = 2
\end{array} $
Persamaan garis melalui $A(3,2)$ dengan $m=6$
$\begin{align}
y-y_{1} & = m(x-x_{1}) \\
y-2 & = 6(x-3) \\
y & = 6x-18+2 \\
y & = 6x-16
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(E)\ 6x-y-16=0$
11. Soal UM UGM 2014 Kode 522 (*Soal Lengkap)
Nilai semua $x$ sehingga matriks $\begin{pmatrix}
\sqrt{x^{2}-1} & 1\\ x & 2
\end{pmatrix}$, mempunyai invers adalah...
$\begin{align}
(A)\ & x \neq -\dfrac{4}{3}\ \text{dan}\ x \neq \dfrac{4}{3} \\ (B)\ & x \neq -\sqrt{\dfrac{4}{3}}\ \text{dan}\ x \neq \sqrt{\dfrac{4}{3}} \\ (C)\ & \sqrt{\dfrac{4}{3}} \lt x \leq -1\ \text{atau}\ 1 \leq x \lt \sqrt{\dfrac{4}{3}} \\ (D)\ & -\sqrt{\dfrac{4}{3}} \lt x \leq -1\ \text{atau}\ 1 \lt x \lt \sqrt{\dfrac{4}{3}} \\ (E)\ & x \lt -\sqrt{\dfrac{4}{3}}\ \text{atau}\ -\sqrt{\dfrac{4}{3}} \lt x \leq -1\ \text{atau}\ 1 \leq x \lt \sqrt{\dfrac{4}{3}}\ \text{atau}\ x \gt \sqrt{\dfrac{4}{3}}
\end{align}$
Show
Agar sebuah matriks $\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}$ mempunyai invers maka $ad-bc \neq 0$
$\begin{align}
\begin{vmatrix}
\sqrt{x^{2}-1} & 1\\
x & 2
\end{vmatrix} & \neq 0 \\
2 \sqrt{x^{2}-1} -x & \neq 0 \\
2 \sqrt{x^{2}-1} & \neq x \\
4x^{2}-4 & \neq x^{2} \\
3x^{2} & \neq 4 \\
x^{2} & \neq \dfrac{4}{3} \\
x & \neq \pm \sqrt{\dfrac{4}{3}}
\end{align}$
Syarat sebuah fungsi bentuk akar $\sqrt{f(x)}$ mempunyai nilai real adalah $f(x) \geq 0$.
Agar $\sqrt{x^{2}-1}$ mempunyai nilai real maka $x^{2}-1 \geq 0$, nilai $x$ yang memenuhi pertidaksamaan kuadrat $x^{2}-1 \geq 0$ adalah $x \leq -1\ \text{atau}\ x \geq 1$.
Jika kita gambarkan irisan $x \neq \pm \sqrt{\dfrac{4}{3}}$ dan $x \leq -1\ \text{atau}\ x \geq 1$ adalah seperti berikut ini;

$\therefore$ Pilihan yang sesuai adalah $(E)\ x \lt -\sqrt{\dfrac{4}{3}}\ \text{atau}$ $ -\sqrt{\dfrac{4}{3}} \lt x \leq -1\ \text{atau}$ $1 \leq x \lt \sqrt{\dfrac{4}{3}}\ \text{atau}\ x \gt \sqrt{\dfrac{4}{3}}$
12. Soal UMB-PT 2014 Kode 672 (*Soal Lengkap)
Jika matriks $A=\begin{pmatrix}
a & b\\ b & a
\end{pmatrix}$, $b \neq 0$ dan $I=\begin{pmatrix}
1 & 0\\ 0 & 1
\end{pmatrix}$ memenuhi $A \cdot A=A+I$, maka $b^{2}=\cdots$
$\begin{align}
(A)\ & \dfrac{5}{4} \\ (B)\ & \dfrac{3}{2} \\ (C)\ & \dfrac{7}{4} \\ (D)\ & 2 \\ (E)\ & \dfrac{9}{4} \\ \end{align}$
Show
Karena matriks $A=\begin{pmatrix}
a & b\\
b & a
\end{pmatrix}$ memenuhi persamaan $A \cdot A=A+I$ sehingga berlaku:
$\begin{align}
\begin{pmatrix}
a & b\\
b & a
\end{pmatrix} \cdot \begin{pmatrix}
a & b\\
b & a
\end{pmatrix} & = \begin{pmatrix}
a & b\\
b & a
\end{pmatrix} + \begin{pmatrix}
1 & 0\\
0 & 1
\end{pmatrix} \\
\begin{pmatrix}
a^{2}+b^{2} & ab+ab\\
ab+ab & a^{2}+b^{2}\\
\end{pmatrix} & = \begin{pmatrix}
a+1 & b\\
b & a+1
\end{pmatrix} \\
\begin{pmatrix}
a^{2}+b^{2} & 2ab \\
2ab & a^{2}+b^{2}\\
\end{pmatrix} & = \begin{pmatrix}
a+1 & b\\
b & a+1
\end{pmatrix} \\
\hline
2ab & = b \\
a & = \dfrac{b}{2b} = \dfrac{1}{2} \\
a^{2}+b^{2} & = a+1 \\
b^{2} & = a+1-a^{2} \\
& = \dfrac{1}{2}+1-\left( \dfrac{1}{2} \right) ^{2} \\
& = \dfrac{3}{2} - \dfrac{1}{4} = \dfrac{5}{4}
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(A)\ \dfrac{5}{4}$
13. Soal SBMPTN 2014 Kode 643 (*Soal Lengkap)
Jika $A=\begin{pmatrix}
-1 & -1 & 0\\ -1 & 1 & 2
\end{pmatrix}$, $B=\begin{pmatrix}
-1 & x \\ 1 & y \\ 0 & z
\end{pmatrix}$ dan $AB=\begin{pmatrix}
0 & 2 \\ 2 & 4
\end{pmatrix}$, maka nilai $z-x$ adalah...
$\begin{align}
(A)\ & 6 \\ (B)\ & 3 \\ (C)\ & 0 \\ (D)\ & -3 \\ (E)\ & -6
\end{align}$
Show
$\begin{align}
\begin{pmatrix}
-1 & -1 & 0\\
-1 & 1 & 2
\end{pmatrix} \cdot \begin{pmatrix}
-1 & x \\
1 & y \\
0 & z
\end{pmatrix} & = \begin{pmatrix}
0 & 2 \\
2 & 4
\end{pmatrix} \\
\begin{pmatrix}
1-1+0 & -x -y+0\\
1+1+0 & -x+y+2z
\end{pmatrix} & = \begin{pmatrix}
0 & 2 \\
2 & 4
\end{pmatrix} \\
\begin{pmatrix}
0 & -x -y \\
2 & -x+y+2z
\end{pmatrix} & = \begin{pmatrix}
0 & 2 \\
2 & 4
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh:
$\begin{array}{c|c|cc}
-x-y=2 & \\
-x+y+2z = 4 & (+) \\
\hline
-2x+2z = 6 & \\
-x+z = 3
\end{array} $
$\therefore$ Pilihan yang sesuai adalah $(B)\ 3$
14. Soal SBMPTN 2014 Kode 613 (*Soal Lengkap)
Jika $\begin{pmatrix}
y \\ x
\end{pmatrix}=\begin{pmatrix}
2 & 1 \\ -1 & x
\end{pmatrix}^{-1} \begin{pmatrix}
4 \\ -1
\end{pmatrix}$ dengan $x \neq \dfrac{1}{2}$, maka nilai $\dfrac{1}{2}x+y=\cdots$
$\begin{align}
(A)\ & -4 \\ (B)\ & -2 \\ (C)\ & 0 \\ (D)\ & 2 \\ (E)\ & 4
\end{align}$
Show
Kita mengetahui sifat perkalian matriks yaitu jika $A=B^{-1} \cdot C$ maka $BA=C$.
$\begin{align}
\begin{pmatrix}
y \\
x
\end{pmatrix} & = \begin{pmatrix}
2 & 1 \\
-1 & x
\end{pmatrix}^{-1} \begin{pmatrix}
4 \\
-1
\end{pmatrix} \\
\begin{pmatrix}
2 & 1 \\
-1 & x
\end{pmatrix} \begin{pmatrix}
y \\
x
\end{pmatrix} & = \begin{pmatrix}
4 \\
-1
\end{pmatrix} \\
\begin{pmatrix}
2y+x \\
-y+x^{2}
\end{pmatrix} & = \begin{pmatrix}
4 \\
-1
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh $2y+x=4$ sehingga $ y+\dfrac{1}{2}x=2$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 2$
15. Soal SBMPTN 2014 Kode 601 (*Soal Lengkap)
Jika $P=\begin{pmatrix}
1 & 2 \\ 1 & 3
\end{pmatrix}$ dan $\begin{pmatrix}
x & y \\ -z & z
\end{pmatrix}=2P^{-1}$ dengan $P^{-1}$ menyatakan invers matriks $P$, maka $x+y=\cdots$
$\begin{align}
(A)\ & 0 \\ (B)\ & 1 \\ (C)\ & 2 \\ (D)\ & 3 \\ (E)\ & 4
\end{align}$
Show
Invers sebuah matriks $A= \begin{pmatrix}
a & b\\
c & d
\end{pmatrix}$ adalah $A^{-1}=\frac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix}$
$\begin{align}
P & = \begin{pmatrix}
1 & 2 \\
1 & 3
\end{pmatrix} \\
P^{-1} & = \frac{1}{(1)(3)-(2)(1)}\begin{pmatrix}
3 & -2\\
-1 & 1
\end{pmatrix} \\
\dfrac{1}{2}\begin{pmatrix}
x & y \\
-z & z
\end{pmatrix} & = \begin{pmatrix}
3 & -2\\
-1 & 1
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh $\dfrac{1}{2}x=3$ dan $\dfrac{1}{2}y=-2$ sehingga $x+y=2$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 2$
16. Soal SBMPTN 2014 Kode 631 (*Soal Lengkap)
Jika $A=\begin{pmatrix}
2 & 3 \\ -1 & 1
\end{pmatrix}$, $B$ memiliki invers, dan $ \left( AB^{-1} \right)^{-1}= \begin{pmatrix}
1 & -1 \\ 3 & 0
\end{pmatrix}$ maka matriks $B=\cdots$
$\begin{align}
(A)\ & \begin{pmatrix}
4 & -1 \\ 6 & 1
\end{pmatrix} \\ (B)\ & \begin{pmatrix}
3 & 2 \\ 6 & 9
\end{pmatrix} \\ (C)\ & \begin{pmatrix}
2 & 0 \\ 0 & 1
\end{pmatrix} \\ (D)\ & \begin{pmatrix}
1 & 6 \\ 4 & 3
\end{pmatrix} \\ (E)\ & \begin{pmatrix}
4 & 5 \\ 6 & -5
\end{pmatrix}
\end{align}$
Show
Sifat perkalian invers pada matriks berlaku $(AB)^{-1}=B^{-1} \cdot A^{-1}$.
$\begin{align}
\left( AB^{-1} \right)^{-1} & = \begin{pmatrix}
1 & -1 \\
3 & 0
\end{pmatrix} \\
B \cdot A^{-1} & = \begin{pmatrix}
1 & -1 \\
3 & 0
\end{pmatrix} \\
B \cdot A^{-1} \cdot A & = \begin{pmatrix}
1 & -1 \\
3 & 0
\end{pmatrix} \cdot A \\
B & = \begin{pmatrix}
1 & -1 \\
3 & 0
\end{pmatrix} \cdot \begin{pmatrix}
2 & 3 \\
-1 & 1
\end{pmatrix} \\
& = \begin{pmatrix}
2+1 & 3-1 \\
6+0 & 9+0
\end{pmatrix} \\
& = \begin{pmatrix}
3 & 2 \\
6 & 9
\end{pmatrix}
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ \begin{pmatrix}
3 & 2 \\
6 & 9
\end{pmatrix}$
17. Soal SBMPTN 2014 Kode 673 (*Soal Lengkap)
Diketahui matriks $A=\begin{pmatrix}
1 & 2 \\ 3 & 4
\end{pmatrix}$, dan $B= \begin{pmatrix}
1 & y \\ x & 3
\end{pmatrix}$. Jika determinan $AB$ adalah $10$, maka $xy=\cdots$
$\begin{align}
(A)\ & 4 \\ (B)\ & 6 \\ (C)\ & 8 \\ (D)\ & 10 \\ (E)\ & 12
\end{align}$
Show
$\begin{align}
AB & = \begin{pmatrix}
1 & 2 \\
3 & 4
\end{pmatrix} \begin{pmatrix}
1 & y \\
x & 3
\end{pmatrix} \\
& = \begin{pmatrix}
1+2x & y+6 \\
3+4x & 3y+12
\end{pmatrix} \\
|AB| & = \begin{vmatrix}
1+2x & y+6 \\
3+4x & 3y+12
\end{vmatrix} \\
10 & = (1+2x)(3y+12)-(y+6)(3+4x) \\
10 & = 3y+12+6xy+24x -3y-4xy-18-24x \\
10 & = 2xy -6 \\
10+6 & = 2xy \\
8 & = xy
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 8$
18. Soal SBMPTN 2014 Kode 673 (*Soal Lengkap)
Jika $\begin{pmatrix}
a & b \\ b & 2a
\end{pmatrix}\begin{pmatrix}
x \\ x+y
\end{pmatrix}=\begin{pmatrix}
a \\ b
\end{pmatrix}$ dengan $b^{2} \neq 2a^{2}$, maka $x+y=\cdots$
$\begin{align}
(A)\ & -2 \\ (B)\ & -1 \\ (C)\ & 0 \\ (D)\ & 1 \\ (E)\ & 2
\end{align}$
Show
$\begin{align}
\begin{pmatrix}
a & b \\
b & 2a
\end{pmatrix}\begin{pmatrix}
x \\
x+y
\end{pmatrix} &= \begin{pmatrix}
a \\
b
\end{pmatrix} \\
\begin{pmatrix}
ax+bx+by \\
bx+2ax+2ay
\end{pmatrix} &= \begin{pmatrix}
a \\
b
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh:
$\begin{array}{c|c|cc}
ax+bx+by=a & (\times b)\\
bx+2ax+2ay=b & (\times a) \\
\hline
abx+b^{2}x+b^{2}y=ab & \\
abx+2a^{2}x+2a^{2}y=ab & (-) \\
\hline
b^{2}x+b^{2}y-2a^{2}x+2a^{2}y=0 \\
\left( b^{2} -2a^{2} \right) x+ \left( b^{2} -2a^{2} \right)y=0 \\
\left( b^{2} -2a^{2} \right) \left( x+y \right) =0 \\
\left( x+y \right) = \dfrac{0}{\left( b^{2} -2a^{2} \right)} \\
\left( x+y \right) = 0
\end{array} $
$\therefore$ Pilihan yang sesuai adalah $(C)\ 0$
19. Soal SBMPTN 2014 Kode 663 (*Soal Lengkap)
Jika matriks $A=\begin{pmatrix}
2x & -2 \\ x & 3y+2
\end{pmatrix}$, $B=\begin{pmatrix}
9 & 3x \\ 8 & -4
\end{pmatrix}$ dan $C=\begin{pmatrix}
5 & 6 \\ -8 & 7
\end{pmatrix}$ memenuhi $A+B=C^{t}$ dengan $C^{t}$ transpose matriks $C$, maka $2x+3y=\cdots$
$\begin{align}
(A)\ & 3 \\ (B)\ & 4 \\ (C)\ & 5 \\ (D)\ & 6 \\ (E)\ & 7
\end{align}$
Show
$\begin{align}
A+B &= C^{t} \\
\begin{pmatrix}
2x & -2 \\
x & 3y+2
\end{pmatrix}+\begin{pmatrix}
9 & 3x \\
8 & -4
\end{pmatrix} &= \begin{pmatrix}
5 & -8 \\
6 & 7
\end{pmatrix} \\
\begin{pmatrix}
2x+9 & -2+3x \\
x+8 & 3y-2
\end{pmatrix} &= \begin{pmatrix}
5 & -8 \\
6 & 7
\end{pmatrix} \\
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh:
- $x+8=6$ sehingga $x=-2$
- $3y-2=7$ sehingga $y=3$
- $2x+3y=2(-2)+3(3)=-4+9=5$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 5$
20. Soal SIMAK UI 2013 Kode 334 (*Soal Lengkap)
Jumlah semua entri pada matriks $X$ dari sistem persamaan berikut adalah...
