Skip to main content

Bank Soal Matematika Dasar Matriks (*Soal dan Pembahasan)

 Matematika Dasar Matriks (*Soal Dari Berbagai Sumber)Matematika Dasar yang akan kita diskusikan berikut adalah tentang Matriks. Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu susunan berbentuk persegipanjang. Susunan bilangan itu diletakkan di dalam kurung biasa $"(\ \ )"$ atau kurung siku $"[\ \ ]"$.

Masing-masing bilangan dalam matriks disebut entri atau elemen. Umumnya penamaan suatu matriks dinyatakan dengan huruf kapital, misalnya $A,\ B,\ C,\ D, \cdots $ dan seterusnya.

Soal-soal yang berkembang pada matriks sering kali dikaitkan dengan materi pokok matematika lainnya, seperti: Eksponen, Bentuk Akar, Logaritma, Trigonometri, dan materi lainnya berpeluang dikaitkan dengan matriks.

Beberapa sampel soal untuk kita diskusikan kita sadur dari soal-soal SBMPTN (Seleksi Bersama Masuk Perguruan Tinggi Negeri) atau SMMPTN (Seleksi Mandiri Masuk Perguruan Tinggi Negeri) dan UN (Ujian Nasional).

Pada dasarnya pembahasan Matematika Dasar Matriks ini masih jauh dari sempurna, jadi jika ada masukan yang sifatnya membangun silahkan disampaikan.

1. Soal SIMAK UI 2013 kode 333 (*Soal Lengkap)

Sebuah matriks dikatakan matriks ortogonal jika $A^{-1}=A^{T}$.
Jika diketahui
$\begin{bmatrix}
a& \frac{2}{3}& \frac{2}{3}\\
\frac{2}{3}& b& \frac{1}{3}\\
-\frac{2}{3}& -\frac{1}{3}& c
\end{bmatrix}$ adalah matriks ortogonal,
$a^{2}+b^{2}+c^{2}=...$
$\begin{align}
(A)\ & -1 \\
(B)\ & 0 \\
(C)\ & \dfrac{1}{9} \\
(D)\ & \dfrac{4}{9} \\
(E)\ & 1
\end{align}$
Alternatif Pembahasan:

Seperti yang kita sampaikan diawal jika melihat soal, sekilas kita harus menghitung invers matriks $3\times3$ lalu kita samakan dengan transpose matriks sesuai dengan yang didefenisikan yaitu sebuah matriks dikatakan matriks ortogonal jika $A^{-1}=A^{T}$.

Tetapi untuk anak SMA, menentukan invers matriks $3\times3$ adalah masalah baru sehingga kita butuh sedikit eksplorasi. Kita mencari penyelesaian soal diatas dengan mengikuti defenisi matriks ortogonal yaitu $A^{-1}=A^{T}$ dan sedikit eksplorasi yang memberikan bentuk baru yang begitu indah.

Eksplorasi yang kita lakukan yaitu:
$\begin{align}
A^{-1} &= A^{T} \\
& \text{(*kalikan dengan matriks A)} \\
A \times A^{-1} &= A \times A^{T} \\
I & = A \times A^{T}
\end{align}$

Sehingga kita peroleh persamaan;
$\begin{bmatrix}
a& \frac{2}{3}& \frac{2}{3}\\
\frac{2}{3}& b& \frac{1}{3}\\
-\frac{2}{3}& -\frac{1}{3}& c
\end{bmatrix}\times \begin{bmatrix}
a& \frac{2}{3}& -\frac{2}{3}\\
\frac{2}{3}& b& -\frac{1}{3}\\
\frac{2}{3}& \frac{1}{3}& c
\end{bmatrix}$$=\begin{bmatrix}
1& 0& 0\\
0& 1& 0\\
0& 0& 1
\end{bmatrix}$

dari perkalian matriks di atas dapat kita peroleh persamaan sebagai berikut;
$a^{2}+\dfrac{4}{9}+\dfrac{4}{9}=1 \cdots \left (pers. 1 \right )$
$\dfrac{4}{9}+b^{2}+\dfrac{1}{9}=1 \cdots \left (pers. 2 \right )$
$\dfrac{4}{9}+\dfrac{1}{9}+c^{2}=1 \cdots \left (pers. 3 \right )$

Apabila persamaan $\left (1 \right )$,$\left (2 \right )$, dan $\left (3 \right )$ kita jumlahkan,
maka akan kita peroleh persamaan berikut;
$a^{2}+b^{2}+c^{2}+\dfrac{18}{9}=3$
$a^{2}+b^{2}+c^{2}=1$

$\therefore$ Pilihan yang sesuai adalah $(E)\ 1$

2. Soal SIMAK UI 2013 kode 333 (*Soal Lengkap)

Jika $A=\begin{bmatrix}
4&3\\
2&5
\end{bmatrix}$ dan $A^{2}-xA+yI=\begin{bmatrix}
0 &0 \\
0& 0
\end{bmatrix}$ maka $x+y=...$
$\begin{align}
(A)\ & 9 \\
(B)\ & 14 \\
(C)\ & 19 \\
(D)\ & 23 \\
(E)\ & 25
\end{align}$
Alternatif Pembahasan:

Untuk mencoba menyelesaikan masalah diatas, bisa kita lakukan dengan mengerjakan sedikit demi sedikit apa yang dibutuhkan,
$A^{2}=A\times A$
$A^{2}=\begin{bmatrix}
4&3\\
2&5
\end{bmatrix}\times \begin{bmatrix}
4&3\\
2&5
\end{bmatrix}$
$A^{2}=\begin{bmatrix}
22&27\\
18&31
\end{bmatrix}$
$xA=\begin{bmatrix}
4x&3x\\
2x&5x
\end{bmatrix}$
$yI=\begin{bmatrix}
y&0\\
0&y
\end{bmatrix}$

Apa yang sudah kita ketahui diatas kita substitusi ke persamaan
$A^{2}-xA+yI=\begin{bmatrix}
0 &0 \\
0& 0
\end{bmatrix}$

$\begin{bmatrix}
22&27\\
18&31
\end{bmatrix}-\begin{bmatrix}
4x&3x\\
2x&5x
\end{bmatrix}+\begin{bmatrix}
y&0\\
0&y
\end{bmatrix}$$=\begin{bmatrix}
0 &0 \\
0& 0
\end{bmatrix}$

