Skip to main content

Matematika Dasar Matriks (*Soal dan Pembahasan)

 Matematika Dasar Matriks (*Soal Dari Berbagai Sumber)Matematika Dasar yang akan kita diskusikan berikut adalah tentang Matriks. Sebelumnya kita sudah coba diskusikan tentang persamaan kuadrat, karena sedikit banyaknya nanti Matriks ini akan banyak menyinggung kepada persamaan kuadrat. Sehingga materi persamaan kuadrat sebelumnya sangat dibutuhkan untuk memantapkan soal-soal dan pembahasan tentang Matriks ini.

Beberapa sampel soal untuk dibahas yaitu dari soal-soal SBMPTN (Seleksi Bersama Masuk Perguruan Tinggi Negeri) atau SMMPTN (Seleksi Mandiri Masuk Perguruan Tinggi Negeri) dan UN (Ujian Nasional). Soal-soal dan pembahasan limit fungsi trigonometri ini masih jauh dari sempurna, jadi jika ada masukan yang sifatnya membangun silahkan disampaikan.

Catatan sederhana tentang beberapa aturan dasar pada Matriks;

1. Soal SIMAK UI tahun 2013 kode 333 (*Soal Lengkap)

Sebuah matriks dikatakan matriks ortogonal jika $A^{-1}=A^{T}$.
Jika diketahui $\begin{pmatrix}
a& \frac{2}{3}& \frac{2}{3}\\
\frac{2}{3}& b& \frac{1}{3}\\
-\frac{2}{3}& -\frac{1}{3}& c
\end{pmatrix}$ adalah matriks ortogonal,
$a^{2}+b^{2}+c^{2}=...$
$(A)\ -1$
$(B)\ 0$
$(C)\ \frac{1}{9}$
$(D)\ \frac{4}{9}$
$(E)\ 1$
Alternatif Pembahasan:

Seperti yang kita sampaikan diawal jika melihat soal, sekilas kita harus menghitung invers matriks $3\times3$ lalu kita samakan dengan transpose matriks sesuai dengan yang didefenisikan yaitu sebuah matriks dikatakan matriks ortogonal jika $A^{-1}=A^{T}$.

Tetapi untuk anak SMA, menentukan invers matriks $3\times3$ adalah masalah baru sehingga kita butuh sedikit eksplorasi. Kita mencari penyelesaian soal diatas dengan mengikuti defenisi matriks ortogonal yaitu $A^{-1}=A^{T}$ dan sedikit eksplorasi yang memberikan bentuk baru yang begitu indah.

Perubahan yang kita lakukan yaitu:
$A^{-1}=A^{T}$ (*kedua ruas kita kalikan dengan matriks A)
$A \times A^{-1}=A \times A^{T}$
$I=A \times A^{T}$

Matriks $A$ kita substitusi ke $A \times A^{T}=I$
Kita peroleh persamaan;
$\begin{pmatrix}
a& \frac{2}{3}& \frac{2}{3}\\
\frac{2}{3}& b& \frac{1}{3}\\
-\frac{2}{3}& -\frac{1}{3}& c
\end{pmatrix}\times \begin{pmatrix}
a& \frac{2}{3}& -\frac{2}{3}\\
\frac{2}{3}& b& -\frac{1}{3}\\
\frac{2}{3}& \frac{1}{3}& c
\end{pmatrix}=\begin{pmatrix}
1& 0& 0\\
0& 1& 0\\
0& 0& 1
\end{pmatrix}$

dari perkalian matriks diatas dapa kita peroleh persamaan sebagai berikut;
$a^{2}+\frac{4}{9}+\frac{4}{9}=1\cdot \cdot \cdot \left (pers. 1 \right )$
$\frac{4}{9}+b^{2}+\frac{1}{9}=1\cdot \cdot \cdot \left (pers. 2 \right )$
$\frac{4}{9}+\frac{1}{9}+c^{2}=1\cdot \cdot \cdot \left (pers. 3 \right )$