$3X-2Y=\begin{bmatrix}
3 & -1
\end{bmatrix}$
$2X-5Y=\begin{bmatrix}
1 & 2
\end{bmatrix}$
$\begin{align}
(A)\ & \dfrac{13}{11} \\ (B)\ & \dfrac{9}{11} \\ (C)\ & \dfrac{8}{11} \\ (D)\ & \dfrac{5}{11} \\ (E)\ & \dfrac{4}{11}
\end{align}$
Show
Matriks $X$ dan $Y$ adalah matriks berordo $1 \times 2$ karena hasil pengurangan matriks tersebut adalah sebuah matriks berordo $1 \times 2$. Sehingga dapat kita misalkan $X=\begin{bmatrix}
a & b
\end{bmatrix}$ dan $Y=\begin{bmatrix}
c & d
\end{bmatrix}$
$\begin{align}
3X-2Y &= \begin{bmatrix}
3 & -1
\end{bmatrix} \\
3\begin{bmatrix}
a & b
\end{bmatrix}-2\begin{bmatrix}
c & d
\end{bmatrix} &= \begin{bmatrix}
3 & -1
\end{bmatrix} \\
\begin{bmatrix}
3a-2c & 3b-2d
\end{bmatrix} &= \begin{bmatrix}
3 & -1
\end{bmatrix} \\
\hline
2X-5Y &= \begin{bmatrix}
1 & 2
\end{bmatrix} \\
2\begin{bmatrix}
a & b
\end{bmatrix}-5\begin{bmatrix}
c & d
\end{bmatrix} &= \begin{bmatrix}
1 & 2
\end{bmatrix} \\
\begin{bmatrix}
2a-5c & 2b-5d
\end{bmatrix} &= \begin{bmatrix}
1 & 2
\end{bmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh:
- $3a-2c=3$ dan $2a-5c=1$
- $3b-2d=-1$ dan $2b-5d=2$
3a-2c=3 & 3b-2d=-1 & \times 5 \\ 2a-5c=1 & 2b-5d=2 & \times 2 \\ \hline
15a-10c=15 & 15b-10d=-5 & \\ 4a-10c=2 & 4b-10d=4 & - \\ \hline
11a =13 & 11b =-9 & \\ a =\dfrac{13}{11} & b =\dfrac{-9}{11}
\end{array} $
Jumlah semua entri pada matriks $X$ adalah $a+b=\dfrac{4}{11}$
$\therefore$ Pilihan yang sesuai adalah $(E)\ \dfrac{4}{11}$
21. Soal SIMAK UI 2013 Kode 334 (*Soal Lengkap)
Diberikan matriks $A,\ B,\ C,\ \text{dan}\ D$ berikut ini.
$A=\begin{bmatrix}
2 & 1 \\ 0 & 1
\end{bmatrix}$; $B=\begin{bmatrix}
0 & 1 \\ 0 & 1
\end{bmatrix}$; $C=\begin{bmatrix}
2 & 1 \\ 0 & 0
\end{bmatrix}$; $D=\begin{bmatrix}
2 & 0 \\ 0 & 1
\end{bmatrix}$. Jika $x,\ y,\ z,\ \text{dan}\ w$ secara berurutan adalah jumlah entri-entri pada matriks $A^{2013},\ B^{2013},\ C^{2013},\ \text{dan}\ D^{2013}$, pernyataan-pernyataan berikut yang BENAR adalah...
$\begin{align}
(1)\ & w-1=y^{2013} \\ (2)\ & z=3y^{2012} \\ (3)\ & 4z=3x \\ (4)\ & 2w-x=2
\end{align}$
Show
Sebagai tahap awal kita coba uji nilai untuk $A^{2}$ dan $A^{3}$
$\begin{align}
A^{2} &= \begin{bmatrix}
2 & 1 \\
0 & 1
\end{bmatrix}^{2}=\begin{bmatrix}
4 & 3 \\
0 & 1
\end{bmatrix}=(8)\\
A^{3} &= \begin{bmatrix}
2 & 1 \\
0 & 1
\end{bmatrix}^{3}=\begin{bmatrix}
8 & 7 \\
0 & 1
\end{bmatrix}=(16) \\
A^{4} &= \begin{bmatrix}
2 & 1 \\
0 & 1
\end{bmatrix}^{4}\begin{bmatrix}
16 & 15 \\
0 & 1
\end{bmatrix}=(32) \\
x &= 2^{2013+1} \\
\hline
B^{2} &= \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix}^{2}=\begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix}=(2) \\
B^{3} &= \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix}^{3}=\begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix}=(2) \\
y &= 2 \\
\hline
C^{2} &= \begin{bmatrix}
2 & 1 \\
0 & 0
\end{bmatrix}^{2}=\begin{bmatrix}
4 & 2 \\
0 & 0
\end{bmatrix}=(6) \\
C^{3} &= \begin{bmatrix}
2 & 1 \\
0 & 0
\end{bmatrix}^{3}=\begin{bmatrix}
8 & 4 \\
0 & 0
\end{bmatrix}=(12) \\
C^{4} &= \begin{bmatrix}
2 & 1 \\
0 & 0
\end{bmatrix}^{4}=\begin{bmatrix}
16 & 8 \\
0 & 0
\end{bmatrix}=(24) \\
z &= 2^{2013-1} \cdot 3 \\
\hline
D^{2} &= \begin{bmatrix}
2 & 0 \\
0 & 1
\end{bmatrix}^{2}=\begin{bmatrix}
4 & 0 \\
0 & 1
\end{bmatrix}=(5) \\
D^{3} &= \begin{bmatrix}
2 & 0 \\
0 & 1
\end{bmatrix}^{3}=\begin{bmatrix}
8 & 0 \\
0 & 1
\end{bmatrix}=(9) \\
D^{4} &= \begin{bmatrix}
2 & 0 \\
0 & 1
\end{bmatrix}^{4}=\begin{bmatrix}
16 & 0 \\
0 & 1
\end{bmatrix}=(17) \\
w &= 2^{2013}+1 \\
\end{align}$
Dari nilai $x=2^{2014},\ y=2,\ z=3 \cdot 2^{2012},\ \text{dan}\ w=1+2^{2013}$ yang kita peroleh di atas, maka dapat kita simpulkan:
- $(1)\ w-1=y^{2013}$ Benar
- $(2)\ z=3y^{2012}$ Benar
- $(3)\ 4z=3x$ Benar
- $(4)\ 2w-x=2$ Benar
$\therefore$ Pilihan yang sesuai adalah $(E)\ (1),\ (2),\ (3),\ (4),\ \text{BENAR}$
22. Soal UM UNPAD 2009
Apabila transpose dari matriks $X=\left ( \begin{matrix} 2008 & 2009 \\ x & y \end{matrix} \right )$ sama dengan invers dari $X$, maka nilai dari determinan $X$ yang mungkin adalah...
$\begin{align}
(A)\ & 1\ \text{atau}\ -1 \\ (B)\ & \sqrt{2}\ \text{atau}\ -\sqrt{2} \\ (C)\ & \sqrt{3}\ \text{atau}\ 1 \\ (D)\ & \sqrt{2}\ \text{atau}\ -1 \\ (E)\ & 0\ \text{atau}\ \sqrt{3} \\ \end{align}$
Show
$\begin{align}
X &= \left ( \begin{matrix} 2008 & 2009 \\ x & y \end{matrix} \right ) \\
\left| X \right| &= 2008y-2009x
\end{align}$
Seperti yang disampaikan pada soal bahwa jika matriks $X$ kita transpose-kan akan sama dengan invers matriks $X$ atau dapat kita tuliskan menjadi $X^{t}=X^{-1}$.
Berdasarkan sifat determinan matriks $ \left| A^{t} \right| = \left| A \right|$ dan $ \left| A^{-1} \right| = \dfrac{1}{\left| A \right|}$ dapat kita simpulkan:
$\begin{align}
X^{-1} &= X^{T} \\
\left| X^{-1} \right| &= \left| X^{T} \right| \\
\dfrac{1}{\left| X \right|} &= \left| X \right| \\
\dfrac{1}{\left( 2008y-2009x \right)} &= \left( 2008y-2009x \right) \\
1 &= \left( 2008y-2009x \right)^{2} \\
\pm 1 &= 2008y-2009x \\
\pm 1 &= \left| X \right|
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(A)\ 1\ \text{atau}\ -1$
23. Soal UM STIS 2011 (*Soal Lengkap)
Matriks $B$ adalah invers matriks $A$, matriks $D$ adalah invers matriks $C$ dan $A \cdot B \cdot C=D$, maka yang merupakan matriks identitas $(I)$ adalah...