Dari operasi matriks dan kesamaan matriks diatas, kita dapat beberapa persamaan, diantaranya:
$\begin{align}
18-2x+0 &= 0 \\
18 &= 2x \\
9 &=x \\
\hline
31-5x+y &=0 \\
31-45+y &=0 \\
-14+y &=0 \\
y &=14 \\
\hline
x+y &= 23
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D)\ 23$

3. Soal UNBK Matematika IPS 2018 (*Soal Lengkap)

Diketahui matriks $A=\begin{pmatrix}
3 & 0\\
2 & 0
\end{pmatrix}$; $B=\begin{pmatrix}
2 & 1\\
3 & 2
\end{pmatrix}$; dan $A+B=C$. Invers matriks $C$ adalah...
$\begin{align}
(A)\ & \begin{pmatrix}
\frac{2}{5} & -\frac{1}{5} \\
-1 & 1
\end{pmatrix} \\
(B)\ & \begin{pmatrix}
1 & -\frac{1}{5} \\
-1 & \frac{2}{5}
\end{pmatrix} \\
(C)\ & \begin{pmatrix}
1 & \frac{1}{5} \\
-1 & \frac{2}{5}
\end{pmatrix} \\
(D)\ & \begin{pmatrix}
\frac{2}{5} & \frac{1}{5} \\
1 & \frac{2}{5}
\end{pmatrix} \\
(E)\ & \begin{pmatrix}
\frac{2}{5} & -1 \\
\frac{1}{5} & 1
\end{pmatrix}
\end{align}$
Alternatif Pembahasan:

$C=A+B$
$C=\begin{pmatrix}
3 & 0\\
2 & 0
\end{pmatrix} + \begin{pmatrix}
2 & 1\\
3 & 2
\end{pmatrix}$
$C=\begin{pmatrix}
5 & 1\\
5 & 2
\end{pmatrix}$

$C^{-1}=\frac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix}$
$C^{-1}=\frac{1}{(5)(2)-(5)(1)}\begin{pmatrix}
2 & -1\\
-5 & 5
\end{pmatrix}$
$C^{-1}=\frac{1}{5}\begin{pmatrix}
2 & -1\\
-5 & 5
\end{pmatrix}$
$C^{-1}= \begin{pmatrix}
\frac{2}{5} & -\frac{1}{5} \\
-1 & 1
\end{pmatrix}$
$\therefore$ Pilihan yang sesuai adalah $(A)\ \begin{pmatrix}
\frac{2}{5} & -\frac{1}{5} \\
-1 & 1
\end{pmatrix}$

4. Soal UNBK Matematika IPS 2018 (*Soal Lengkap)

Diketahui matriks $A=\begin{pmatrix}
1 & 3\\
2 & 4
\end{pmatrix}$; $B=\begin{pmatrix}
-3 & a\\
b & -2
\end{pmatrix}$; $C=\begin{pmatrix}
1 & -3\\
4 & 2
\end{pmatrix}$; dan $D=\begin{pmatrix}
-1 & 2\\
-2 & 1
\end{pmatrix}$.
Jika $A^{T}$ adalah transpose matriks $A$, nilai $2a+\frac{1}{2}b$ yang memenuhi persamaan $2A^{T}-B=CD$ adalah...
$\begin{align}
(A)\ & 3 \\
(B)\ & 7 \\
(C)\ & 12 \\
(D)\ & 17 \\
(E)\ & 31
\end{align}$
Alternatif Pembahasan:

$CD=\begin{pmatrix}
1 & -3\\
4 & 2
\end{pmatrix} \begin{pmatrix}
-1 & 2\\
-2 & 1
\end{pmatrix}$

$CD= \begin{pmatrix}
(1)(-1)+(-3)(-2) & (1)(2)+(-3)(1)\\
(4)(-1)+(2)(-2) & (4)(2)+(2)(1)
\end{pmatrix}$

$CD= \begin{pmatrix}
-1+6 & 2-3\\
-4-4 & 8+2
\end{pmatrix}$

$CD= \begin{pmatrix}
5 & -1\\
-8 & 10
\end{pmatrix}$

$2A^{T}-B=2\begin{pmatrix}
1 & 2\\
3 & 4
\end{pmatrix}-\begin{pmatrix}
-3 & a\\
b & -2
\end{pmatrix}$

$2A^{T}-B=\begin{pmatrix}
2 & 4\\
6 & 8
\end{pmatrix}-\begin{pmatrix}
-3 & a\\
b & -2
\end{pmatrix}$

$2A^{T}-B=\begin{pmatrix}
5 & 4-a\\
6-b & 10
\end{pmatrix}$

$2A^{T}-B=CD$
$\begin{pmatrix}
5 & 4-a\\
6-b & 10
\end{pmatrix}=\begin{pmatrix}
5 & -1\\
-8 & 10
\end{pmatrix}$
Dari kesamaan dua matriks diatas kita peroleh $4-a=-1$, $a=5$ dan $6-b=-8$, $b=14$.

Nilai $2a+\frac{1}{2}b$
$ \begin{align}
2a+\frac{1}{2}b & = 2(5)+\frac{1}{2}(14) \\
& = 10+7 \\
& = 17
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(D)\ 17$

5. Soal UNBK Matematika IPA 2018 (*Soal Lengkap)

Diketahui matriks $A=\begin{pmatrix}
2 & 1\\
4 & -1
\end{pmatrix}$ dan $B=\begin{pmatrix}
4 & -1\\
1 & 1
\end{pmatrix}$. Jika $C=AB$, invers matriks $C$ adalah $C^{-1}=\cdots$
$\begin{align}
(A)\ & \begin{pmatrix}
\frac{1}{6} & -\frac{1}{30} \\
\frac{1}{2} & -\frac{3}{10}
\end{pmatrix} \\
(B)\ & \begin{pmatrix}
-\frac{1}{6} & \frac{1}{2} \\
-\frac{1}{30} & -\frac{3}{10}
\end{pmatrix} \\
(C)\ & \begin{pmatrix}
\frac{1}{6} & -\frac{1}{2} \\
-\frac{1}{30} & -\frac{3}{10}
\end{pmatrix} \\
(D)\ & \begin{pmatrix}
\frac{1}{6} & -\frac{1}{30} \\
-\frac{1}{2} & \frac{3}{10}
\end{pmatrix} \\
(E)\ & \begin{pmatrix}
-\frac{1}{6} & -\frac{1}{2} \\
-\frac{1}{30} & -\frac{3}{10}
\end{pmatrix}
\end{align}$
Alternatif Pembahasan:

$C=AB$
$C=\begin{pmatrix}
2 & 1\\
4 & -1
\end{pmatrix} \begin{pmatrix}
4 & -1\\
1 & 1
\end{pmatrix}$
$C=\begin{pmatrix}
9 & -1\\
15 & -5
\end{pmatrix}$