Apabila persamaan $\left (1 \right )$,$\left (2 \right )$, dan $\left (3 \right )$ kita jumlahkan,
maka akan kita peroleh persamaan berikut;
$a^{2}+b^{2}+c^{2}+\frac{18}{9}=3$
$a^{2}+b^{2}+c^{2}=1$

$\therefore$ Pilihan yang sesuai adalah $(E)\ 1$

2. Soal SIMAK UI tahun 2013 kode 333 (*Soal Lengkap)

Jika $A=\begin{pmatrix}
4&3\\
2&5
\end{pmatrix}$ dan $A^{2}-xA+yI=\begin{pmatrix}
0 &0 \\
0& 0
\end{pmatrix}$ maka $x+y=...$
$(A)\ 9$
$(B)\ 14$
$(C)\ 19$
$(D)\ 23$
$(E)\ 25$
Alternatif Pembahasan:

Untuk mencoba menyelesaikan masalah diatas, bisa kita lakukan dengan mengerjakan sedikit demi sedikit apa yang dibutuhkan,
$A^{2}=A\times A$
$A^{2}=\begin{pmatrix}
4&3\\
2&5
\end{pmatrix}\times \begin{pmatrix}
4&3\\
2&5
\end{pmatrix}$
$A^{2}=\begin{pmatrix}
22&27\\
18&31
\end{pmatrix}$
$xA=\begin{pmatrix}
4x&3x\\
2x&5x
\end{pmatrix}$
$yI=\begin{pmatrix}
y&0\\
0&y
\end{pmatrix}$

Apa yang sudah kita ketahui diatas kita substitusi ke persamaan
$A^{2}-xA+yI=\begin{pmatrix}
0 &0 \\
0& 0
\end{pmatrix}$

$\begin{pmatrix}
22&27\\
18&31
\end{pmatrix}-\begin{pmatrix}
4x&3x\\
2x&5x
\end{pmatrix}+\begin{pmatrix}
y&0\\
0&y
\end{pmatrix}=\begin{pmatrix}
0 &0 \\
0& 0
\end{pmatrix}$

Dari operasi matriks dan kesamaan matriks diatas, kita dapat beberapa persamaan, diantaranya:
$18-2x+0=0$
$18=2x$
$9=x$

$31-5x+y=0$
$31-45+y=0$
$-14+y=0$
$y=14$

Hasil akhir dari $x+y=23$

$\therefore$ Pilihan yang sesuai adalah $(D)\ 23$

3. Soal UNBK Matematika IPS 2018 (*Soal Lengkap)

Diketahui matriks $A=\begin{pmatrix}
3 & 0\\
2 & 0
\end{pmatrix}$; $B=\begin{pmatrix}
2 & 1\\
3 & 2
\end{pmatrix}$; dan $A+B=C$. Invers matriks $C$ adalah...
$(A)\ \begin{pmatrix}
\frac{2}{5} & -\frac{1}{5} \\
-1 & 1
\end{pmatrix}$
$(B)\ \begin{pmatrix}
1 & -\frac{1}{5} \\
-1 & \frac{2}{5}
\end{pmatrix}$
$(C)\ \begin{pmatrix}
1 & \frac{1}{5} \\
-1 & \frac{2}{5}
\end{pmatrix}$
$(D)\ \begin{pmatrix}
\frac{2}{5} & \frac{1}{5} \\
1 & \frac{2}{5}
\end{pmatrix}$
$(E)\ \begin{pmatrix}
\frac{2}{5} & -1 \\
\frac{1}{5} & 1
\end{pmatrix}$
Alternatif Pembahasan:

$C=A+B$
$C=\begin{pmatrix}
3 & 0\\
2 & 0
\end{pmatrix} + \begin{pmatrix}
2 & 1\\
3 & 2
\end{pmatrix}$
$C=\begin{pmatrix}
5 & 1\\
5 & 2
\end{pmatrix}$