$\begin{align}
(A)\ & A^{2} \\ (B)\ & B^{2} \\ (C)\ & C^{2} \\ (D)\ & D^{2} \\ (E)\ & A \cdot C^{2}
\end{align}$
Show
Catatan calon guru tentang invers matriks dapat membantu;
- $ (A^{-1})^{-1} = A $
- $ A^{-1} . A = A.A^{-1} = I $
- $ AB = I \, $ artinya A dan B saling invers yaitu $ A^{-1} = B \, $ dan $ B^{-1} = A $
- $ (AB)^{-1} = B^{-1} . A^{-1} $
- $ B= A^{-1}$ maka $ B^{-1}=A$
- $ D= C^{-1}$ maka $ D^{-1}=C$
A \cdot B \cdot C & =D \\ A \cdot A^{-1} \cdot C & = C^{-1} \\ I \cdot C & = C^{-1} \\ C & = C^{-1} \\ C \cdot C & = C^{-1} \cdot C\\ C^{2} &= I
\end{align}$
$\begin{align}
A \cdot B \cdot C & =D \\ B^{-1} \cdot B \cdot C & = D \\ I \cdot D^{-1} & = D \\ D^{-1} & = D \\ D^{-1} \cdot D & = D \cdot D\\ I & = D^{2} \\ \end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ C^{2}$ atau $(D)\ D^{2}$
24. Soal UM STIS 2011 (*Soal Lengkap)
Jika $\begin{pmatrix}
a-b & -b \\ 0 & 1
\end{pmatrix}^{-1}=\begin{pmatrix}
a & 1 \\ -a+2b & 1
\end{pmatrix}$ maka $ab=\cdots$
$\begin{align}
(A)\ & 2 \\ (B)\ & 1 \\ (C)\ & -\dfrac{1}{2} \\ (D)\ & -1 \\ (E)\ & -4
\end{align}$
Show
Catatan calon guru tentang invers matriks $2 \times 2$ berikut ini mungkin membantu;
Misalkan matriks $ A = \left( \begin{matrix} a & b \\ c & d \end{matrix} \right) $
$det(A) = |A| = $$ a \times d - b\times c $
invers matriks $A$ adalah $ A^{-1} = \frac{1}{|A|} \left( \begin{matrix} d & -b \\ -c & a \end{matrix} \right) $
$\begin{align}
\begin{pmatrix}
a-b & -b \\
0 & 1
\end{pmatrix}^{-1} & =\begin{pmatrix}
a & 1 \\
-a+2b & 1
\end{pmatrix} \\
\dfrac{1}{(a-b)-0} \begin{pmatrix}
1 & b \\
0 & a-b
\end{pmatrix} & =\begin{pmatrix}
a & 1 \\
-a+2b & 1
\end{pmatrix} \\
\begin{pmatrix}
\dfrac{1}{ a-b } & \dfrac{b}{ a-b } \\
0 & 1
\end{pmatrix} & =\begin{pmatrix}
a & 1 \\
-a+2b & 1
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh:
- $-a+2b=0$ sehingga $a=2b$
- $\dfrac{1}{ a-b }=a$ sehingga $\dfrac{1}{ 2b-b }=a$
$\dfrac{1}{ b }=a$
$1=ab$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 1$
25. Soal UM STIS 2011 (*Soal Lengkap)
Jika matriks $M$ berordo $2 \times 2$ sehingga $M \begin{pmatrix}
1 \\ -1
\end{pmatrix} =\begin{pmatrix}
-1 \\ 5
\end{pmatrix}$ dan $M \begin{pmatrix}
2 \\ 1
\end{pmatrix} =\begin{pmatrix}
4 \\ 7
\end{pmatrix}$ maka $M^{2}=\cdots$
$\begin{align}
(A)\ & \begin{pmatrix}
1 & 2 \\ 4 & -1
\end{pmatrix} \\ (B)\ & \begin{pmatrix}
9 & 0 \\ 0 & 9
\end{pmatrix} \\ (C)\ & \begin{pmatrix}
9 & 0 \\ 0 & 7
\end{pmatrix} \\ (D)\ & \begin{pmatrix}
7 & 0 \\ 0 & 9
\end{pmatrix} \\ (E)\ & \begin{pmatrix}
7 & 0 \\ 0 & 7
\end{pmatrix}
\end{align}$
Show
$ \begin{align}
AB & = \left( \begin{matrix} a & b \\ c & d \end{matrix} \right) \left( \begin{matrix} e & f \\ g & h \end{matrix} \right) \\
& = \left( \begin{matrix} \text{baris 1 } \times \text{ kolom 1} & \text{baris 1 } \times \text{ kolom 2} \\ \text{baris 2 } \times \text{ kolom 1} & \text{baris 2 } \times \text{ kolom 2}\end{matrix} \right) \\
& = \left( \begin{matrix} a.e+b.g & a.f + b.h \\ c.e + d.g & c.f + d.h \end{matrix} \right)
\end{align} $
Kita coba dengan memisalkan matriks $M=\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}$
$\begin{align}
M \begin{pmatrix}
1 \\
-1
\end{pmatrix} & =\begin{pmatrix}
-1 \\
5
\end{pmatrix} \\
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix} \begin{pmatrix}
1 \\
-1
\end{pmatrix} & =\begin{pmatrix}
-1 \\
5
\end{pmatrix} \\
\begin{pmatrix}
a-b \\
c-d
\end{pmatrix} & =\begin{pmatrix}
-1 \\
5
\end{pmatrix} \\
\hline
M \begin{pmatrix}
2 \\
1
\end{pmatrix} & =\begin{pmatrix}
4 \\
7
\end{pmatrix} \\
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix} \begin{pmatrix}
2 \\
1
\end{pmatrix} & =\begin{pmatrix}
4 \\
7
\end{pmatrix} \\
\begin{pmatrix}
2a+b \\
2c+d
\end{pmatrix} & =\begin{pmatrix}
4 \\
7
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh;
$\begin{array}{c|c|cc}
a-b = -1 & c-d = 5 & \\
2a+b = 4 & 2c+d = 7 & + \\
\hline
3a = 3 & 3c = 12 \\
a = 1 & c = 4 \\
b = 2 & d = -1
\end{array} $
$M=\begin{pmatrix}
1 & 2 \\
4 & -1
\end{pmatrix}$ maka $M^{2}=\begin{pmatrix}
9 & 0 \\
0 & 9
\end{pmatrix}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ \begin{pmatrix}
9 & 0 \\
0 & 9
\end{pmatrix}$
26. Soal UM STIS 2011 (*Soal Lengkap)
Diketahui matriks $A =\begin{pmatrix}
2 & 4 \\ 2b & 3c
\end{pmatrix}$ dan $B=\begin{pmatrix}
2c-3b & 2a+1 \\ a & b+7
\end{pmatrix}$. Jika $B^{T}$ adalah transpose dari matriks $B$, maka nilai $c$ yang memenuhi $A=2B^{T}$ adalah...
$\begin{align}
(A)\ & 2 \\ (B)\ & 3 \\ (C)\ & 5 \\ (D)\ & 8 \\ (E)\ & 10
\end{align}$
Show
Jika $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ maka $A^{T} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$
$\begin{align}
A & = 2B^{T} \\
\begin{pmatrix}
2 & 4 \\
2b & 3c
\end{pmatrix} & = 2 \begin{pmatrix}
2c-3b & a \\
2a+1 & b+7
\end{pmatrix} \\
\begin{pmatrix}
2 & 4 \\
2b & 3c
\end{pmatrix} & = \begin{pmatrix}
4c-6b & 2a \\
4a+2 & 2b+14
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh;
- $2= 4c-6b$
- $4=2a$ maka $a=2$
- $2b=4a+2$ maka $2b=8+2 $, $b=5$
- $3c=2b+14$ maka $3c=10+14$, $c=8$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 8$
27. Soal UNBK Matematika IPA 2019 (*Soal Lengkap)
Diketahui persamaan matriks $\begin{pmatrix}
a & b\\ 1 & 3
\end{pmatrix}\begin{pmatrix}
2 & 1\\ 4 & -2
\end{pmatrix}=\begin{pmatrix}
8 & 12\\ 14 & -5
\end{pmatrix}$. Nilai $2a-b=\cdots$
$\begin{align}
(A)\ & 18 \\ (B)\ & 16 \\ (C)\ & 14 \\ (D)\ & 10 \\ (E)\ & 6
\end{align}$
Show
Berdasarkan informasi pada soal perkalian matriks di atas, maka berlaku:
$\begin{align}
\begin{pmatrix}
a & b\\
1 & 3
\end{pmatrix}\begin{pmatrix}
2 & 1\\
4 & -2
\end{pmatrix} &= \begin{pmatrix}
8 & 12\\
14 & -5
\end{pmatrix} \\
\begin{pmatrix}
2a+4b & a-2b\\
2+12 & 1-6
\end{pmatrix} &= \begin{pmatrix}
8 & 12\\
14 & -5
\end{pmatrix}
\end{align} $
$\begin{array}{c|c|cc}
2a+4b = 8 & \times 1 \\
a-2b = 12 & \times 2 \\
\hline
2a+4b = 8 & \\
2a-4b = 24 & (+)\\
\hline
4a=32 \\
a=8 \\
b=-2
\end{array} $
Nilai $2a-b=2(8)-(-2)=18$
$\therefore$ Pilihan yang sesuai adalah $(A)\ 18$
28. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui matriks $B=\begin{pmatrix}
1 & -4\\ 5 & -2
\end{pmatrix}$ dan berlaku persamaan $A^{2}+B=\begin{pmatrix}
3 & -2\\ 4 & -1
\end{pmatrix}$. Determinan matriks $A^{4}$ adalah...
$\begin{align}
(A)\ & 1 \\ (B)\ & 2 \\ (C)\ & 4 \\ (D)\ & 16 \\ (E)\ & 81
\end{align}$
Show
Berdasarkan informasi pada penjumlahan matriks soal di atas, maka berlaku:
$\begin{align}
A^{2}+B &=\begin{pmatrix}
3 & -2\\
4 & -1
\end{pmatrix} \\
A^{2} &=\begin{pmatrix}
3 & -2\\
4 & -1
\end{pmatrix}-B \\
A^{2} &=\begin{pmatrix}
3 & -2\\
4 & -1
\end{pmatrix}-\begin{pmatrix}
1 & -4\\
5 & -2
\end{pmatrix}\\
A^{2} &=\begin{pmatrix}
3-1 & -2+4\\
4-5 & -1+2
\end{pmatrix} \\
A^{2} &=\begin{pmatrix}
2 & 2 \\
-1 & 1
\end{pmatrix} \\
\left| A^{2} \right| &=(2)(1)-(-1)(2)=4 \\
\end{align} $
Dengan mengunakan sifat determinan matriks $\left| A^{n} \right| = \left | A \right | ^{n}$ maka:
$\begin{align}
\left| A^{4} \right| &= \left| A^{2} \right|^{2} \\
&= 4^{2} =16
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(D)\ 16$
29. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui matriks $A$ berukuran $2 \times 2$ dan $B=\begin{pmatrix}
-1 & 3\\ 0 & 2
\end{pmatrix}$. Jika $B-A=\begin{pmatrix}
2 & -1\\ 1 & 0
\end{pmatrix}$ maka $det \left( 2A^{-1} \right)$ adalah...
$\begin{align}
(A)\ & -4 \\ (B)\ & -2 \\ (C)\ & -1 \\ (D)\ & 1 \\ (E)\ & 2
\end{align}$
Show
Berdasarkan informasi pada pengurangan matriks soal di atas, maka berlaku:
$\begin{align}
B-A &=\begin{pmatrix}
2 & -1\\
1 & 0
\end{pmatrix} \\
B-\begin{pmatrix}
2 & -1\\
1 & 0
\end{pmatrix} &= A \\
\begin{pmatrix}
-1 & 3\\
0 & 2
\end{pmatrix}-\begin{pmatrix}
2 & -1\\
1 & 0
\end{pmatrix} &= A \\
\begin{pmatrix}
-1-2 & 3-(-1)\\
0-1 & 2-0
\end{pmatrix} &= A \\
\begin{pmatrix}
-3 & 4 \\
-1 & 2
\end{pmatrix} &= A \\
(-3)(2)-(-1)(4) &= \left| A \right| \\
-2 &= \left| A \right|
\end{align} $
Dengan mengunakan sifat determinan matriks $\left| A^{-1} \right| = \dfrac{1}{\left | A \right |}$ dan $ |k \times A_{m\times m}| = k^m \times |A| $maka:
$\begin{align}
\left| 2 A^{-1} \right| &= 2^{2} \cdot \left| A^{-1} \right| \\
&= 2^{2} \cdot \dfrac{1}{\left | A \right |} \\
&= 4 \cdot \dfrac{1}{-2} \\
&= -2
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(B)\ -2$
30. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui matriks $A$ berordo $2 \times 2$ dan matriks $B=\begin{pmatrix}
-3 & 5\\ -1 & 2
\end{pmatrix}$ dan $C=\begin{pmatrix}
4 & 5\\ 2 & 3
\end{pmatrix}$. Jika $A$ memenuhi $B \cdot A=C$ maka determinan dari $\left( 2A^{-1} \right)$ adalah...
$\begin{align}
(A)\ & -2 \\ (B)\ & -1 \\ (C)\ & -\dfrac{1}{2} \\ (D)\ & \dfrac{1}{2} \\ (E)\ & 2
\end{align}$
Show
Berdasarkan informasi pada perkalian matriks soal di atas dan menggunakan sifat determinan matriks yaitu $ \left|A \cdot B \right| = \left|A \right| \cdot \left| B \right|$ dan $ |k \times A_{m\times m}| = k^m \times |A|$, maka berlaku:
$\begin{align}
\left|B \right| &= \begin{vmatrix}
-3 & 5\\
-1 & 2
\end{vmatrix} \\
&= (-3)(2)-(-1)(5)=-1 \\
\left|C \right| &= \begin{vmatrix}
4 & 5\\
2 & 3
\end{vmatrix} \\
&= (4)(3)-(5)(2)=2 \\
\hline
B \cdot A &=C \\
\left|B \cdot A \right| &= \left| C \right| \\
\left|B \right| \cdot \left| A \right| &= \left| C \right| \\
-1 \cdot \left| A \right| &= 2 \\
\left| A \right| &= -2 \\
\hline
\left| 2 A^{-1} \right| &= 2^{2} \cdot \left| A^{-1} \right| \\
&= 2^{2} \cdot \dfrac{1}{\left | A \right |} \\
&= 4 \cdot \dfrac{1}{-2} \\
&= -2
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(A)\ -2$
31. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui matriks $B=\begin{pmatrix}
2 & -1\\ -3 & 2
\end{pmatrix}$ dan $C=\begin{pmatrix}
-7 & 2\\ 0 & 4
\end{pmatrix}$. Jika matriks $A$ berukuran $2 \times 2$ dan memenuhi persamaan $A^{3}+B=C$, maka determinan matriks $3 A^{-1}$ adalah...
$\begin{align}
(A)\ & -3 \\ (B)\ & -2 \\ (C)\ & -1 \\ (D)\ & 1 \\ (E)\ & 2
\end{align}$
Show
Berdasarkan informasi pada penjumlahan matriks soal di atas dan menggunakan sifat determinan matriks yaitu $ |k \times A_{m\times m}| = k^m \times |A|$, maka berlaku:
$\begin{align}
A^{3}+B &= C \\
A^{3} &= C-B \\
&= \begin{pmatrix}
-7 & 2\\
0 & 4
\end{pmatrix} - \begin{pmatrix}
2 & -1\\
-3 & 2
\end{pmatrix} \\
&= \begin{pmatrix}
-7-2 & 2-(-1)\\
0+3 & 4-2
\end{pmatrix} \\
&= \begin{pmatrix}
-9 & 3 \\
3 & 2
\end{pmatrix} \\
\hline
\left| A^{3} \right| &= (-9)(2)-(3)(3) \\
\left| A \right|^{3} &= -27 \\
\left| A \right| &= -3 \\
\hline
\left| 3 A^{-1} \right| &= 3^{2} \cdot \left| A^{-1} \right| \\
&= 9 \cdot \dfrac{1}{-3} \\
&= -3
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(A)\ -3$
32. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui matriks $A=\begin{pmatrix}
2 & 1\\ 3 & 5
\end{pmatrix}$ mempunyai hubungan dengan matriks $B=\begin{pmatrix}
-5 & 3\\ 1 & -2
\end{pmatrix}$. Matriks $C=\begin{pmatrix}
3 & 2\\ 1 & -5
\end{pmatrix}$ dan matriks $D$ mempunyai hubungan yang serupa dengan $A$ dan $B$. Bentuk $C+D=\cdots$
$\begin{align}
(A)\ & \begin{pmatrix}
8 & 3\\ 3 & -8
\end{pmatrix} \\ (B)\ & \begin{pmatrix}
8 & 3\\ 3 & -2
\end{pmatrix} \\ (C)\ & \begin{pmatrix}
5 & 1\\ 2 & -3
\end{pmatrix} \\ (D)\ & \begin{pmatrix}
3 & -2\\ -1 & -5
\end{pmatrix} \\ (E)\ & \begin{pmatrix}
-3 & 2\\ 1 & 5
\end{pmatrix}
\end{align}$
Show
Hubungan matriks:
$\begin{align}
A & \Leftrightarrow B \\
\begin{pmatrix}
2 & 1\\
3 & 5
\end{pmatrix} & \Leftrightarrow \begin{pmatrix}
-5 & 3\\
1 & -2
\end{pmatrix}
\end{align} $
Jika kita perhatikan hubungan kedua matriks di atas adalah unsur-unsur pada diagonal utama bertukar tempat lalu dikalikan dengan $-1$ dan unsur-unsur pada diagonal samping bertukar tempat.