$C^{-1}=\frac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix}$
$C^{-1}=\frac{1}{(9)(-5)-(15)(-1)}\begin{pmatrix}
-5 & 1\\
-15 & 9
\end{pmatrix}$
$C^{-1}=\frac{1}{-30}\begin{pmatrix}
-5 & 1\\
-15 & 9
\end{pmatrix}$
$C^{-1}= \begin{pmatrix}
\frac{1}{6} & -\frac{1}{30} \\
\frac{1}{2} & -\frac{3}{10}
\end{pmatrix}$

$\therefore$ Pilihan yang sesuai adalah $(A)\ \begin{pmatrix}
\frac{1}{6} & -\frac{1}{30} \\
\frac{1}{2} & -\frac{3}{10}
\end{pmatrix}$

6. Soal UNBK Matematika IPA 2018 (*Soal Lengkap)

Agen perjalanan "Lombok Menawan" menawarkan paket perjalanan wisata seperti tabel di bawah ini:
--- Paket I Paket II
Sewa Hotel 56
Tempat Wisata 4 5
Biaya Total 3.100.000,00 3.000.000,00
Bentuk matriks yang sesuai untuk menentukan biaya hotel tiap malam dan biaya satu tempat wisata adalah...
$\begin{align}
(A)\ & \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & -6\\
-4 & 5
\end{pmatrix}\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix} \\
(B)\ & \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & 6\\
4 & 5
\end{pmatrix}\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix} \\
(C)\ & \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & 4\\
6 & 5
\end{pmatrix}\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix} \\
(D)\ & \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & -4\\
-6 & 5
\end{pmatrix}\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix} \\
(E)\ & \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
-4 & 5\\
5 & -6
\end{pmatrix}\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}
\end{align}$
Alternatif Pembahasan:

Dengan memisalkan Sewa Hotel=$x$ dan Tempat Wisata=$y$, maka tabel diatas jika kita sajikan dalam bentuk matrik, kurang lebih seperti berikut ini;
$5x+4y=3.100.000$
$6x+5y=3.000.000$

$\begin{pmatrix}
5 & 4\\
6 & 5
\end{pmatrix}\begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$

Untuk mendapatkan nilai $x$ dan $y$ dalam persamaan matriks, kita coba gunakan invers matriks;
$\begin{align}
A \cdot X & = B \\
A^{-1} \cdot A \cdot X & = A^{-1} \cdot B \\
I \cdot X & = A^{-1} \cdot B \\
X & = A^{-1} \cdot B \\
\end{align} $

$\begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & 4\\
6 & 5
\end{pmatrix}^{-1} \begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$

$\begin{pmatrix}
x \\
y
\end{pmatrix}=\frac{1}{(5)(5)-(6)(4)}\begin{pmatrix}
5 & -4\\
-6 & 5
\end{pmatrix} \begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$

$\begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & -4\\
-6 & 5
\end{pmatrix} \begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$

$\therefore$ Pilihan yang sesuai adalah $(A)\ \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & -6\\
-4 & 5
\end{pmatrix}\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$

7. Soal SBMPTN 2018 Kode 526 (*Soal Lengkap)

Jika $A=\begin{pmatrix}
a & 1\\
b & 2
\end{pmatrix}$, $B=\begin{pmatrix}
a & 1\\
1 & 0
\end{pmatrix}$ dan $AB=\begin{pmatrix}
10 & a\\
14 & b
\end{pmatrix}$. maka nilai $ab$ adalah...
$\begin{align}
(A)\ & 9 \\
(B)\ & 10 \\
(C)\ & 12 \\
(D)\ & 14 \\
(E)\ & 16
\end{align}$
Alternatif Pembahasan:

$\begin{align}
AB & = \begin{pmatrix}
10 & a\\
14 & b
\end{pmatrix} \\
\begin{pmatrix}
a & 1\\
b & 2
\end{pmatrix} \begin{pmatrix}
a & 1\\
1 & 0
\end{pmatrix} & = \begin{pmatrix}
10 & a\\
14 & b
\end{pmatrix} \\
\begin{pmatrix}
a^{2}+1 & a\\
ab+2 & b
\end{pmatrix} & = \begin{pmatrix}
10 & a\\
14 & b
\end{pmatrix} \\
ab+2 & = 14 \\
ab & = 12
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 12$

8. Soal SIMAK UI 2018 Kode 641 (*Soal Lengkap)

Diketahui $A=\begin{pmatrix}
a & -3\\
1 & d
\end{pmatrix}$, Jika $A=A^{-1}$, nilai $|a-d|$ adalah...
$\begin{align}
(A)\ & 0 \\
(B)\ & 1 \\
(C)\ & 2 \\
(D)\ & 3 \\
(E)\ & 4
\end{align}$
Alternatif Pembahasan:

$\begin{pmatrix}
a & -3\\
1 & d
\end{pmatrix}=\dfrac{1}{ad+3}\begin{pmatrix}
d & 3\\
-1 & a
\end{pmatrix}$
$\begin{pmatrix}
a & -3\\
1 & d
\end{pmatrix}=\begin{pmatrix}
\dfrac{d}{ad+3} & \dfrac{3}{ad+3}\\
\dfrac{-1}{ad+3} & \dfrac{a}{ad+3}
\end{pmatrix}$
Kesimpulan yang bisa kita ambil dari kesamaan matriks diatas adalah...

$ \begin{align}
\dfrac{-1}{ad+3} & = 1 \\
-1 & = ad+3 \\
ad & = -1-3=-4
\end{align} $

$ \begin{align}
a & = \dfrac{d}{ad+3} \\
a & = \dfrac{d}{-4+3} \\
a & = -d \\
ad & = -4 \\
(-d)d & = -4 \\
-d^{2} & = -4 \\
d & = \pm \sqrt{4} =\pm 2
\end{align} $
Untuk $d=2$ maka $a=-2$
Untuk $d=-2$ maka $a=2$

Nilai $|a-d|=|2-(-2)|=4$

$\therefore$ Pilihan yang sesuai adalah $(E)\ 4$

9. Soal SIMAK UI 2009 Kode 931 (*Soal Lengkap)

Diketahui $l$ adalah garis yang dinyatakan oleh $det(A)=0$ dimana $A=\begin{pmatrix}
1 & 1 & 2\\
x & y & 1\\
2 & 1 & 3
\end{pmatrix}$, persamaan garis yang sejajar $l$ dan melalui titik $(3,4)$ adalah...
$\begin{align}
(A)\ & x+y-7=0 \\
(B)\ & x-y+7=0 \\
(C)\ & x-y+1=0 \\
(D)\ & x+y-1=0 \\
(E)\ & x+y+1=0
\end{align}$
Alternatif Pembahasan:

Untuk mendapatkan persamaan garis $l$ kita mulai dengan menentukan determinan matrisk ordo $3 \times 3$ yang nilainya adalah nol.
$0=\begin{vmatrix}
1 & 1 & 2\\
x & y & 1\\
2 & 1 & 3
\end{vmatrix}\left.\begin{matrix}
1 & 1\\
x & y\\
2 & 1
\end{matrix}\right|$
Persamaan garis $l$ adalah
$(1 \cdot y \cdot 3+1 \cdot 1 \cdot 2+2 \cdot x \cdot 1)-(2 \cdot y \cdot 2+1 \cdot 1 \cdot 1+1 \cdot x \cdot 3)=0$
$(3y+2+2x)-(4y+1+3x)=0$
$ 3y+2+2x-4y-1-3x=0$
$ 1-y-x=0$
$ 1-x=y$

Persamaan garis yang sejajar ($m_{1}=m_{2}$) dengan garis $l$ melalui $(3,4)$ adalah:
$\begin{align}
m & = -1 \\
y-y_{1} & = m(x-x_{1}) \\
y-4 & = -1(x-3) \\
y-4 & = -x+3 \\
y & = -x+7 \\
\end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(A)\ x+y-7=0$


10. Soal SIMAK UI 2009 Kode 921 (*Soal Lengkap)

Diketahui $P=\begin{pmatrix}
2 & 1\\
3 & 3
\end{pmatrix}$, $Q=\begin{pmatrix}
-1 & -2\\
1 & 0
\end{pmatrix}$, dan determinan dari matriks $PQ$ adalah $k$. Jika garis $2x-y=4$ dan $3x-2y=5$ berpotongan di $A$, maka persamaan garis yang melalui $A$ dengan gradien $k$ adalah...
$\begin{align}
(A)\ & 6x+y-20=0 \\
(B)\ & 2x-3y-6=0 \\
(C)\ & 3x-2y-4=0 \\
(D)\ & x-6y+16=0 \\
(E)\ & 6x-y-16=0
\end{align}$
Alternatif Pembahasan:

Unsur-unsur yang dibutuhkan untuk membentuk sebuah persamaan garis adalah sebuah titik dan gradien, $m=k=|PQ|$

$\begin{align}
m & = |PQ| \\
& = \left | \begin{pmatrix}
2 & 1\\
3 & 3
\end{pmatrix} \begin{pmatrix}
-1 & -2\\
1 & 0
\end{pmatrix} \right | \\
& = \begin{vmatrix}
-1 & -4\\
0 & -6
\end{vmatrix} \\
& = 6-0=6
\end{align}$

Titik $A$
$\begin{array}{c|c|cc}
2x-y = 4 & (\times 2) \\
3x-2y = 5 & (\times 1) \\
\hline
4x-2y = 8 & \\
3x-2y = 5 & (-) \\
\hline
x = 3 & \\
3x-2y = 5 & \\
3(3)-2y = 5 & \\
y = 2
\end{array} $

Persamaan garis melalui $A(3,2)$ dengan $m=6$
$\begin{align}
y-y_{1} & = m(x-x_{1}) \\
y-2 & = 6(x-3) \\
y & = 6x-18+2 \\
y & = 6x-16
\end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(E)\ 6x-y-16=0$

11. Soal UM UGM 2014 Kode 522 (*Soal Lengkap)

Nilai semua $x$ sehingga matriks $\begin{pmatrix}
\sqrt{x^{2}-1} & 1\\
x & 2
\end{pmatrix}$, mempunyai invers adalah...
$\begin{align}
(A)\ & x \neq -\dfrac{4}{3}\ \text{dan}\ x \neq \dfrac{4}{3} \\
(B)\ & x \neq -\sqrt{\dfrac{4}{3}}\ \text{dan}\ x \neq \sqrt{\dfrac{4}{3}} \\
(C)\ & \sqrt{\dfrac{4}{3}} \lt x \leq -1\ \text{atau}\ 1 \leq x \lt \sqrt{\dfrac{4}{3}} \\
(D)\ & -\sqrt{\dfrac{4}{3}} \lt x \leq -1\ \text{atau}\ 1 \lt x \lt \sqrt{\dfrac{4}{3}} \\
(E)\ & x \lt -\sqrt{\dfrac{4}{3}}\ \text{atau}\ -\sqrt{\dfrac{4}{3}} \lt x \leq -1\ \text{atau}\ 1 \leq x \lt \sqrt{\dfrac{4}{3}}\ \text{atau}\ x \gt \sqrt{\dfrac{4}{3}}
\end{align}$
Alternatif Pembahasan:

Agar sebuah matriks $\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}$ mempunyai invers maka $ad-bc \neq 0$

$\begin{align}
\begin{vmatrix}
\sqrt{x^{2}-1} & 1\\
x & 2
\end{vmatrix} & \neq 0 \\
2 \sqrt{x^{2}-1} -x & \neq 0 \\
2 \sqrt{x^{2}-1} & \neq x \\
4x^{2}-4 & \neq x^{2} \\
3x^{2} & \neq 4 \\
x^{2} & \neq \dfrac{4}{3} \\
x & \neq \pm \sqrt{\dfrac{4}{3}}
\end{align}$

Syarat sebuah fungsi bentuk akar $\sqrt{f(x)}$ mempunyai nilai real adalah $f(x) \geq 0$.

Agar $\sqrt{x^{2}-1}$ mempunyai nilai real maka $x^{2}-1 \geq 0$, nilai $x$ yang memenuhi pertidaksamaan kuadrat $x^{2}-1 \geq 0$ adalah $x \leq -1\ \text{atau}\ x \geq 1$.