$C^{-1}=\frac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix}$
$C^{-1}=\frac{1}{(5)(2)-(5)(1)}\begin{pmatrix}
2 & -1\\
-5 & 5
\end{pmatrix}$
$C^{-1}=\frac{1}{5}\begin{pmatrix}
2 & -1\\
-5 & 5
\end{pmatrix}$
$C^{-1}= \begin{pmatrix}
\frac{2}{5} & -\frac{1}{5} \\
-1 & 1
\end{pmatrix}$
$\therefore$ Pilihan yang sesuai adalah $(A)\ \begin{pmatrix}
\frac{2}{5} & -\frac{1}{5} \\
-1 & 1
\end{pmatrix}$

4. Soal UNBK Matematika IPS 2018 (*Soal Lengkap)

Diketahui matriks $A=\begin{pmatrix}
1 & 3\\
2 & 4
\end{pmatrix}$; $B=\begin{pmatrix}
-3 & a\\
b & -2
\end{pmatrix}$; $C=\begin{pmatrix}
1 & -3\\
4 & 2
\end{pmatrix}$; dan $D=\begin{pmatrix}
-1 & 2\\
-2 & 1
\end{pmatrix}$.
Jika $A^{T}$ adalah transpose matriks $A$, nilai $2a+\frac{1}{2}b$ yang memenuhi persamaan $2A^{T}-B=CD$ adalah...
$(A)\ 3$
$(B)\ 7$
$(C)\ 12$
$(D)\ 17$
$(E)\ 31$
Alternatif Pembahasan:

$CD=\begin{pmatrix}
1 & -3\\
4 & 2
\end{pmatrix} \begin{pmatrix}
-1 & 2\\
-2 & 1
\end{pmatrix}$

$CD= \begin{pmatrix}
(1)(-1)+(-3)(-2) & (1)(2)+(-3)(1)\\
(4)(-1)+(2)(-2) & (4)(2)+(2)(1)
\end{pmatrix}$

$CD= \begin{pmatrix}
-1+6 & 2-3\\
-4-4 & 8+2
\end{pmatrix}$

$CD= \begin{pmatrix}
5 & -1\\
-8 & 10
\end{pmatrix}$

$2A^{T}-B=2\begin{pmatrix}
1 & 2\\
3 & 4
\end{pmatrix}-\begin{pmatrix}
-3 & a\\
b & -2
\end{pmatrix}$

$2A^{T}-B=\begin{pmatrix}
2 & 4\\
6 & 8
\end{pmatrix}-\begin{pmatrix}
-3 & a\\
b & -2
\end{pmatrix}$

$2A^{T}-B=\begin{pmatrix}
5 & 4-a\\
6-b & 10
\end{pmatrix}$

$2A^{T}-B=CD$
$\begin{pmatrix}
5 & 4-a\\
6-b & 10
\end{pmatrix}=\begin{pmatrix}
5 & -1\\
-8 & 10
\end{pmatrix}$
Dari kesamaan dua matriks diatas kita peroleh $4-a=-1$, $a=5$ dan $6-b=-8$, $b=14$.

Nilai $2a+\frac{1}{2}b$
$ \begin{align}
2a+\frac{1}{2}b & = 2(5)+\frac{1}{2}(14) \\
& = 10+7 \\
& = 17
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(D)\ 17$

5. Soal UNBK Matematika IPA 2018 (*Soal Lengkap)

Diketahui matriks $A=\begin{pmatrix}
2 & 1\\
4 & -1
\end{pmatrix}$ dan $B=\begin{pmatrix}
4 & -1\\
1 & 1
\end{pmatrix}$. Jika $C=AB$, invers matriks $C$ adalah $C^{-1}=\cdots$
$(A)\ \begin{pmatrix}
\frac{1}{6} & -\frac{1}{30} \\
\frac{1}{2} & -\frac{3}{10}
\end{pmatrix}$
$(B)\ \begin{pmatrix}
-\frac{1}{6} & \frac{1}{2} \\
-\frac{1}{30} & -\frac{3}{10}
\end{pmatrix}$
$(C)\ \begin{pmatrix}
\frac{1}{6} & -\frac{1}{2} \\
-\frac{1}{30} & -\frac{3}{10}
\end{pmatrix}$
$(D)\ \begin{pmatrix}
\frac{1}{6} & -\frac{1}{30} \\
-\frac{1}{2} & \frac{3}{10}
\end{pmatrix}$
$(E)\ \begin{pmatrix}
-\frac{1}{6} & -\frac{1}{2} \\
-\frac{1}{30} & -\frac{3}{10}
\end{pmatrix}$
Alternatif Pembahasan:

$C=AB$
$C=\begin{pmatrix}
2 & 1\\
4 & -1
\end{pmatrix} \begin{pmatrix}
4 & -1\\
1 & 1
\end{pmatrix}$
$C=\begin{pmatrix}
9 & -1\\
15 & -5
\end{pmatrix}$

$C^{-1}=\frac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix}$
$C^{-1}=\frac{1}{(9)(-5)-(15)(-1)}\begin{pmatrix}
-5 & 1\\
-15 & 9
\end{pmatrix}$
$C^{-1}=\frac{1}{-30}\begin{pmatrix}
-5 & 1\\
-15 & 9
\end{pmatrix}$
$C^{-1}= \begin{pmatrix}
\frac{1}{6} & -\frac{1}{30} \\
\frac{1}{2} & -\frac{3}{10}
\end{pmatrix}$

$\therefore$ Pilihan yang sesuai adalah $(A)\ \begin{pmatrix}
\frac{1}{6} & -\frac{1}{30} \\
\frac{1}{2} & -\frac{3}{10}
\end{pmatrix}$

6. Soal UNBK Matematika IPA 2018 (*Soal Lengkap)

Agen perjalanan "Lombok Menawan" menawarkan paket perjalanan wisata seperti tabel di bawah ini:
--- Paket I Paket II
Sewa Hotel 56
Tempat Wisata 4 5
Biaya Total 3.100.000,00 3.000.000,00
Bentuk matriks yang sesuai untuk menentukan biaya hotel tiap malam dan biaya satu tempat wisata adalah...
$(A)\ \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & -6\\
-4 & 5
\end{pmatrix}\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$
$(B)\ \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & 6\\
4 & 5
\end{pmatrix}\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$
$(C)\ \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & 4\\
6 & 5
\end{pmatrix}\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$
$(D)\ \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & -4\\
-6 & 5
\end{pmatrix}\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$
$(E)\ \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
-4 & 5\\
5 & -6
\end{pmatrix}\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$
Alternatif Pembahasan:

Dengan memisalkan Sewa Hotel=$x$ dan Tempat Wisata=$y$, maka tabel diatas jika kita sajikan dalam bentuk matrik, kurang lebih seperti berikut ini;
$5x+4y=3.100.000$
$6x+5y=3.000.000$

$\begin{pmatrix}
5 & 4\\
6 & 5
\end{pmatrix}\begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$

Untuk mendapatkan nilai $x$ dan $y$ dalam persamaan matriks, kita coba gunakan invers matriks;
$\begin{align}
A \cdot X & = B \\
A^{-1} \cdot A \cdot X & = A^{-1} \cdot B \\
I \cdot X & = A^{-1} \cdot B \\
X & = A^{-1} \cdot B \\
\end{align} $

$\begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & 4\\
6 & 5
\end{pmatrix}^{-1} \begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$

$\begin{pmatrix}
x \\
y
\end{pmatrix}=\frac{1}{(5)(5)-(6)(4)}\begin{pmatrix}
5 & -4\\
-6 & 5
\end{pmatrix} \begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$

$\begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & -4\\
-6 & 5
\end{pmatrix} \begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$

$\therefore$ Pilihan yang sesuai adalah $(A)\ \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & -6\\
-4 & 5
\end{pmatrix}\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$