$\begin{align}
C & \Leftrightarrow D \\
\begin{pmatrix}
3 & 2\\
1 & -5
\end{pmatrix} & \Leftrightarrow \begin{pmatrix}
5 & 1\\
2 & -3
\end{pmatrix}\\
\hline
C + D &=
\begin{pmatrix}
3 & 2\\
1 & -5
\end{pmatrix}+\begin{pmatrix}
5 & 1\\
2 & -3
\end{pmatrix}\\
&=
\begin{pmatrix}
8 & 3\\
3 & -8
\end{pmatrix}
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(A)\ \begin{pmatrix}
8 & 3\\
3 & -8
\end{pmatrix}$
33. Soal UNBK Matematika IPS 2019 (*Soal Lengkap)
Suatu perusahaan konveksi memproduksi tiga model pakaian. Lama waktu pemotongan, penjahitan, dan finishing setiap potong pakaian disajikan dalam tabel berikut.
Lama Waktu Potong Jahit Finishing Model A 0,1 0,3 0,1 Model B 0,1 0,2 0,2 Model C 0,3 0,4 0,1 Jumlah waktu yang tersedia di bagian pemotongan, penjahitan dan finishing disajikan dalam tabel berikut.
Pemotongan 68 Penjahitan 116 FinishingB 51 Jika banyak model pakaian yang akan diproduksi untuk model $A,\ B,\ \text{dan}\ C$ berturut-turut $x,\ y,\ \text{dan}\ z$, persamaan matriks yang sesuai untuk masalah tersebut adalah...
$ \begin{align}
(A)\ & \begin{pmatrix}
1 & 3 & 1\\ 1 & 2 & 2 \\ 3 & 4 & 1
\end{pmatrix}\begin{pmatrix}
x & y & z
\end{pmatrix}=\begin{pmatrix}
680 \\ 1160 \\ 510
\end{pmatrix} \\ (B)\ & \begin{pmatrix}
1 & 3 & 1\\ 1 & 2 & 2 \\ 3 & 4 & 1
\end{pmatrix}\begin{pmatrix}
x & y & z
\end{pmatrix}=\begin{pmatrix}
680 & 1160 & 510
\end{pmatrix} \\ (C)\ & \begin{pmatrix}
1 & 3 & 1\\ 1 & 2 & 2 \\ 3 & 4 & 1
\end{pmatrix}\begin{pmatrix}
x \\ y \\ z
\end{pmatrix}=\begin{pmatrix}
68 \\ 116 \\ 51
\end{pmatrix} \\ (D)\ & \begin{pmatrix}
1 & 1 & 3\\ 3 & 2 & 4 \\ 1 & 2 & 1
\end{pmatrix}\begin{pmatrix}
x \\ y \\ z
\end{pmatrix}=\begin{pmatrix}
680 \\ 1160 \\ 510
\end{pmatrix} \\ (E)\ & \begin{pmatrix}
1 & 3 & 1\\ 1 & 2 & 2 \\ 3 & 4 & 1
\end{pmatrix}\begin{pmatrix}
x \\ y \\ z
\end{pmatrix}=\begin{pmatrix}
680 \\ 1160 \\ 510
\end{pmatrix} \\ \end{align}$
Show
Jika tabel pada soal kita gabungkan kurang lebih seperti berikut ini:
Lama Waktu | Potong | Jahit | Finishing |
Model A $(x)$ | 0,1 | 0,3 | 0,1 |
Model B $(y)$ | 0,1 | 0,2 | 0,2 |
Model C $(z)$ | 0,3 | 0,4 | 0,1 |
Total Waktu | 68 | 116 | 51 |
- Waktu Pemotongan $0,1x+0,1y+0,3z=68$
$ x+ y+3z=680$ - Waktu Penjahitan $0,3x+0,2y+0,4z=116$
$ 3x+ 2y+ 4z=1160$ - Waktu Finishing $0,1x+0,2y+0,1z=116$
$ x+ 2y+ z=510$
$\begin{pmatrix}
1 & 1 & 3\\ 3 & 2 & 4 \\ 1 & 2 & 1
\end{pmatrix}\begin{pmatrix}
x \\ y \\ z
\end{pmatrix}=\begin{pmatrix}
680 \\ 1160 \\ 510
\end{pmatrix}$
Untuk membuktikan penulisan matriks di atas benar atau salah dapat dicoba dengan mencoba mengalikan matriks.
$\therefore$ Pilihan yang sesuai adalah $(D)\ \begin{pmatrix}
1 & 1 & 3\\
3 & 2 & 4 \\
1 & 2 & 1
\end{pmatrix}\begin{pmatrix}
x \\ y \\ z
\end{pmatrix}=\begin{pmatrix}
680 \\
1160 \\
510
\end{pmatrix}$
34. Soal UNBK Matematika IPS 2019 (*Soal Lengkap)
Diketahui matriks $A=\begin{pmatrix}
4 & -2 \\ 1 & 5
\end{pmatrix}$, $B=\begin{pmatrix}
3 & 7 \\ -2 & -4
\end{pmatrix}$ dan $C=\begin{pmatrix}
7 & -9 \\ 10 & -2
\end{pmatrix}$ memenuhi persamaan $X=A+2B-C^{T}$, dengan $C^{T}$ merupakan transpose matriks $C$. Invers matriks $X$ adalah...
$ \begin{align}
(A)\ & -\dfrac{1}{15} \begin{pmatrix}
-1 & 2 \\ -6 & 3
\end{pmatrix} \\ (B)\ & -\dfrac{1}{15} \begin{pmatrix}
-1 & -6 \\ -2 & 3
\end{pmatrix} \\ (C)\ & \dfrac{1}{15} \begin{pmatrix}
1 & 2 \\ 6 & -3
\end{pmatrix} \\ (D)\ & \dfrac{1}{15} \begin{pmatrix}
1 & -2 \\ 6 & 3
\end{pmatrix} \\ (E)\ & \dfrac{1}{15} \begin{pmatrix}
1 & -2 \\ -6 & -3
\end{pmatrix} \\ \end{align}$
Show
$ \begin{align}
X = & A+2B-C^{T} \\
= & \begin{pmatrix}
4 & -2 \\
1 & 5
\end{pmatrix}+2\begin{pmatrix}
3 & 7 \\
-2 & -4
\end{pmatrix}-\begin{pmatrix}
7 & 10 \\
-9 & -2
\end{pmatrix} \\
= & \begin{pmatrix}
4 & -2 \\
1 & 5
\end{pmatrix}+\begin{pmatrix}
6 & 14 \\
-4 & -8
\end{pmatrix}-\begin{pmatrix}
7 & 10 \\
-9 & -2
\end{pmatrix} \\
= & \begin{pmatrix}
4+6-7 & -2+14-10 \\
1-4+9 & 5-8+2
\end{pmatrix} \\
= & \begin{pmatrix}
3 & 2 \\
6 & -1
\end{pmatrix}
\end{align}$
$ \begin{align}
X^{-1} = & \dfrac{1}{(3)(-1)-(-2)(-6)} \begin{pmatrix}
-1 & -2 \\
-6 & 3
\end{pmatrix} \\
= & \dfrac{1}{-3-12} \begin{pmatrix}
-1 & -2 \\
-6 & 3
\end{pmatrix} \\
= & -\dfrac{1}{15} \begin{pmatrix}
-1 & -2 \\
-6 & 3
\end{pmatrix}
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ -\dfrac{1}{15} \begin{pmatrix}
-1 & -6 \\
-2 & 3
\end{pmatrix}$
35. Soal UNBK Matematika IPS 2019 (*Soal Lengkap)
Diketahui matriks $A=\begin{pmatrix}
4x-y & -2 \\ z & 4
\end{pmatrix}$, $B=\begin{pmatrix}
2 & y+2 \\ 1 & z-x
\end{pmatrix}$ dan $C=\begin{pmatrix}
4 & 8 \\ -10 & 10
\end{pmatrix}$ dan $C^{T}$ adalah transpose matriks $C$. Jika $3A-B=C^{T}$, nilai dari $-3x+y+5z$ adalah...
$ \begin{align}
(A)\ & 8 \\ (B)\ & 10 \\ (C)\ & 14 \\ (D)\ & 16 \\ (E)\ & 20 \\ \end{align}$
Show
$ \begin{align}
C^{T} = & 3A-B \\
\begin{pmatrix}
4 & -10 \\
8 & 10
\end{pmatrix} = & 3\begin{pmatrix}
4x-y & -2 \\
z & 4
\end{pmatrix}-\begin{pmatrix}
2 & y+2 \\
1 & z-x
\end{pmatrix} \\
\begin{pmatrix}
4 & -10 \\
8 & 10
\end{pmatrix} = & \begin{pmatrix}
12x-3y & -6 \\
3z & 12
\end{pmatrix}-\begin{pmatrix}
2 & y+2 \\
1 & z-x
\end{pmatrix} \\
\begin{pmatrix}
4 & -10 \\
8 & 10
\end{pmatrix} = & \begin{pmatrix}
12x-3y-2 & -6-y-2 \\
3z-1 & 12-z+x
\end{pmatrix}
\end{align}$
Dari kesamaan dua matrks di atas kita peroleh:
- $-6-y-2=-10$ sehingga $y=2$
- $3z-1=8$ sehingga $z=3$
- $12-z+x=10$ sehingga $x=1$
- Nilai $-3x+y+5z$ adalah $-3(1)+(2)+5(3)=-3+2+15=14$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 14$
36. Soal Matematika Dasar SIMAK UI 2019 Kode 539 (*Soal Lengkap)
Diketahui $A=\begin{pmatrix}
1 & 2\\ 2 & 1
\end{pmatrix}$ dan $B=\begin{pmatrix}
-1 & 2\\ 1 & 1
\end{pmatrix}$. Jika $A+tB$ merupakan matriks singular, nilai $t^{2}+3t+2$ adalah...
$\begin{align}
(A)\ & 0 \\ (B)\ & 1 \\ (C)\ & 2 \\ (D)\ & 3 \\ (E)\ & 5
\end{align}$
Show
$ \begin{align}
A+tB &= \begin{pmatrix}
1 & 2\\
2 & 1
\end{pmatrix}+t\begin{pmatrix}
-1 & 2\\
1 & 1
\end{pmatrix} \\
&= \begin{pmatrix}
1 & 2\\
2 & 1
\end{pmatrix}+ \begin{pmatrix}
-t & 2t\\
t & t
\end{pmatrix} \\
&= \begin{pmatrix}
1-t & 2+2t\\
2+t & 1+t
\end{pmatrix} \\
0&= \begin{vmatrix}
1-t & 2+2t\\
2+t & 1+t
\end{vmatrix} \\
0&= \left( 1-t^{2}\right)-\left(4+6t+2t^{2}\right) \\
0&= -3t^{2}-6t-3 \\
0&= t^{2}+2t+1 \\
0&= \left(t+1 \right)^{2} \\
& t=-1 \\
t^{2}+3t+2 &= (-1)^{2}+3(-1)+2 \\
&= 0 \\
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(A)\ 0$
37. Soal UM UGM 2004 (*Soal Lengkap)
Jika $M$ matriks berordo $2 \times 2$ dan $M\ \begin{pmatrix} 2 & 1\\ 4 & 3 \end{pmatrix}=\begin{pmatrix} -2 & 1\\ 14 & 10 \end{pmatrix}$, maka matriks $M^{2}$ adalah...