Jika kita gambarkan irisan $x \neq \pm \sqrt{\dfrac{4}{3}}$ dan $x \leq -1\ \text{atau}\ x \geq 1$ adalah seperti berikut ini;

Matematika Dasar Pertidaksamaan (*Soal Dari Berbagai Sumber)

$\therefore$ Pilihan yang sesuai adalah $(E)\ x \lt -\sqrt{\dfrac{4}{3}}\ \text{atau}$ $ -\sqrt{\dfrac{4}{3}} \lt x \leq -1\ \text{atau}$ $1 \leq x \lt \sqrt{\dfrac{4}{3}}\ \text{atau}\ x \gt \sqrt{\dfrac{4}{3}}$

12. Soal UMB-PT 2014 Kode 672 (*Soal Lengkap)

Jika matriks $A=\begin{pmatrix}
a & b\\
b & a
\end{pmatrix}$, $b \neq 0$ dan $I=\begin{pmatrix}
1 & 0\\
0 & 1
\end{pmatrix}$ memenuhi $A \cdot A=A+I$, maka $b^{2}=\cdots$
$\begin{align}
(A)\ & \dfrac{5}{4} \\
(B)\ & \dfrac{3}{2} \\
(C)\ & \dfrac{7}{4} \\
(D)\ & 2 \\
(E)\ & \dfrac{9}{4} \\
\end{align}$
Alternatif Pembahasan:

Karena matriks $A=\begin{pmatrix}
a & b\\
b & a
\end{pmatrix}$ memenuhi persamaan $A \cdot A=A+I$ sehingga berlaku:
$\begin{align}
\begin{pmatrix}
a & b\\
b & a
\end{pmatrix} \cdot \begin{pmatrix}
a & b\\
b & a
\end{pmatrix} & = \begin{pmatrix}
a & b\\
b & a
\end{pmatrix} + \begin{pmatrix}
1 & 0\\
0 & 1
\end{pmatrix} \\
\begin{pmatrix}
a^{2}+b^{2} & ab+ab\\
ab+ab & a^{2}+b^{2}\\
\end{pmatrix} & = \begin{pmatrix}
a+1 & b\\
b & a+1
\end{pmatrix} \\
\begin{pmatrix}
a^{2}+b^{2} & 2ab \\
2ab & a^{2}+b^{2}\\
\end{pmatrix} & = \begin{pmatrix}
a+1 & b\\
b & a+1
\end{pmatrix} \\
\hline
2ab & = b \\
a & = \dfrac{b}{2b} = \dfrac{1}{2} \\
a^{2}+b^{2} & = a+1 \\
b^{2} & = a+1-a^{2} \\
& = \dfrac{1}{2}+1-\left( \dfrac{1}{2} \right) ^{2} \\
& = \dfrac{3}{2} - \dfrac{1}{4} = \dfrac{5}{4}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(A)\ \dfrac{5}{4}$

13. Soal SBMPTN 2014 Kode 643 (*Soal Lengkap)

Jika $A=\begin{pmatrix}
-1 & -1 & 0\\
-1 & 1 & 2
\end{pmatrix}$, $B=\begin{pmatrix}
-1 & x \\
1 & y \\
0 & z
\end{pmatrix}$ dan $AB=\begin{pmatrix}
0 & 2 \\
2 & 4
\end{pmatrix}$, maka nilai $z-x$ adalah...
$\begin{align}
(A)\ & 6 \\
(B)\ & 3 \\
(C)\ & 0 \\
(D)\ & -3 \\
(E)\ & -6
\end{align}$
Alternatif Pembahasan:

$\begin{align}
\begin{pmatrix}
-1 & -1 & 0\\
-1 & 1 & 2
\end{pmatrix} \cdot \begin{pmatrix}
-1 & x \\
1 & y \\
0 & z
\end{pmatrix} & = \begin{pmatrix}
0 & 2 \\
2 & 4
\end{pmatrix} \\
\begin{pmatrix}
1-1+0 & -x -y+0\\
1+1+0 & -x+y+2z
\end{pmatrix} & = \begin{pmatrix}
0 & 2 \\
2 & 4
\end{pmatrix} \\
\begin{pmatrix}
0 & -x -y \\
2 & -x+y+2z
\end{pmatrix} & = \begin{pmatrix}
0 & 2 \\
2 & 4
\end{pmatrix}
\end{align}$

Dari kesamaan dua matriks di atas kita peroleh:
$\begin{array}{c|c|cc}
-x-y=2 & \\
-x+y+2z = 4 & (+) \\
\hline
-2x+2z = 6 & \\
-x+z = 3
\end{array} $

$\therefore$ Pilihan yang sesuai adalah $(B)\ 3$

14. Soal SBMPTN 2014 Kode 613 (*Soal Lengkap)

Jika $\begin{pmatrix}
y \\
x
\end{pmatrix}=\begin{pmatrix}
2 & 1 \\
-1 & x
\end{pmatrix}^{-1} \begin{pmatrix}
4 \\
-1
\end{pmatrix}$ dengan $x \neq \dfrac{1}{2}$, maka nilai $\dfrac{1}{2}x+y=\cdots$
$\begin{align}
(A)\ & -4 \\
(B)\ & -2 \\
(C)\ & 0 \\
(D)\ & 2 \\
(E)\ & 4
\end{align}$
Alternatif Pembahasan:

Kita mengetahui sifat perkalian matriks yaitu jika $A=B^{-1} \cdot C$ maka $BA=C$.
$\begin{align}
\begin{pmatrix}
y \\
x
\end{pmatrix} & = \begin{pmatrix}
2 & 1 \\
-1 & x
\end{pmatrix}^{-1} \begin{pmatrix}
4 \\
-1
\end{pmatrix} \\
\begin{pmatrix}
2 & 1 \\
-1 & x
\end{pmatrix} \begin{pmatrix}
y \\
x
\end{pmatrix} & = \begin{pmatrix}
4 \\
-1
\end{pmatrix} \\
\begin{pmatrix}
2y+x \\
-y+x^{2}
\end{pmatrix} & = \begin{pmatrix}
4 \\
-1
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh $2y+x=4$ sehingga $ y+\dfrac{1}{2}x=2$

$\therefore$ Pilihan yang sesuai adalah $(D)\ 2$

15. Soal SBMPTN 2014 Kode 601 (*Soal Lengkap)

Jika $P=\begin{pmatrix}
1 & 2 \\
1 & 3
\end{pmatrix}$ dan $\begin{pmatrix}
x & y \\
-z & z
\end{pmatrix}=2P^{-1}$ dengan $P^{-1}$ menyatakan invers matriks $P$, maka $x+y=\cdots$
$\begin{align}
(A)\ & 0 \\
(B)\ & 1 \\
(C)\ & 2 \\
(D)\ & 3 \\
(E)\ & 4
\end{align}$
Alternatif Pembahasan:

Invers sebuah matriks $A= \begin{pmatrix}
a & b\\
c & d
\end{pmatrix}$ adalah $A^{-1}=\frac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix}$