7. Soal SBMPTN 2018 Kode 526 (*Soal Lengkap)

Jika $A=\begin{pmatrix}
a & 1\\
b & 2
\end{pmatrix}$, $B=\begin{pmatrix}
a & 1\\
1 & 0
\end{pmatrix}$ dan $AB=\begin{pmatrix}
10 & a\\
14 & b
\end{pmatrix}$. maka nilai $ab$ adalah...
$\begin{align}
(A)\ & 9 \\
(B)\ & 10 \\
(C)\ & 12 \\
(D)\ & 14 \\
(E)\ & 16
\end{align}$
Alternatif Pembahasan:

$\begin{align}
AB & = \begin{pmatrix}
10 & a\\
14 & b
\end{pmatrix} \\
\begin{pmatrix}
a & 1\\
b & 2
\end{pmatrix} \begin{pmatrix}
a & 1\\
1 & 0
\end{pmatrix} & = \begin{pmatrix}
10 & a\\
14 & b
\end{pmatrix} \\
\begin{pmatrix}
a^{2}+1 & a\\
ab+2 & b
\end{pmatrix} & = \begin{pmatrix}
10 & a\\
14 & b
\end{pmatrix} \\
ab+2 & = 14 \\
ab & = 12
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 12$

8. Soal SIMAK UI 2018 Kode 641 (*Soal Lengkap)

Diketahui $A=\begin{pmatrix}
a & -3\\
1 & d
\end{pmatrix}$, Jika $A=A^{-1}$, nilai $|a-d|$ adalah...
$\begin{align}
(A)\ & 0 \\
(B)\ & 1 \\
(C)\ & 2 \\
(D)\ & 3 \\
(E)\ & 4
\end{align}$
Alternatif Pembahasan:

$\begin{pmatrix}
a & -3\\
1 & d
\end{pmatrix}=\dfrac{1}{ad+3}\begin{pmatrix}
d & 3\\
-1 & a
\end{pmatrix}$
$\begin{pmatrix}
a & -3\\
1 & d
\end{pmatrix}=\begin{pmatrix}
\dfrac{d}{ad+3} & \dfrac{3}{ad+3}\\
\dfrac{-1}{ad+3} & \dfrac{a}{ad+3}
\end{pmatrix}$
Kesimpulan yang bisa kita ambil dari kesamaan matriks diatas adalah...

$ \begin{align}
\dfrac{-1}{ad+3} & = 1 \\
-1 & = ad+3 \\
ad & = -1-3=-4
\end{align} $

$ \begin{align}
a & = \dfrac{d}{ad+3} \\
a & = \dfrac{d}{-4+3} \\
a & = -d \\
ad & = -4 \\
(-d)d & = -4 \\
-d^{2} & = -4 \\
d & = \pm \sqrt{4} =\pm 2
\end{align} $
Untuk $d=2$ maka $a=-2$
Untuk $d=-2$ maka $a=2$

Nilai $|a-d|=|2-(-2)|=4$

$\therefore$ Pilihan yang sesuai adalah $(E)\ 4$

9. Soal SIMAK UI 2009 Kode 931 (*Soal Lengkap)

Diketahui $l$ adalah garis yang dinyatakan oleh $det(A)=0$ dimana $A=\begin{pmatrix}
1 & 1 & 2\\
x & y & 1\\
2 & 1 & 3
\end{pmatrix}$, persamaan garis yang sejajar $l$ dan melalui titik $(3,4)$ adalah...
$\begin{align}
(A)\ & x+y-7=0 \\
(B)\ & x-y+7=0 \\
(C)\ & x-y+1=0 \\
(D)\ & x+y-1=0 \\
(E)\ & x+y+1=0
\end{align}$
Alternatif Pembahasan:

Untuk mendapatkan persamaan garis $l$ kita mulai dengan menentukan determinan matrisk ordo $3 \times 3$ yang nilainya adalah nol.
$0=\begin{vmatrix}
1 & 1 & 2\\
x & y & 1\\
2 & 1 & 3
\end{vmatrix}\left.\begin{matrix}
1 & 1\\
x & y\\
2 & 1
\end{matrix}\right|$
Persamaan garis $l$ adalah
$(1 \cdot y \cdot 3+1 \cdot 1 \cdot 2+2 \cdot x \cdot 1)-(2 \cdot y \cdot 2+1 \cdot 1 \cdot 1+1 \cdot x \cdot 3)=0$
$(3y+2+2x)-(4y+1+3x)=0$
$ 3y+2+2x-4y-1-3x=0$
$ 1-y-x=0$
$ 1-x=y$