$\begin{align} (A)\ & \begin{pmatrix} 3 & 2\\ 1 & 5 \end{pmatrix} \\ (B)\ & \begin{pmatrix} 9 & 4\\ 1 & 25 \end{pmatrix} \\ (C)\ & \begin{pmatrix} 27 & -4\\ -2 & 11 \end{pmatrix} \\ (D)\ & \begin{pmatrix} 25 & -4\\ -2 & 15 \end{pmatrix} \\ (E)\ & \begin{pmatrix} 27 & -8 \\ -4 & 15 \end{pmatrix} \\ \end{align}$
Show
Dengan menggunakan sifat matriks $A \cdot B=C$ maka $A=C \cdot B^{-1}$, maka kita peroleh:
$\begin{align}
M\ \begin{pmatrix}
2 & 1\\
4 & 3
\end{pmatrix} &= \begin{pmatrix}
-2 & 1\\
14 & 10
\end{pmatrix} \\
M\ &= \begin{pmatrix}
-2 & 1\\
14 & 10
\end{pmatrix} \cdot \begin{pmatrix}
2 & 1\\
4 & 3
\end{pmatrix}^{-1} \\
M\ &= \begin{pmatrix}
-2 & 1\\
14 & 10
\end{pmatrix} \cdot \dfrac{1}{(2)(3)-(4)(1)} \cdot \begin{pmatrix}
3 & -1 \\
-4 & 2
\end{pmatrix} \\
M\ &= \dfrac{1}{2} \cdot \begin{pmatrix}
-2 & 1\\
14 & 10
\end{pmatrix} \begin{pmatrix}
3 & -1 \\
-4 & 2
\end{pmatrix} \\
M\ &= \dfrac{1}{2} \cdot \begin{pmatrix}
(-2)(3)+(1)(-4) & (-2)(-1)+(1)(2)\\
(14)(3)+(10)(-4) & (14)(-1)+(10)(2)
\end{pmatrix} \\
M\ &= \dfrac{1}{2} \cdot \begin{pmatrix}
-10 & 4 \\
2 & 6
\end{pmatrix} \\
M\ &= \begin{pmatrix}
-5 & 2 \\
1 & 3
\end{pmatrix} \\
M^{2}\ &= \begin{pmatrix}
-5 & 2 \\
1 & 3
\end{pmatrix}\begin{pmatrix}
-5 & 2 \\
1 & 3
\end{pmatrix} \\
&= \begin{pmatrix}
(-5)(-5)+(2)(1) & (-5)(2)+(2)(3)\\
(1)(-5)+(3)(1) & (1)(2)+(3)(3)
\end{pmatrix} \\
&= \begin{pmatrix}
27 & -4 \\
-2 & 11
\end{pmatrix}
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ \begin{pmatrix}
27 & -4\\
-2 & 11
\end{pmatrix}$
38. Soal UM UGM 2004 (*Soal Lengkap)
Hasil kali matriks $A\ \begin{pmatrix} 5 & -3\\ 0 & 6 \end{pmatrix}=\begin{pmatrix} -10 & 30\\ 35 & -27 \end{pmatrix}$. Matriks $A$ adalah...
$\begin{align} (A)\ & \begin{pmatrix} -1 & -1\\ 4 & 7 \end{pmatrix} \\ (B)\ & \begin{pmatrix} -2 & 4\\ 7 & -1 \end{pmatrix} \\ (C)\ & \begin{pmatrix} 4 & -2\\ 7 & -1 \end{pmatrix} \\ (D)\ & \begin{pmatrix} 7 & 2\\ -1 & 4 \end{pmatrix} \\ (E)\ & \begin{pmatrix} 7 & 2 \\ 4 & -1 \end{pmatrix} \\ \end{align}$
Show
Dengan menggunakan sifat matriks $A \cdot B=C$ maka $A=C \cdot B^{-1}$, maka kita peroleh:
$\begin{align}
A\ \begin{pmatrix}
5 & -3\\
0 & 6
\end{pmatrix} &= \begin{pmatrix}
-10 & 30\\
35 & -27
\end{pmatrix} \\
A\ &= \begin{pmatrix}
-10 & 30\\
35 & -27
\end{pmatrix} \begin{pmatrix}
5 & -3 \\
0 & 6
\end{pmatrix}^{-1} \\
A\ &= \begin{pmatrix}
-10 & 30\\
35 & -27
\end{pmatrix} \cdot \dfrac{1}{(5)(6)-(0)(-3)}\begin{pmatrix}
6 & 3 \\
0 & 5
\end{pmatrix} \\
A\ &= \dfrac{1}{30} \cdot \begin{pmatrix}
-10 & 30\\
35 & -27
\end{pmatrix} \begin{pmatrix}
6 & 3 \\
0 & 5
\end{pmatrix} \\
A\ &= \dfrac{1}{30} \cdot \begin{pmatrix}
(-10)(6)+(30)(0) & (-10)(3)+(30)(5)\\
(35)(6)+(-27)(0) & (35)(3)+(-27)(5)
\end{pmatrix} \\
A\ &= \dfrac{1}{30} \cdot \begin{pmatrix}
-60 & 120 \\
210 & -30
\end{pmatrix} \\
A\ &= \begin{pmatrix}
-2 & 4 \\
7 & -1
\end{pmatrix}
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ \begin{pmatrix}
-2 & 4\\
7 & -1
\end{pmatrix}$
39. Soal SPMB 2007 Kode 741 (*Soal Lengkap)
Jika matriks $X$ memenuhi $\begin{pmatrix} 2 & 3\\ 1 & 0 \end{pmatrix}\ X=\begin{pmatrix} 2 & 1\\ 0 & 3 \end{pmatrix}$. maka invers dari matriks $X$ adalah $X^{-1}=\cdots$
$\begin{align} (A)\ & \begin{pmatrix} 4 & 2\\ 2 & 1 \end{pmatrix} \\ (B)\ & \begin{pmatrix} 5 & 6\\ 3 & 0 \end{pmatrix} \\ (C)\ & \begin{pmatrix} 1 & 6\\ \frac{1}{2} & -\frac{1}{6} \end{pmatrix} \\ (D)\ & \begin{pmatrix} -1 & 0\\ -\frac{2}{3} & \frac{2}{3} \end{pmatrix} \\ (E)\ & \begin{pmatrix} \frac{5}{6} & 1\frac{1}{2} \\ \frac{1}{3} & 0 \end{pmatrix} \\ \end{align}$
Show
Dengan menggunakan sifat matriks $A \cdot B=C$ maka $B=A^{-1} \cdot C$, maka kita peroleh:
$\begin{align}
\begin{pmatrix}
2 & 3\\
1 & 0
\end{pmatrix}\ X &= \begin{pmatrix}
2 & 1\\
0 & 3
\end{pmatrix} \\
X &= \begin{pmatrix}
2 & 3\\
1 & 0
\end{pmatrix}^{-1} \cdot \begin{pmatrix}
2 & 1\\
0 & 3
\end{pmatrix} \\
X &= \begin{pmatrix}
2 & 3\\
1 & 0
\end{pmatrix}^{-1} \cdot \begin{pmatrix}
2 & 1\\
0 & 3
\end{pmatrix} \\
X &= \dfrac{1}{(2)(0)+(1)(3)} \cdot \begin{pmatrix}
0 & -3\\
-1 & 2
\end{pmatrix} \cdot \begin{pmatrix}
2 & 1\\
0 & 3
\end{pmatrix} \\
X &= \dfrac{1}{3} \cdot \begin{pmatrix}
(0)(2)+(-3)(0) & (0)(1)+(-3)(3)\\
(-1)(2)+(2)(0) & (-1)(1)+(2)(3)
\end{pmatrix} \\
X &= \dfrac{1}{3} \cdot \begin{pmatrix}
0 & -9 \\
-2 & -5
\end{pmatrix} \\
X &= \begin{pmatrix}
0 & -3 \\
-\frac{2}{3} & -\frac{5}{3}
\end{pmatrix} \\
X^{-1} &= \dfrac{1}{2} \cdot \begin{pmatrix}
-\frac{5}{3} & 3 \\
\frac{2}{3} & 0
\end{pmatrix} \\
&= \begin{pmatrix}
-\frac{5}{6} & \frac{3}{2} \\
\frac{1}{3} & 0
\end{pmatrix} \\
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(E)\ \begin{pmatrix}
\frac{5}{6} & 1\frac{1}{2} \\
\frac{1}{3} & 0
\end{pmatrix}$
40. Soal UM UGM 2004 (*Soal Lengkap)
Jika $\begin{pmatrix} -1 & 2 & 0 \\ 3 & -1 & 2 \end{pmatrix} \begin{pmatrix} -1 & 1\\ 1 & 0 \\ 2 & 1 \end{pmatrix}+\begin{pmatrix} p & q \\ r & s \end{pmatrix}=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, maka $p+q+r+s=\cdots$
$\begin{align} (A)\ & -5 \\ (B)\ & -4 \\ (C)\ & 3 \\ (D)\ & 4 \\ (E)\ & 5 \end{align}$
Show
Dengan menggunakan aturan perkalian matriks dapat kita peroleh:
$\begin{align}
\begin{pmatrix}
-1 & 2 & 0 \\
3 & -1 & 2
\end{pmatrix} \begin{pmatrix}
-1 & 1\\
1 & 0 \\
2 & 1
\end{pmatrix}+\begin{pmatrix}
p & q \\
r & s
\end{pmatrix} &= \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \\
\begin{pmatrix}
1+2+0 & -1+0+0 \\
-3-1+4 & 3+0+2
\end{pmatrix} + \begin{pmatrix}
p & q \\
r & s
\end{pmatrix} &= \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \\
\begin{pmatrix}
3 & -1 \\
0 & 5
\end{pmatrix} + \begin{pmatrix}
p & q \\
r & s
\end{pmatrix} &= \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \\
\begin{pmatrix}
p & q \\
r & s
\end{pmatrix} &= \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}-\begin{pmatrix}
3 & -1 \\
0 & 5
\end{pmatrix} \\
\begin{pmatrix}
p & q \\
r & s
\end{pmatrix} &= \begin{pmatrix}
-2 & 1 \\
0 & -4
\end{pmatrix}
\end{align}$
Nilai $p+q+r+s$ adalah $-2+1+0-4=-5$.
$\therefore$ Pilihan yang sesuai adalah $(A)\ -5$
41. Soal SIMAK UI 2009 kode 921 (*Soal Lengkap)
Jika $B=\begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix}$ dan $\left(BA^{-1} \right)^{-1} =\begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$, maka matriks $A=\cdots$
$\begin{align} (A)\ & \begin{bmatrix} 4 & -1 \\ 6 & -1 \end{bmatrix} \\ (B)\ & \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \\ (C)\ & \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \\ (D)\ & \begin{bmatrix} 4 & 5 \\ 10 & 13 \end{bmatrix} \\ (E)\ & \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -2 & 1 \end{bmatrix} \end{align}$
Show
Dengan bantuan sifat invers matriks $\left( A \cdot B \right)^{-1}=B^{-1} \cdot A^{-1}$ dan $\left( A^{-1} \right)^{-1}=A$ dapat kita peroleh:
$\begin{align} \left(BA^{-1} \right)^{-1} &= \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix} \\ \left(A^{-1} \right)^{-1} \cdot B^{-1} &= \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix} \\ A \cdot B^{-1} &= \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix} \\ A \cdot B^{-1} \cdot B &= \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix} \cdot B \\ A &= \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix} \cdot \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix} \\ A &= \begin{bmatrix} (2)(3)+(1)(-2) & (2)(-1)+(1)(1) \\ (4)(3)+(3)(-2) & (4)(-1)+(3)(1) \end{bmatrix} \\ &= \begin{bmatrix} 4 & -1 \\ 6 & -1 \end{bmatrix} \end{align}$
$\therefore$ Pilihan yang sesuai adalah $(A)\ \begin{bmatrix} 4 & -1 \\ 6 & -1 \end{bmatrix}$
42. Soal SIMAK UI 2010 kode 205 (*Soal Lengkap)
Diketahui $AX=B$, $BC=D$. Jika $A=\begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}$, $C=\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$, $D=\begin{bmatrix} 7 & 2 \\ 5 & 1 \end{bmatrix}$, maka $X$ adalah...
$\begin{align} (A)\ & \begin{bmatrix} 2 & 1 \\ 41 & -19 \end{bmatrix} \\ (B)\ & \begin{bmatrix} 33 & 54 \\ 19 & 31 \end{bmatrix} \\ (C)\ & \begin{bmatrix} -33 & 19 \\ 54 & -31 \end{bmatrix} \\ (D)\ & \begin{bmatrix} -33 & 54 \\ 19 & -31 \end{bmatrix} \\ (E)\ & \begin{bmatrix} -41 & -2 \\ 19 & 1 \end{bmatrix} \end{align}$
Show
Dengan bantuan sifat matriks $ A \cdot B =C$ maka $A=C \cdot B^{-1}$ dapat kita peroleh:
$\begin{align} AX &= B \\ AX &= D \cdot C^{-1} \\ X &= A^{-1} \cdot D \cdot C^{-1} \\ &= \dfrac{1}{ (-5)-(-6)} \cdot \begin{bmatrix} -5 & -2 \\ 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 7 & 2 \\ 5 & 1 \end{bmatrix} \cdot \dfrac{1}{(3)-(2)} \cdot \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} \\ &= \begin{bmatrix} -5 & -2 \\ 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 7 & 2 \\ 5 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} \\ &= \begin{bmatrix} (-5)(7)+(-2)(5) & (-5)(2)+(-2)(1) \\ (3)(7)+(1)(5) & (3)(2)+(1)(1) \end{bmatrix} \cdot \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} \\ &= \begin{bmatrix} -45 & -12 \\ 26 & 7 \end{bmatrix} \cdot \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} \\ &= \begin{bmatrix} -33 & 54 \\ 19 & -31 \end{bmatrix} \\ \end{align}$
$\therefore$ Pilihan yang sesuai adalah $(D)\ \begin{bmatrix} -33 & 54 \\ 19 & -31 \end{bmatrix}$
43. Soal SIMAK UI 2012 kode 223 (*Soal Lengkap)
Jika persamaan matriks $D^{-1}B^{-1}-D^{-1}C^{-1}=A$, $A \neq 0$, maka pernyataan tersebut setara dengan...
$\begin{align} (1)\ & BD=CD \\ (2)\ & B=C \\ (3)\ & ABD=ACD \\ (4)\ & B^{-1}-C^{-1}=DA \end{align}$
Show
Dengan bantuan sifat distributif dan $ A \cdot A^{-1} =I$ dapat kita peroleh:
$\begin{align} D^{-1}B^{-1}-D^{-1}C^{-1} &= A \\ D^{-1} \left( B^{-1}- C^{-1} \right) &= A \\ D \cdot D^{-1} \left( B^{-1}- C^{-1} \right) &= D \cdot A \\ I \cdot \left( B^{-1}- C^{-1} \right) &= D \cdot A \\ B^{-1}- C^{-1} &= D \cdot A \\ \end{align}$
$\therefore$ Pilihan yang sesuai adalah $(D)\ (4)\ B^{-1}-C^{-1}=DA$
44. Soal SNMPTN 2010 Kode 326 (*Soal Lengkap)
Jika $M$ adalah matriks sehingga
$M \times \begin{pmatrix} a & b\\ c & d \end{pmatrix}=\begin{pmatrix} a & b \\ a-c & b-d \end{pmatrix}$
maka determinan matriks $M$ adalah...
$\begin{align} (A)\ & -3 \\ (B)\ & -1 \\ (C)\ & 0 \\ (D)\ & 1 \\ (E)\ & 3 \end{align}$
Show
Sebagai catatan beberapa sifat determinan matriks:
- $AB=C\ \rightarrow \left| A \right| \left| B \right|= \left| C \right| $
- $\left| A^{T} \right| = \left| A \right| $
- $\left| A^{-1} \right| = \dfrac{1}{\left| A \right|} $
Dengan menggunakan beberapa sifat determinan matriks di atas pada soal, dapat kita peroleh:
$\begin{align}
M \times \begin{pmatrix}
a & b\\
c & d
\end{pmatrix} &= \begin{pmatrix}
a & b \\
a-c & b-d
\end{pmatrix} \\
\left| M \right| \times \begin{vmatrix}
a & b\\
c & d
\end{vmatrix}\ &= \begin{vmatrix}
a & b \\
a-c & b-d
\end{vmatrix} \\
\left| M \right| \times \left( ad-bc \right) &= \left( (ab-bd)-(ab-bc) \right) \\
\left| M \right| &= \dfrac{\left( ab-bd-ab+bc \right)}{\left( ad-bc \right)} \\
&= \dfrac{\left( -bd +bc \right)}{\left( ad-bc \right)} \\
&= \dfrac{-\left( bd-bc \right)}{\left( ad-bc \right)} \\
&= -1
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(A)\ -1$
45. Soal SNMPTN 2010 Kode 774 (*Soal Lengkap)
Jika $M$ adalah matriks sehingga
$M \times \begin{pmatrix} a & b\\ c & d \end{pmatrix}=\begin{pmatrix} a+c & b+d \\ -c & -d \end{pmatrix}$
maka determinan matriks $M$ adalah...
$\begin{align} (A)\ & -2 \\ (B)\ & -1 \\ (C)\ & 0 \\ (D)\ & 1 \\ (E)\ & 2 \end{align}$
Show
Sebagai catatan beberapa sifat determinan matriks:
- $AB=C\ \rightarrow \left| A \right| \left| B \right|= \left| C \right| $
- $\left| A^{T} \right| = \left| A \right| $
- $\left| A^{-1} \right| = \dfrac{1}{\left| A \right|} $
Dengan menggunakan beberapa sifat determinan matriks di atas pada soal, dapat kita peroleh:
$\begin{align}
M \times \begin{pmatrix}
a & b\\
c & d
\end{pmatrix} &= \begin{pmatrix}
a+c & b+d \\
-c & -d
\end{pmatrix} \\
\left| M \right| \times \begin{vmatrix}
a & b\\
c & d
\end{vmatrix}\ &= \begin{vmatrix}
a+c & b+d \\
-c & -d
\end{vmatrix} \\
\left| M \right| \times \left( ad-bc \right) &= \left( (-ad-cd)-(-bc-cd) \right) \\
\left| M \right| &= \dfrac{\left( -ad-cd+bc+cd \right)}{\left( ad-bc \right)} \\
&= \dfrac{\left( -ad +bc \right)}{\left( ad-bc \right)} \\
&= \dfrac{-\left( ad-bc \right)}{\left( ad-bc \right)} \\
&= -1
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(A)\ -1$
46. Soal SPMB 2004 Regional I (*Soal Lengkap)
Jika matriks $A=\begin{pmatrix} a & 1-a\\ 0 & 1 \end{pmatrix}$ dan $A^{-1}=\begin{pmatrix} 2 & b \\ 0 & 1 \end{pmatrix}$ maka nilai $b$ adalah...
$\begin{align} (A)\ & -1 \\ (B)\ & -\dfrac{1}{2} \\ (C)\ & 0 \\ (D)\ & \dfrac{1}{2} \\ (E)\ & 1 \end{align}$
Show
Kita ketahui bahwa untuk matriks $A=\begin{pmatrix} a & b\\ c & d \end{pmatrix}$ maka invers matriks $A$ adalah $A^{-1}=\dfrac{1}{ad-bc} \begin{pmatrix} d & -b\\ -c & a \end{pmatrix}$, maka dapat kita tuliskan:
$\begin{align} A &= \begin{pmatrix} a & 1-a \\ 0 & 1 \end{pmatrix} \\ A^{-1} &=\dfrac{1}{(a)(1)-(1-a)(0)} \begin{pmatrix} 1 & -1+a\\ 0 & a \end{pmatrix} \\ &=\dfrac{1}{a} \begin{pmatrix} 1 & -1+a\\ 0 & a \end{pmatrix} \\ \begin{pmatrix} 2 & b \\ 0 & 1 \end{pmatrix} &=\begin{pmatrix} \frac{1}{a} & \frac{-1+a}{a}\\ 0 & 1 \end{pmatrix} \end{align}$
dari kesamaan dua matriks di atas kita peroleh:
- $\dfrac{1}{a}=2$ sehingga $a=\dfrac{1}{2}$
- $\dfrac{-1+a}{a}=b$ sehingga $b=\dfrac{-1+\frac{1}{2}}{\frac{1}{2}}=-1$
$\therefore$ Pilihan yang sesuai adalah $(A)\ -1$
47. Soal SPMB 2004 Regional III (*Soal Lengkap)
Jika matriks $A=\begin{pmatrix} 2 & 1 \\ -2 & 3 \end{pmatrix}$, $B=\begin{pmatrix} a \\ 1 \end{pmatrix}$, dan $C=\begin{pmatrix} 11 \\ 1-4b \end{pmatrix}$ memenuhi $AB=C$, maka $\left| a-b \right|=\cdots$
$\begin{align} (A)\ & 2 \\ (B)\ & 3 \\ (C)\ & 4 \\ (D)\ & 5 \\ (E)\ & 6 \end{align}$
Show
Dengan menggunakan aturan perkalian pada matriks karena $AB=C$, maka dapat kita peroleh:
$\begin{align} AB &= C \\ \begin{pmatrix} 2 & 1 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix} &=\begin{pmatrix} 11 \\ 1-4b \end{pmatrix} \\ \begin{pmatrix} (2)(a)+(1)(1) \\ (-2)(a)+(3)(1) \end{pmatrix} &=\begin{pmatrix} 11 \\ 1-4b \end{pmatrix} \\ \begin{pmatrix} 2a+1 \\ -2a+ 3 \end{pmatrix} &=\begin{pmatrix} 11 \\ 1-4b \end{pmatrix} \end{align}$
dari kesamaan dua matriks di atas kita peroleh:
- $2a+1=11$ sehingga $a= 5$
- $-2a+3=1-4b$ sehingga $ b=\dfrac{2a-2}{4}=\dfrac{8}{4}=2$
- $\left| a-b \right|=\left| 5-2 \right|=3$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 3$
48. Soal SPMB 2004 Regional III (*Soal Lengkap)
Transpos dari matriks $P$ adalah $P^{T}$. Jika matriks $A=\begin{pmatrix} 3 & 7 \\ 1 & 2 \end{pmatrix}$, $B=\begin{pmatrix} 4 \\ 1 \end{pmatrix}$, dan $C=\begin{pmatrix} x \\ y \end{pmatrix}$ memenuhi $A^{-1}B^{T}=C$, maka $x+y=\cdots$
$\begin{align} (A)\ & -2 \\ (B)\ & -1 \\ (C)\ & 0 \\ (D)\ & 1 \\ (E)\ & 2 \end{align}$
Show
Dengan menggunakan aturan invers matriks dan perkalian pada matriks, maka dapat kita peroleh:
$\begin{align} A^{-1}B^{T} &= C \\ \begin{pmatrix} 3 & 7 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 4 & 1 \end{pmatrix}^{T} &=\begin{pmatrix} x \\ y \end{pmatrix} \\ \dfrac{1}{(2)(3)-(1)(7)}\begin{pmatrix} 2 & -7 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} &=\begin{pmatrix} x \\ y \end{pmatrix} \\ \dfrac{1}{-1}\begin{pmatrix} (2)(4)+(-7)(1) \\ (-1)(4)+(3)(1) \end{pmatrix} &=\begin{pmatrix} x \\ y \end{pmatrix} \\ \dfrac{1}{-1}\begin{pmatrix} 1 \\ -1 \end{pmatrix} &=\begin{pmatrix} x \\ y \end{pmatrix} \\ \end{align}$
dari kesamaan dua matriks di atas kita peroleh $x=-1$ dan $y=1$ sehingga $x+y=0$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 0$
49. Soal UM UGM 2004 (*Soal Lengkap)
Jika $I$ matriks satuan dan matriks $A=\begin{pmatrix} 2 & 1 \\ -4 & 3 \end{pmatrix}$ sehingga $A^{2}=pA+qI$ maka $p+q$ sama dengan...
$\begin{align} (A)\ & 15 \\ (B)\ & 10 \\ (C)\ & 5 \\ (D)\ & -5 \\ (E)\ & -10 \end{align}$
Show
Dengan menggunakan aturan perkalian matriks dapat kita peroleh:
$\begin{align}
A^{2} &= pA+qI \\
\begin{pmatrix}
2 & 1 \\
-4 & 3
\end{pmatrix} \begin{pmatrix}
2 & 1 \\
-4 & 3
\end{pmatrix} &= p\begin{pmatrix}
2 & 1 \\
-4 & 3
\end{pmatrix}+q\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \\
\begin{pmatrix}
(2)(2)+(1)(-4) & (2)(1)+(1)(3) \\
(-4)(2)+(3)(-4) & (-4)(1)+(3)(3)
\end{pmatrix} &= \begin{pmatrix}
2p & p \\
-4p & 3p
\end{pmatrix}+\begin{pmatrix}
q & 0 \\
0 & q
\end{pmatrix} \\
\begin{pmatrix}
0 & 5 \\
-20 & 5
\end{pmatrix} &= \begin{pmatrix}
2p+q & p \\
-4p & 3p+q
\end{pmatrix} \\
\end{align}$
dari kesamaan dua matriks di atas kita peroleh:
- $p=5$
- $2p+q=0$ sehingga $q=-2p=-10$
- $p+q=5-10=-5$
$\therefore$ Pilihan yang sesuai adalah $(D)\ -5$
50. Soal UM UGM 2004 (*Soal Lengkap)
Bila $A=\begin{pmatrix} sin^{2}x & -cos\ x \\ \sqrt{3}sin\ x & 1 \end{pmatrix}$, $0 \lt x \lt \frac{\pi}{2}$ dan determinan $A$ sama dengan $1$ maka $x$ adalah...
$\begin{align} (A)\ & 0 \\ (B)\ & \dfrac{\pi}{6} \\ (C)\ & \dfrac{\pi}{4} \\ (D)\ & \dfrac{\pi}{3} \\ (E)\ & \dfrac{\pi}{6}\ \text{dan} \dfrac{\pi}{2} \\ \end{align}$
Show
Elemen matriks $A$ mengandung unsur trigonometri sehingga catatan trigonometri sudut istimewa dan bentuk $sin^{2}x+cos^{2}x=1$ akan kita perlukan.