Persamaan garis yang sejajar ($m_{1}=m_{2}$) dengan garis $l$ melalui $(3,4)$ adalah:
$\begin{align}
m & = -1 \\
y-y_{1} & = m(x-x_{1}) \\
y-4 & = -1(x-3) \\
y-4 & = -x+3 \\
y & = -x+7 \\
\end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(A)\ x+y-7=0$

10. Soal SIMAK UI 2009 Kode 921 (*Soal Lengkap)

Diketahui $P=\begin{pmatrix}
2 & 1\\
3 & 3
\end{pmatrix}$, $Q=\begin{pmatrix}
-1 & -2\\
1 & 0
\end{pmatrix}$, dan determinan dari matriks $PQ$ adalah $k$. Jika garis $2x-y=4$ dan $3x-2y=5$ berpotongan di $A$, maka persamaan garis yang melalui $A$ dengan gradien $k$ adalah...
$\begin{align}
(A)\ & 6x+y-20=0 \\
(B)\ & 2x-3y-6=0 \\
(C)\ & 3x-2y-4=0 \\
(D)\ & x-6y+16=0 \\
(E)\ & 6x-y-16=0
\end{align}$
Alternatif Pembahasan:

Unsur-unsur yang dibutuhkan untuk membentuk sebuah persamaan garis adalah sebuah titik dan gradien, $m=k=|PQ|$

$\begin{align}
m & = |PQ| \\
& = \left | \begin{pmatrix}
2 & 1\\
3 & 3
\end{pmatrix} \begin{pmatrix}
-1 & -2\\
1 & 0
\end{pmatrix} \right | \\
& = \begin{vmatrix}
-1 & -4\\
0 & -6
\end{vmatrix} \\
& = 6-0=6
\end{align}$

Titik $A$
$\begin{array}{c|c|cc}
2x-y = 4 & (\times 2) \\
3x-2y = 5 & (\times 1) \\
\hline
4x-2y = 8 & \\
3x-2y = 5 & (-) \\
\hline
x = 3 & \\
3x-2y = 5 & \\
3(3)-2y = 5 & \\
y = 2
\end{array} $

Persamaan garis melalui $A(3,2)$ dengan $m=6$
$\begin{align}
y-y_{1} & = m(x-x_{1}) \\
y-2 & = 6(x-3) \\
y & = 6x-18+2 \\
y & = 6x-16
\end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(E)\ 6x-y-16=0$

Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras
Beberapa pembahasan soal Matematika Dasar Matriks (*Soal Dari Berbagai Sumber) di atas adalah coretan kreatif siswa pada
  • lembar jawaban penilaian harian matematika,
  • lembar jawaban penilaian akhir semester matematika,
  • presentasi hasil diskusi matematika atau
  • pembahasan quiz matematika di kelas.
Jadi saran, kritik atau masukan yang sifatnya membangun terkait masalah alternatif penyelesaian soal Matriks sangat diharapkan๐Ÿ˜ŠCMIIW

Jangan Lupa Untuk Berbagi ๐Ÿ™Share is Caring ๐Ÿ‘€ dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE๐Ÿ˜Š

Video pilihan khusus untuk Anda ๐Ÿ˜‚ Masih menganggap matematika hanya hitung-hitungan semata, mari kita lihat kreativitas siswa ini;
youtube image

Comment Policy: Silahkan tuliskan komentar atau pertanyaan yang berhubungan dengan " Matematika Dasar Matriks (*Soal dan Pembahasan)" ๐Ÿ˜Š and thank you for your concern in support of blog
Buka Komentar
Tutup Komentar