$\begin{align} \left| A \right| &= 1 \\ \begin{vmatrix} sin^{2}x & -cos\ x \\ \sqrt{3}sin\ x & 1 \end{vmatrix} &= 1 \\ sin^{2}x+\sqrt{3}sin\ x\ cos\ x &= 1 \\ sin^{2}x+\sqrt{3}sin\ x\ cos\ x &= sin^{2}x+cos^{2}x \\ \sqrt{3}sin\ x\ cos\ x &= cos^{2}x \\ \sqrt{3}sin\ x &= cos\ x \\ \dfrac{sin\ x}{cos\ x} &= \dfrac{1}{\sqrt{3}} \\ tan\ x &= \dfrac{1}{\sqrt{3}} \\ x &= \dfrac{\pi}{6} \\ \end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ \dfrac{\pi}{6}$
51. Soal SPMB 2005 Regional III (*Soal Lengkap)
Jika $det \begin{pmatrix} x & -3 \\ 1 & 2x \end{pmatrix}=det \begin{pmatrix} x & 1 \\ 3 & 8 \end{pmatrix}$, maka $x=\cdots$
$\begin{align} (A)\ & 1\ \text{atau}\ 2 \\ (B)\ & 1\ \text{atau}\ 3 \\ (C)\ & 2\ \text{atau}\ 3 \\ (D)\ & -1\ \text{atau}\ 2 \\ (E)\ & -2\ \text{atau}\ 3 \end{align}$
Show
Dengan menggunakan aturan determinan matriks maka dapat kita peroleh:
$\begin{align} det \begin{pmatrix} x & -3 \\ 1 & 2x \end{pmatrix} &= det \begin{pmatrix} x & 1 \\ 3 & 8 \end{pmatrix} \\ \begin{vmatrix} x & -3 \\ 1 & 2x \end{pmatrix} &= \begin{vmatrix} x & 1 \\ 3 & 8 \end{pmatrix} \\ 2x^{2}+3 &= 8x-3 \\ 2x^{2}-8x+6 &= 0 \\ 2(x-3)(x-1) &= 0 \\ x=3\ text{atau}\ x=1 & \end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 1\ \text{atau}\ 3$
51. Soal SPMB 2005 Regional III (*Soal Lengkap)
Jika $det \begin{pmatrix} x & -3 \\ 1 & 2x \end{pmatrix}=det \begin{pmatrix} x & 1 \\ 3 & 8 \end{pmatrix}$, maka $x=\cdots$
$\begin{align} (A)\ & 1\ \text{atau}\ 2 \\ (B)\ & 1\ \text{atau}\ 3 \\ (C)\ & 2\ \text{atau}\ 3 \\ (D)\ & -1\ \text{atau}\ 2 \\ (E)\ & -2\ \text{atau}\ 3 \end{align}$
Show
Dengan menggunakan aturan determinan matriks maka dapat kita peroleh:
$\begin{align} det \begin{pmatrix} x & -3 \\ 1 & 2x \end{pmatrix} &= det \begin{pmatrix} x & 1 \\ 3 & 8 \end{pmatrix} \\ \begin{vmatrix} x & -3 \\ 1 & 2x \end{vmatrix} &= \begin{vmatrix} x & 1 \\ 3 & 8 \end{vmatrix} \\ 2x^{2}+3 &= 8x-3 \\ 2x^{2}-8x+6 &= 0 \\ 2(x-3)(x-1) &= 0 \\ x=3\ \text{atau}\ x=1 & \end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 1\ \text{atau}\ 3$
52. Soal SPMB 2005 Regional I (*Soal Lengkap)
Jika $x$ dan $y$ memenuhi persamaan matriks $ \begin{pmatrix} p & q \\ q & p \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}= \begin{pmatrix} p \\ q \end{pmatrix}$, $p \neq q$, $p \neq 0$, dan $q \neq 0$ maka $x+y=\cdots$
$\begin{align} (A)\ & -2 \\ (B)\ & -1 \\ (C)\ & 0 \\ (D)\ & 1 \\ (E)\ & 2 \end{align}$
Show
Dengan bantuan sifat matriks $ A \cdot B =C$ maka $B=A^{-1} \cdot C$ dapat kita peroleh:
$\begin{align} \begin{pmatrix} p & q \\ q & p \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} &= \begin{pmatrix} p \\ q \end{pmatrix} \\ \begin{pmatrix} x \\ y \end{pmatrix} &= \begin{pmatrix} p & q \\ q & p \end{pmatrix}^{-1} \begin{pmatrix} p \\ q \end{pmatrix} \\ \begin{pmatrix} x \\ y \end{pmatrix} &= \dfrac{1}{p^{2}-q^{2}} \cdot \begin{pmatrix} p & -q \\ -q & p \end{pmatrix} \cdot \begin{pmatrix} p \\ q \end{pmatrix} \\ \begin{pmatrix} x \\ y \end{pmatrix} &= \dfrac{1}{p^{2}-q^{2}} \cdot \begin{pmatrix} (p)(p)+(-q)(q) \\ (-q)(p)+(p)(q) \end{pmatrix} \\ \begin{pmatrix} x \\ y \end{pmatrix} &= \dfrac{1}{p^{2}-q^{2}} \cdot \begin{pmatrix} p^{2}-q^{2} \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{align}$
dari kesamaan dua matriks di atas kita peroleh $x=1$ dan $y=0$ sehingga $x+y=1$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 1$
53. Soal UM UGM 2005 Kode 621 (*Soal Lengkap)
Matriks $\begin{pmatrix} x & 1 \\ -2 & 1-x \end{pmatrix}$ tidak mempunyai invers untuk nilai $x=\cdots$
$\begin{align} (A)\ & -1\ \text{atau}\ -2 \\ (B)\ & -1\ \text{atau}\ 0 \\ (C)\ & -1\ \text{atau}\ 1 \\ (D)\ & -1\ \text{atau}\ 2 \\ (E)\ & 1\ \text{atau}\ 2 \end{align}$
Show
Dengan syarat sebuah matriks tidak mempunyai invers jika determinan sama dengan nol atau $\left| A \right| = 0$, maka dapat kita tuliskan.
$\begin{align} \begin{vmatrix} x & 1 \\ -2 & 1-x \end{vmatrix} & = 0 \\ (x)(1-x)-(1)(-2) & = 0 \\ x-x^{2}+2 & = 0 \\ x^{2}-x-2 & = 0 \\ \left(x-2 \right)\left(x+1 \right) & = 0 \\ x=2\ \text{atau}\ x=-1 & \\ \end{align}$
$\therefore$ Pilihan yang sesuai adalah $(D)\ -1\ \text{atau}\ 2$
54. Soal SPMB 2005 Regional II (*Soal Lengkap)
Agar matriks $ \begin{pmatrix} p-1 & p+q \\ p-q & p+1 \end{pmatrix}$, mempunyai invers, syaratnya adalah...
$\begin{align} (A)\ & p \neq 0 \\ (B)\ & q \neq 0 \\ (C)\ & pq \neq 0 \\ (D)\ & p \neq 1\ \text{dan}\ p \neq -1 \\ (E)\ & q \neq 1\ \text{dan}\ q \neq -1 \end{align}$
Show
Dengan syarat sebuah matriks mempunyai invers jika determinan tidak sama dengan nol atau $\left| A \right| \neq 0$, maka dapat kita tuliskan.
$\begin{align} \begin{vmatrix} p-1 & p+q \\ p-q & p+1 \end{vmatrix} & \neq 0 \\ (p-1)(p+1)-(p-q)(p+q) & \neq 0 \\ p^{2}-1- \left(p^{2}-q^{2} \right) & \neq 0 \\ p^{2}-1- p^{2}+q^{2} & \neq 0 \\ -1 +q^{2} & \neq 0 \\ q^{2}-1 & \neq 0 \\ \left( q+1 \right)\left(q-1 \right) & \neq 0 \\ q \neq -1\ \text{atau}\ q \neq 1 & \end{align}$
$\therefore$ Pilihan yang sesuai adalah $(E)\ q \neq 1\ \text{dan}\ q \neq -1$
55. Soal SPMB 2005 Kode 772 (Regional I) (*Soal Lengkap)
Jika sistem persamaan linear $\left\{\begin{matrix} 2x-3y=p \\ 3x+2y=q \end{matrix}\right.$ dan $x=\dfrac{a}{det \begin{pmatrix} 2 & -3\\ 3 & 2 \end{pmatrix}}$ maka $a=\cdots$
$\begin{align}
(A)\ & 2p+3q \\ (B)\ & 2p-3q \\ (C)\ & 3p+2q \\ (D)\ & 3p-2q \\ (E)\ & -3p+2q \end{align}$
Show
Untuk mendapatkan nilai $x$ dari sistem persamaan linear dua variabel di atas dapat kita gunakan eliminasi, maka kita peroleh:
$\begin{array}{c|c|cc}
2x-3y=p & (\times 2)\\
3x+2y=q & (\times 3) \\
\hline
4x-6y=2p & \\
9x+6y=3q & (+) \\
\hline
13x =2p+3q \\
x =\dfrac{2p+3q}{13}
\end{array} $
Nilai $x$ di atas kita substitusi ke persamaan yang diketahui pada soal, sehingga kita peroleh:
$\begin{align}
x &= \dfrac{a}{det \begin{pmatrix}
2 & -3\\
3 & 2
\end{pmatrix}} \\
\dfrac{2p+3q}{13} &= \dfrac{a}{4+9} \\
\hline
a & = 2p+3q
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(A)\ 2p+3q$
56. Soal SPMB 2005 Kode 171 (Regional III) (*Soal Lengkap)
Jika $P=\begin{pmatrix} 1+x & x \\ -x & 1-x \end{pmatrix}$ dan $P^{-1}$ adalah invers dari $P$, maka $\left(P^{-1} \right)^{2}$ sama dengan matriks
$\begin{align}
(A)\ & \begin{pmatrix} 1+2x & -2x \\ 2x & 1-2x \end{pmatrix} \\ (B)\ & \begin{pmatrix} 2x & 1-2x \\ 1+2x & -2x \end{pmatrix} \\ (C)\ & \begin{pmatrix} 1-2x & 2x \\ -2x & 1+2x \end{pmatrix} \\ (D)\ & \begin{pmatrix} 1+2x & 2x \\ -2x & 1-2x \end{pmatrix} \\ (E)\ & \begin{pmatrix} 1-2x & -2x \\ 2x & 1+2x \end{pmatrix} \end{align}$
Show
Kita ketahui bahwa untuk matriks $A=\begin{pmatrix} a & b\\ c & d \end{pmatrix}$ maka invers matriks $A$ adalah $A^{-1}=\dfrac{1}{ad-bc} \begin{pmatrix} d & -b\\ -c & a \end{pmatrix}$, maka dapat kita tuliskan:
$\begin{align} P &= \begin{pmatrix} 1+x & x \\ -x & 1-x \end{pmatrix} \\ P^{-1} &=\dfrac{1}{(1+x)(1-x)-(-x)(x)} \begin{pmatrix} 1-x & -x\\ x & 1+x \end{pmatrix} \\ &=\dfrac{1}{1} \begin{pmatrix} 1-x & -x\\ x & 1+x \end{pmatrix} \\ \left(P^{-1} \right)^{2} &= \begin{bmatrix} 1-x & -x\\ x & 1+x \end{bmatrix} \begin{bmatrix} 1-x & -x\\ x & 1+x \end{bmatrix} \\ &= \begin{bmatrix} (1-x)^{2}-x^{2} & (1-x)(-x)-x(1+x) \\ x(1-x) + x(1+x) & -x^{2}+(1+x)^{2} \end{bmatrix} \\ &= \begin{bmatrix} 1-2x+x^{2}-x^{2} & -x+x^{2}-x-x^{2} \\ x-x^{2} + x+x^{2} & -x^{2}+1^{2}+2x+x^{2} \end{bmatrix} \\ &= \begin{bmatrix} 1-2x & -2x \\ 2x & 1+2x \end{bmatrix} \end{align}$
$\therefore$ Pilihan yang sesuai adalah $(E)\ \begin{pmatrix} 1-2x & -2x \\ 2x & 1+2x \end{pmatrix}$
57. Soal UM UGM 2005 Kode 821 (*Soal Lengkap)
Jika $\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} sin\ \alpha & cos\ \alpha \\ -cos\ \alpha & sin\ \alpha \\ \end{pmatrix}=\begin{pmatrix} sin\ \alpha & cos\ \alpha \end{pmatrix} $ dan $\alpha$ suatu konstanta maka $x+y=\cdots$
$\begin{align} (A)\ & -2 \\ (B)\ & -1 \\ (C)\ & 0 \\ (D)\ & 1 \\ (E)\ & 2 \end{align}$
Show
Elemen matriks $A$ mengandung unsur trigonometri sehingga catatan identitas trigonomteri sedikit kita butuhkan salah satunya bentuk $sin^{2}x+cos^{2}x=1$.
Dari persamaan $\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} sin\ \alpha & cos\ \alpha \\ -cos\ \alpha & sin\ \alpha \\ \end{pmatrix} =\begin{pmatrix} sin\ \alpha & cos\ \alpha \end{pmatrix}$, dapat kita peroleh:
$\begin{align} \begin{pmatrix} x & y \end{pmatrix} &= \begin{pmatrix} sin\ \alpha & cos\ \alpha \end{pmatrix} \cdot \begin{pmatrix} sin\ \alpha & cos\ \alpha \\ -cos\ \alpha & sin\ \alpha \\ \end{pmatrix}^{-1}\\ &=\begin{pmatrix} sin\ \alpha & cos\ \alpha \end{pmatrix} \cdot \dfrac{1}{sin^{2}\alpha+cos^{2}\alpha} \cdot \begin{pmatrix} sin\ \alpha & -cos\ \alpha \\ -cos\ \alpha & sin\ \alpha \\ \end{pmatrix} \\ &=\begin{pmatrix} sin\ \alpha & cos\ \alpha \end{pmatrix} \cdot \dfrac{1}{1} \cdot \begin{pmatrix} sin\ \alpha & -cos\ \alpha \\ -cos\ \alpha & sin\ \alpha \end{pmatrix} \\ &=\begin{pmatrix} sin^{2} \alpha + cos^{2} \alpha & -sin\ \alpha\ cos\ \alpha + sin\ \alpha\ cos\ \alpha \end{pmatrix} \\ \begin{pmatrix} x & y \end{pmatrix} &=\begin{pmatrix} 1 & 0 \end{pmatrix} \end{align}$
dari kesamaan dua matriks di atas kita peroleh nilai $x+y=1+0=1$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 1$
58. Soal SPMB 2006 Kode 111 (Regional I) (*Soal Lengkap)
Jika konstanta $k$ memenuhi persamaan $ \begin{pmatrix} k & 1 \\ 1 & 0 \end{pmatrix}\begin{pmatrix} x-1 \\ y-1 \end{pmatrix}= \begin{pmatrix} 0 \\ k \end{pmatrix}$, maka $x+y=\cdots$
$\begin{align} (A)\ & \left( 2+k \right)\left( 1+k \right) \\ (B)\ & \left( 2-k \right)\left( 1+k \right) \\ (C)\ & \left( 2-k \right)\left( 1-k \right) \\ (D)\ & \left( 1+k \right)\left( 1-k \right) \\ (E)\ & \left( 1-k \right)\left( 2+k \right) \end{align}$
Show
Dengan bantuan sifat matriks $ A \cdot B =C$ maka $B=A^{-1} \cdot C$ dapat kita peroleh:
$\begin{align} \begin{pmatrix} k & 1 \\ 1 & 0 \end{pmatrix}\begin{pmatrix} x-1 \\ y-1 \end{pmatrix} &= \begin{pmatrix} 0 \\ k \end{pmatrix} \\ \begin{pmatrix} x \\ y \end{pmatrix} &= \begin{pmatrix} p & q \\ q & p \end{pmatrix}^{-1} \begin{pmatrix} p \\ q \end{pmatrix} \\ \begin{pmatrix} x-1 \\ y-1 \end{pmatrix} &= \begin{pmatrix} k & 1 \\ 1 & 0 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 0 \\ k \end{pmatrix} \\ \begin{pmatrix} x-1 \\ y-1 \end{pmatrix} &= \dfrac{1}{(k)(0)-(1)(1)} \cdot \begin{pmatrix} 0 & -k \\ -1 & k \end{pmatrix} \cdot \begin{pmatrix} 0 \\ k \end{pmatrix} \\ \begin{pmatrix} x-1 \\ y-1 \end{pmatrix} &= \dfrac{1}{-1} \cdot \begin{pmatrix} (0)(0)+(-1)(k) \\ (-1)(0)+(k)(k) \end{pmatrix} \\ \begin{pmatrix} x-1 \\ y-1 \end{pmatrix} &= -1 \cdot \begin{pmatrix} -k \\ k^{2} \end{pmatrix} \end{align}$
dari kesamaan dua matriks di atas kita peroleh:
- $x-1=k$ sehingga $x=k+1$
- $y-1=-k^{2}$ sehingga $y=1-k^{2}$
- $x+y$ adalah $-k^{2}+k+2=-(k-2)(k+1)$
$\therefore$ Pilihan yang sesuai adalah $(B)\ \left( 2-k \right)\left( 1+k \right)$
59. Soal SPMB 2006 Kode 411 (Regional I) (*Soal Lengkap)
Jika $A= \begin{pmatrix} a & b \\ b & x \end{pmatrix}$, $B= \begin{pmatrix} bx & a \\ b & x \end{pmatrix}$ maka jumlah kuadrat semua akar persamaan $det\ A=det\ B$ adalah...
$\begin{align} (A)\ & \left( \dfrac{a}{b} \right)^{2}-2\left( a-b \right) \\ (B)\ & \left( \dfrac{b}{a} \right)^{2}-2\left( a-b \right) \\ (C)\ & \left( \dfrac{a}{b} \right)^{2}-2\left( b-a \right) \\ (D)\ & \left( \dfrac{b}{a} \right)^{2}-2\left( b-a \right) \\ (E)\ & \dfrac{b}{a}-2\left( b-a \right) \end{align}$
Show
Untuk menyelesaikan soal di atas kita pinjam catatan persamaan kuadrat yaitu untuk $ax^{2}+bx+c=0$ yang akar-akarnya adalah $x_{1}$ dan $x_{2}$ maka berlaku:
- $ x_{1} + x_{2}=-\dfrac{b}{a}$
- $ x_{1} \cdot x_{2}= \dfrac{c}{a}$
- Jumlah kuadrat akar-akar adalah $x_{1}^{2}+x_{2}^{2}$
$\begin{align} det\ A &= det\ B \\ \begin{vmatrix} a & b \\ b & x \end{vmatrix} &= \begin{vmatrix} bx & a \\ b & x \end{vmatrix} \\ ax-b^{2} &= bx^{2}-ab \\ ax-b^{2}-bx^{2}+ab &= 0 \\ bx^{2}-ax+b^{2}-ab &= 0 \\ \hline x_{1}^{2}+x_{2}^{2} &= \left( x_{1}+x_{2} \right)^{2}-2x_{1}\cdot x_{2} \\ &= \left( \dfrac{a}{b} \right)^{2}-2 \left( \dfrac{b^{2}-ab}{b} \right) \\ &= \left( \dfrac{a}{b} \right)^{2}-2 \left( \dfrac{b (b-a)}{b} \right) \\ &= \left( \dfrac{a}{b} \right)^{2}-2 \left( (b-a) \right) \end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ \left( \dfrac{a}{b} \right)^{2}-2\left( b-a \right)$
60. Soal SPMB 2006 Kode 310 (Regional II) (*Soal Lengkap)
Jika $x=1$, $y=-1$, $z=2$ adalah solusi sistem persamaan linear $\begin{pmatrix} a & b & -3 \\ -2 & -b & c \\ a & 3 & -c \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ \end{pmatrix}=\begin{pmatrix} -3 \\ -1 \\ -3 \\ \end{pmatrix} $ maka nilai $a^{2}-bc=\cdots$
$\begin{align}
(A)\ & 1 \\ (B)\ & 2 \\ (C)\ & 3 \\ (D)\ & 4 \\ (E)\ & 5 \end{align}$
Show
Untuk mendapatkan nilai $x$ dari sistem persamaan linear tiga variabel di atas dapat kita gunakan eliminasi atau substitusi, maka kita peroleh:
$\begin{align} \begin{pmatrix} a & b & -3 \\ -2 & -b & c \\ a & 3 & -c \\ \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 2 \\ \end{pmatrix} &=\begin{pmatrix} -3 \\ -1 \\ -3 \\ \end{pmatrix} \\ \begin{pmatrix} a-b-6 \\ -2+b+2c \\ a-3-2c \\ \end{pmatrix} &=\begin{pmatrix} -3 \\ -1 \\ -3 \\ \end{pmatrix} \end{align}$
Dari kesamaan dua matriks di atas kita peroleh:
$\begin{array}{c|c|cc}
a-b-6=-3 & \\
-2+b+2c=-1 & \\
a-3-2c=-3 & \\
\hline
a-b= 3 & \cdots (1) \\
b+2c= 1 & \cdots (2) \\
a -2c=0 (+) & \cdots (3) \\
\hline
2a=4 & \\
a=2
\end{array} $
Untuk $a=2$ kita peroleh $b=-1$ dan $c=1$. Sehingga nilai $a^{2}-bc=(2)^{2}-(-1)(1)=5$
$\therefore$ Pilihan yang sesuai adalah $(E)\ 5$
61. Soal SPMB 2006 Kode 510 (Regional III) (*Soal Lengkap)
Jika $A=\begin{pmatrix} x+y & x \\ -1 & x-y \end{pmatrix}$ dan $B=\begin{pmatrix} 1 & \dfrac{1}{2}x \\ -2y & 3 \end{pmatrix}$ dimana $B$ adalah transpose dari matriks $A$, maka $x^{2}+\left( x+y \right)+\left( x y \right)+y^{2}=\cdots$
$\begin{align}
(A)\ & 1 \\ (B)\ & 2 \\ (C)\ & 3 \\ (D)\ & 4 \\ (E)\ & 5 \end{align}$
Show
Kita ketahui bahwa untuk matriks $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ maka transpose matriks $A$ adalah $A^{T}=\begin{pmatrix} a & c \\ b & d \end{pmatrix}$. Untuk matriks $A=\begin{pmatrix} x+y & x \\ -1 & x-y \end{pmatrix}$ maka $A^{T}=\begin{pmatrix} x+y & 1 \\ x & x-y \end{pmatrix}$.
$\begin{align} A^{T} &= B \\ \begin{pmatrix} x+y & 1 \\ x & x-y \end{pmatrix} &=\begin{pmatrix} 1 & \dfrac{1}{2}x \\ -2y & 3 \end{pmatrix} \end{align}$
Dari kesamaan dua matriks di atas kita peroleh:
- $-1=\dfrac{1}{2}x$ sehingga $x=2$
- $x=-2y$ sehingga $y=-1$
$\begin{align} & x^{2}+\left( x+y \right)+\left( x y \right)+y^{2} \\ & = \left( 2 \right)^{2}+\left( 2-1 \right)+\left( 2 \right)\left( -1 \right)+\left( -1 \right)^{2} \\ & = 4+1-2+1 \\ & =4 \end{align}$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 4$
62. Soal UM UGM 2006 Kode 381 (*Soal Lengkap)
Apabila $x$ dan $y$ memenuhi persamaan matriks $\begin{pmatrix} 1 & -2 \\ -1 & 3 \\ \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}=\begin{pmatrix} -1 \\ 2 \end{pmatrix} $ maka $x+y=\cdots$
$\begin{align} (A)\ & 1 \\ (B)\ & 2 \\ (C)\ & 3 \\ (D)\ & 4 \\ (E)\ & 5 \end{align}$
Show
Dengan bantuan sifat matriks $ A \cdot B =C$ maka $B=A^{-1} \cdot C$ dapat kita peroleh:
$\begin{align} \begin{pmatrix} 1 & -2 \\ -1 & 3 \\ \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} &=\begin{pmatrix} -1 \\ 2 \end{pmatrix} \\ \begin{pmatrix} x \\ y \end{pmatrix} &=\begin{pmatrix} 1 & -2 \\ -1 & 3 \\ \end{pmatrix}^{-1} \begin{pmatrix} -1 \\ 2 \end{pmatrix} \\ &=\dfrac{1}{(1)(3)-(-2)(-1)} \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} \\ &= \begin{pmatrix} (3)(-1)+(2)(2) \\ (1)(-1)+(1)(2) \end{pmatrix} \\ &= \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \end{align}$
dari kesamaan dua matriks di atas kita peroleh $x=1$ dan $y=1$ sehingga $x+y=2$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 2$
63. Soal SPMB 2007 Kode 341 (*Soal Lengkap)
Jika $A=\begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$ dan $B=\begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}$, maka determinan dari matriks $\left( A+B \right)^{2}$ adalah...
$\begin{align} (A)\ & -3 \\ (B)\ & -2 \\ (C)\ & 0 \\ (D)\ & 2 \\ (E)\ & 3 \end{align}$
Show
Dengan menggunakan aturan perkalian matriks dan determinan matriks $\left| A^{n} \right|=\left| A \right|^{n}$ dapat kita peroleh:
$\begin{align}
\left| \left( A+B \right)^{2} \right| &= \left| \left( \begin{pmatrix}
1 & 2 \\
4 & 3
\end{pmatrix}+\begin{pmatrix}
2 & 3 \\
0 & 1
\end{pmatrix} \right)^{2} \right| \\
&= \left| \begin{pmatrix}
3 & 5 \\
3 & 5
\end{pmatrix} ^{2} \right| \\
&= \left( \begin{vmatrix}
3 & 5 \\
3 & 5
\end{vmatrix} \right)^{2} \\
&= \left( 15-15 \right)^{2}=0
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 0$
64. Soal SPMB 2007 Kode 541 (*Soal Lengkap)
Pada matriks $A=\begin{pmatrix} 1 & a \\ b & c \end{pmatrix}$, jika bilangan positif $1,a,c$ membentuk barisan geometri berjumlah $13$ dan bilangan positif $1,b,c$ membentuk barisan aritmatika, maka $det\ A=\cdots$
$\begin{align} (A)\ & 17 \\ (B)\ & 6 \\ (C)\ & -1 \\ (D)\ & -6 \\ (E)\ & -22 \end{align}$
Show
Untuk menyelesaikan soal di atas, silahkan di simak catatan tentang Barisan Aritmetika dan Barisan Geometri.
- Dari barisan geometri $1,a,c$ berjumlah $13$ berlaku:
$\begin{align} u_{2}^{2} &= u_{1} \cdot u_{3} \\ a^{2} &= 1 \cdot c \\ a^{2} &= c \\ \hline 1+a+c &= 13 \\ c &= 12-a \\ \hline a^{2} &= 12-a \\ a^{2} +a -12 &= 0 \\ (a+4)(a-3) &= 0 \\ a=3 & \\ c=9 & \end{align}$ - Dari barisan aritmatika $1,b,c$ berlaku:
$\begin{align} 2u_{2} &= u_{1} + u_{3} \\ 2b &= 1 + c \\ 2b &= 1 + 9 \\ b &= 5 \end{align}$ - Determinan matriks $A=\begin{pmatrix} 1 & a \\ b & c \end{pmatrix}=\begin{pmatrix} 1 & 3 \\ 5 & 9 \end{pmatrix}$ adalah $9-15=-6$
$\therefore$ Pilihan yang sesuai adalah $(D)\ -6$
65. Soal SPMB 2007 Kode 441 (*Soal Lengkap)
Jika matriks $A=\begin{pmatrix} 2 & 0 \\ 4 & 1 \end{pmatrix}$ sehingga $A^{2}-2A+I$ adalah...
$\begin{align} (A)\ & \begin{pmatrix} 1 & 0 \\ 8 & 0 \end{pmatrix} \\ (B)\ & \begin{pmatrix} 1 & 0 \\ 4 & 0 \end{pmatrix} \\ (C)\ & \begin{pmatrix} 1 & 1 \\ 5 & 0 \end{pmatrix} \\ (D)\ & \begin{pmatrix} 1 & 1 \\ 13 & 1 \end{pmatrix} \\ (E)\ & \begin{pmatrix} 1 & 1 \\ 9 & 1 \end{pmatrix} \end{align}$
Show
Dengan menggunakan aturan perkalian matriks dapat kita peroleh:
$\begin{align}
&A^{2}-2A+I \\
&= \begin{pmatrix}
2 & 0 \\
4 & 1
\end{pmatrix}^{2}-2\begin{pmatrix}
2 & 0 \\
4 & 1
\end{pmatrix}+ \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \\
&= \begin{pmatrix}
(2)(2)+(0)(4) & (2)(0)+(0)(1) \\
(4)(2)+(1)(4) & (4)(0)+(1)(1)
\end{pmatrix}-\begin{pmatrix}
4 & 0 \\
8 & 2
\end{pmatrix}+ \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \\
&= \begin{pmatrix}
4 & 0 \\
12 & 1
\end{pmatrix}-\begin{pmatrix}
4 & 0 \\
8 & 2
\end{pmatrix}+ \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \\
&= \begin{pmatrix}
4-4+1 & 0 -0+0 \\
12-8+0 & 1-2+1
\end{pmatrix} \\
&= \begin{pmatrix}
1 & 0 \\
4 & 0
\end{pmatrix}
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ \begin{pmatrix} 1 & 0 \\ 4 & 0 \end{pmatrix}$
Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras
Beberapa dari 60+ Soal dan Pembahasan Matematika Dasar Matriks di atas adalah coretan kreatif siswa pada:
- lembar jawaban penilaian harian matematika,
- lembar jawaban penilaian akhir semester matematika,
- presentasi hasil diskusi matematika atau
- pembahasan quiz matematika di kelas.
Untuk segala sesuatu hal yang perlu kita diskusikan terkait 60+ Soal dan Pembahasan Matematika Dasar Matriks silahkan disampaikan 🙏 CMIIW😊.
Jangan Lupa Untuk Berbagi 🙏 Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊
Video pilihan khusus untuk Anda 💗 Belajar Mengenal dan Memahami Soal TPS (Tes Potensi Skolastik) UTBK SBMPTN 2019