$\begin{align}
P & = \begin{pmatrix}
1 & 2 \\
1 & 3
\end{pmatrix} \\
P^{-1} & = \frac{1}{(1)(3)-(2)(1)}\begin{pmatrix}
3 & -2\\
-1 & 1
\end{pmatrix} \\
\dfrac{1}{2}\begin{pmatrix}
x & y \\
-z & z
\end{pmatrix} & = \begin{pmatrix}
3 & -2\\
-1 & 1
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh $\dfrac{1}{2}x=3$ dan $\dfrac{1}{2}y=-2$ sehingga $x+y=2$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 2$

16. Soal SBMPTN 2014 Kode 631 (*Soal Lengkap)

Jika $A=\begin{pmatrix}
2 & 3 \\
-1 & 1
\end{pmatrix}$, $B$ memiliki invers, dan $ \left( AB^{-1} \right)^{-1}= \begin{pmatrix}
1 & -1 \\
3 & 0
\end{pmatrix}$ maka matriks $B=\cdots$
$\begin{align}
(A)\ & \begin{pmatrix}
4 & -1 \\
6 & 1
\end{pmatrix} \\
(B)\ & \begin{pmatrix}
3 & 2 \\
6 & 9
\end{pmatrix} \\
(C)\ & \begin{pmatrix}
2 & 0 \\
0 & 1
\end{pmatrix} \\
(D)\ & \begin{pmatrix}
1 & 6 \\
4 & 3
\end{pmatrix} \\
(E)\ & \begin{pmatrix}
4 & 5 \\
6 & -5
\end{pmatrix}
\end{align}$
Alternatif Pembahasan:

Sifat perkalian invers pada matriks berlaku $(AB)^{-1}=B^{-1} \cdot A^{-1}$.
$\begin{align}
\left( AB^{-1} \right)^{-1} & = \begin{pmatrix}
1 & -1 \\
3 & 0
\end{pmatrix} \\
B \cdot A^{-1} & = \begin{pmatrix}
1 & -1 \\
3 & 0
\end{pmatrix} \\
B \cdot A^{-1} \cdot A & = \begin{pmatrix}
1 & -1 \\
3 & 0
\end{pmatrix} \cdot A \\
B & = \begin{pmatrix}
1 & -1 \\
3 & 0
\end{pmatrix} \cdot \begin{pmatrix}
2 & 3 \\
-1 & 1
\end{pmatrix} \\
& = \begin{pmatrix}
2+1 & 3-1 \\
6+0 & 9+0
\end{pmatrix} \\
& = \begin{pmatrix}
3 & 2 \\
6 & 9
\end{pmatrix}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(B)\ \begin{pmatrix}
3 & 2 \\
6 & 9
\end{pmatrix}$

17. Soal SBMPTN 2014 Kode 673 (*Soal Lengkap)

Diketahui matriks $A=\begin{pmatrix}
1 & 2 \\
3 & 4
\end{pmatrix}$, dan $B= \begin{pmatrix}
1 & y \\
x & 3
\end{pmatrix}$. Jika determinan $AB$ adalah $10$, maka $xy=\cdots$
$\begin{align}
(A)\ & 4 \\
(B)\ & 6 \\
(C)\ & 8 \\
(D)\ & 10 \\
(E)\ & 12
\end{align}$
Alternatif Pembahasan:

$\begin{align}
AB & = \begin{pmatrix}
1 & 2 \\
3 & 4
\end{pmatrix} \begin{pmatrix}
1 & y \\
x & 3
\end{pmatrix} \\
& = \begin{pmatrix}
1+2x & y+6 \\
3+4x & 3y+12
\end{pmatrix} \\
|AB| & = \begin{vmatrix}
1+2x & y+6 \\
3+4x & 3y+12
\end{vmatrix} \\
10 & = (1+2x)(3y+12)-(y+6)(3+4x) \\
10 & = 3y+12+6xy+24x -3y-4xy-18-24x \\
10 & = 2xy -6 \\
10+6 & = 2xy \\
8 & = xy
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 8$

18. Soal SBMPTN 2014 Kode 673 (*Soal Lengkap)

Jika $\begin{pmatrix}
a & b \\
b & 2a
\end{pmatrix}\begin{pmatrix}
x \\
x+y
\end{pmatrix}=\begin{pmatrix}
a \\
b
\end{pmatrix}$ dengan $b^{2} \neq 2a^{2}$, maka $x+y=\cdots$
$\begin{align}
(A)\ & -2 \\
(B)\ & -1 \\
(C)\ & 0 \\
(D)\ & 1 \\
(E)\ & 2
\end{align}$
Alternatif Pembahasan:

$\begin{align}
\begin{pmatrix}
a & b \\
b & 2a
\end{pmatrix}\begin{pmatrix}
x \\
x+y
\end{pmatrix} &= \begin{pmatrix}
a \\
b
\end{pmatrix} \\
\begin{pmatrix}
ax+bx+by \\
bx+2ax+2ay
\end{pmatrix} &= \begin{pmatrix}
a \\
b
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh:
$\begin{array}{c|c|cc}
ax+bx+by=a & (\times b)\\
bx+2ax+2ay=b & (\times a) \\
\hline
abx+b^{2}x+b^{2}y=ab & \\
abx+2a^{2}x+2a^{2}y=ab & (-) \\
\hline
b^{2}x+b^{2}y-2a^{2}x+2a^{2}y=0 \\
\left( b^{2} -2a^{2} \right) x+ \left( b^{2} -2a^{2} \right)y=0 \\
\left( b^{2} -2a^{2} \right) \left( x+y \right) =0 \\
\left( x+y \right) = \dfrac{0}{\left( b^{2} -2a^{2} \right)} \\
\left( x+y \right) = 0
\end{array} $

$\therefore$ Pilihan yang sesuai adalah $(C)\ 0$

19. Soal SBMPTN 2014 Kode 663 (*Soal Lengkap)

Jika matriks $A=\begin{pmatrix}
2x & -2 \\
x & 3y+2
\end{pmatrix}$, $B=\begin{pmatrix}
9 & 3x \\
8 & -4
\end{pmatrix}$ dan $C=\begin{pmatrix}
5 & 6 \\
-8 & 7
\end{pmatrix}$ memenuhi $A+B=C^{t}$ dengan $C^{t}$ transpose matriks $C$, maka $2x+3y=\cdots$
$\begin{align}
(A)\ & 3 \\
(B)\ & 4 \\
(C)\ & 5 \\
(D)\ & 6 \\
(E)\ & 7
\end{align}$
Alternatif Pembahasan:

$\begin{align}
A+B &= C^{t} \\
\begin{pmatrix}
2x & -2 \\
x & 3y+2
\end{pmatrix}+\begin{pmatrix}
9 & 3x \\
8 & -4
\end{pmatrix} &= \begin{pmatrix}
5 & -8 \\
6 & 7
\end{pmatrix} \\
\begin{pmatrix}
2x+9 & -2+3x \\
x+8 & 3y-2
\end{pmatrix} &= \begin{pmatrix}
5 & -8 \\
6 & 7
\end{pmatrix} \\
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh:

  • $x+8=6$ sehingga $x=-2$
  • $3y-2=7$ sehingga $y=3$
  • $2x+3y=2(-2)+3(3)=-4+9=5$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 5$


20. Soal SIMAK UI 2013 Kode 334 (*Soal Lengkap)

Jumlah semua entri pada matriks $X$ dari sistem persamaan berikut adalah...
$3X-2Y=\begin{bmatrix}
3 & -1
\end{bmatrix}$
$2X-5Y=\begin{bmatrix}
1 & 2
\end{bmatrix}$
$\begin{align}
(A)\ & \dfrac{13}{11} \\
(B)\ & \dfrac{9}{11} \\
(C)\ & \dfrac{8}{11} \\
(D)\ & \dfrac{5}{11} \\
(E)\ & \dfrac{4}{11}
\end{align}$
Alternatif Pembahasan:

Matriks $X$ dan $Y$ adalah matriks berordo $1 \times 2$ karena hasil pengurangan matriks tersebut adalah sebuah matriks berordo $1 \times 2$. Sehingga dapat kita misalkan $X=\begin{bmatrix}
a & b
\end{bmatrix}$ dan $Y=\begin{bmatrix}
c & d
\end{bmatrix}$

$\begin{align}
3X-2Y &= \begin{bmatrix}
3 & -1
\end{bmatrix} \\
3\begin{bmatrix}
a & b
\end{bmatrix}-2\begin{bmatrix}
c & d
\end{bmatrix} &= \begin{bmatrix}
3 & -1
\end{bmatrix} \\
\begin{bmatrix}
3a-2c & 3b-2d
\end{bmatrix} &= \begin{bmatrix}
3 & -1
\end{bmatrix} \\
\hline
2X-5Y &= \begin{bmatrix}
1 & 2
\end{bmatrix} \\
2\begin{bmatrix}
a & b
\end{bmatrix}-5\begin{bmatrix}
c & d
\end{bmatrix} &= \begin{bmatrix}
1 & 2
\end{bmatrix} \\

\begin{bmatrix}
2a-5c & 2b-5d
\end{bmatrix} &= \begin{bmatrix}
1 & 2
\end{bmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh:

  • $3a-2c=3$ dan $2a-5c=1$
  • $3b-2d=-1$ dan $2b-5d=2$
$\begin{array}{c|c|cc}
3a-2c=3 & 3b-2d=-1 & \times 5 \\
2a-5c=1 & 2b-5d=2 & \times 2 \\
\hline
15a-10c=15 & 15b-10d=-5 & \\
4a-10c=2 & 4b-10d=4 & - \\
\hline
11a =13 & 11b =-9 & \\
a =\dfrac{13}{11} & b =\dfrac{-9}{11}
\end{array} $
Jumlah semua entri pada matriks $X$ adalah $a+b=\dfrac{4}{11}$

$\therefore$ Pilihan yang sesuai adalah $(E)\ \dfrac{4}{11}$

21. Soal SIMAK UI 2013 Kode 334 (*Soal Lengkap)

Diberikan matriks $A,\ B,\ C,\ \text{dan}\ D$ berikut ini.
$A=\begin{bmatrix}
2 & 1 \\
0 & 1
\end{bmatrix}$; $B=\begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix}$; $C=\begin{bmatrix}
2 & 1 \\
0 & 0
\end{bmatrix}$; $D=\begin{bmatrix}
2 & 0 \\
0 & 1
\end{bmatrix}$. Jika $x,\ y,\ z,\ \text{dan}\ w$ secara berurutan adalah jumlah entri-entri pada matriks $A^{2013},\ B^{2013},\ C^{2013},\ \text{dan}\ D^{2013}$, pernyataan-pernyataan berikut yang BENAR adalah...
$\begin{align}
(1)\ & w-1=y^{2013} \\
(2)\ & z=3y^{2012} \\
(3)\ & 4z=3x \\
(4)\ & 2w-x=2
\end{align}$
Alternatif Pembahasan:

Sebagai tahap awal kita coba uji nilai untuk $A^{2}$ dan $A^{3}$
$\begin{align}
A^{2} &= \begin{bmatrix}
2 & 1 \\
0 & 1
\end{bmatrix}^{2}=\begin{bmatrix}
4 & 3 \\
0 & 1
\end{bmatrix}=(8)\\
A^{3} &= \begin{bmatrix}
2 & 1 \\
0 & 1
\end{bmatrix}^{3}=\begin{bmatrix}
8 & 7 \\
0 & 1
\end{bmatrix}=(16) \\
A^{4} &= \begin{bmatrix}
2 & 1 \\
0 & 1
\end{bmatrix}^{4}\begin{bmatrix}
16 & 15 \\
0 & 1
\end{bmatrix}=(32) \\
x &= 2^{2013+1} \\
\hline
B^{2} &= \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix}^{2}=\begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix}=(2) \\
B^{3} &= \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix}^{3}=\begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix}=(2) \\
y &= 2 \\
\hline
C^{2} &= \begin{bmatrix}
2 & 1 \\
0 & 0
\end{bmatrix}^{2}=\begin{bmatrix}
4 & 2 \\
0 & 0
\end{bmatrix}=(6) \\
C^{3} &= \begin{bmatrix}
2 & 1 \\
0 & 0
\end{bmatrix}^{3}=\begin{bmatrix}
8 & 4 \\
0 & 0
\end{bmatrix}=(12) \\
C^{4} &= \begin{bmatrix}
2 & 1 \\
0 & 0
\end{bmatrix}^{4}=\begin{bmatrix}
16 & 8 \\
0 & 0
\end{bmatrix}=(24) \\
z &= 2^{2013-1} \cdot 3 \\
\hline
D^{2} &= \begin{bmatrix}
2 & 0 \\
0 & 1
\end{bmatrix}^{2}=\begin{bmatrix}
4 & 0 \\
0 & 1
\end{bmatrix}=(5) \\
D^{3} &= \begin{bmatrix}
2 & 0 \\
0 & 1
\end{bmatrix}^{3}=\begin{bmatrix}
8 & 0 \\
0 & 1
\end{bmatrix}=(9) \\
D^{4} &= \begin{bmatrix}
2 & 0 \\
0 & 1
\end{bmatrix}^{4}=\begin{bmatrix}
16 & 0 \\
0 & 1
\end{bmatrix}=(17) \\
w &= 2^{2013}+1 \\
\end{align}$
Dari nilai $x=2^{2014},\ y=2,\ z=3 \cdot 2^{2012},\ \text{dan}\ w=1+2^{2013}$ yang kita peroleh di atas, maka dapat kita simpulkan:

  • $(1)\ w-1=y^{2013}$ Benar
  • $(2)\ z=3y^{2012}$ Benar
  • $(3)\ 4z=3x$ Benar
  • $(4)\ 2w-x=2$ Benar
$\therefore$ Pilihan yang sesuai adalah $(E)\ (1),\ (2),\ (3),\ (4),\ \text{BENAR}$

22. Soal SIMAK UI 2013 Kode 333 (*Soal Lengkap)

Sebuah matriks dikatakan matriks ortogonal jika $A^{-1}=A^{T}$.
Jika diketahui
$\begin{bmatrix}
\frac{3}{7} & \frac{2}{7} & a \\
b & \frac{3}{7} & \frac{2}{7}\\
\frac{2}{7}& \frac{6}{7}& c
\end{bmatrix}$ adalah matriks ortogonal,
$a^{2}+b^{2}+c^{2}=...$
$\begin{align}
(A)\ & \dfrac{81}{49} \\
(B)\ & \dfrac{72}{49} \\
(C)\ & \dfrac{45}{49} \\
(D)\ & \dfrac{36}{49} \\
(E)\ & \dfrac{9}{49}
\end{align}$
Alternatif Pembahasan:

Seperti yang kita sampaikan diawal jika melihat soal, sekilas kita harus menghitung invers matriks $3\times3$ lalu kita samakan dengan transpose matriks sesuai dengan yang didefenisikan yaitu sebuah matriks dikatakan matriks ortogonal jika $A^{-1}=A^{T}$.

Tetapi untuk anak SMA, menentukan invers matriks $3\times3$ adalah masalah baru sehingga kita butuh sedikit eksplorasi. Kita mencari penyelesaian soal diatas dengan mengikuti defenisi matriks ortogonal yaitu $A^{-1}=A^{T}$ dan sedikit eksplorasi yang memberikan bentuk baru yang begitu indah.

Eksplorasi yang kita lakukan yaitu:
$\begin{align}
A^{-1} &= A^{T} \\
& \text{(*kalikan dengan matriks A)} \\
A \times A^{-1} &= A \times A^{T} \\
I & = A \times A^{T}
\end{align}$

Sehingga kita peroleh persamaan;
$\begin{bmatrix}
\frac{3}{7} & \frac{2}{7} & a \\
b & \frac{3}{7} & \frac{2}{7}\\
\frac{2}{7}& \frac{6}{7}& c
\end{bmatrix} \times
\begin{bmatrix}
\frac{3}{7} & b & \frac{2}{7} \\
\frac{2}{7} & \frac{3}{7} & \frac{6}{7}\\
a & \frac{2}{7}& c
\end{bmatrix}$$=\begin{bmatrix}
1& 0& 0\\
0& 1& 0\\
0& 0& 1
\end{bmatrix}$

dari perkalian matriks di atas dapat kita peroleh persamaan sebagai berikut;
$\dfrac{9}{49}+\dfrac{4}{49}+a^{2} =1 \cdots \left (pers. 1 \right )$
$b^{2}+\dfrac{9}{49}+\frac{4}{49}=1 \cdots \left (pers. 2 \right )$
$\dfrac{4}{49}+\dfrac{36}{49}+c^{2}=1 \cdots \left (pers. 3 \right )$

Apabila persamaan $\left (1 \right )$,$\left (2 \right )$, dan $\left (3 \right )$ kita jumlahkan,
maka akan kita peroleh persamaan berikut;
$a^{2}+b^{2}+c^{2}+\frac{66}{49}=3$
$a^{2}+b^{2}+c^{2}=\dfrac{147}{49}-\dfrac{66}{49}$
$a^{2}+b^{2}+c^{2}=\dfrac{81}{49}$

$\therefore$ Pilihan yang sesuai adalah $(A)\ \dfrac{81}{49}$

23. Soal UM STIS 2011 (*Soal Lengkap)

Matriks $B$ adalah invers matriks $A$, matriks $D$ adalah invers matriks $C$ dan $A \cdot B \cdot C=D$, maka yang merupakan matriks identitas $(I)$ adalah...
$\begin{align}
(A)\ & A^{2} \\
(B)\ & B^{2} \\
(C)\ & C^{2} \\
(D)\ & D^{2} \\
(E)\ & A \cdot C^{2}
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang invers matriks dapat membantu;

  • $ (A^{-1})^{-1} = A $
  • $ A^{-1} . A = A.A^{-1} = I $
  • $ AB = I \, $ artinya A dan B saling invers yaitu $ A^{-1} = B \, $ dan $ B^{-1} = A $
  • $ (AB)^{-1} = B^{-1} . A^{-1} $
Dari apa yang disampaikan pada soal, dapat kita simpulkan bahwa:
  • $ B= A^{-1}$ maka $ B^{-1}=A$
  • $ D= C^{-1}$ maka $ D^{-1}=C$
$\begin{align}
A \cdot B \cdot C & =D \\
A \cdot A^{-1} \cdot C & = C^{-1} \\
I \cdot C & = C^{-1} \\
C & = C^{-1} \\
C \cdot C & = C^{-1} \cdot C\\
C^{2} &= I
\end{align}$

$\begin{align}
A \cdot B \cdot C & =D \\
B^{-1} \cdot B \cdot C & = D \\
I \cdot D^{-1} & = D \\
D^{-1} & = D \\
D^{-1} \cdot D & = D \cdot D\\
I & = D^{2} \\
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ C^{2}$ atau $(D)\ D^{2}$

24. Soal UM STIS 2011 (*Soal Lengkap)

Jika $\begin{pmatrix}
a-b & -b \\
0 & 1
\end{pmatrix}^{-1}=\begin{pmatrix}
a & 1 \\
-a+2b & 1
\end{pmatrix}$ maka $ab=\cdots$
$\begin{align}
(A)\ & 2 \\
(B)\ & 1 \\
(C)\ & -\dfrac{1}{2} \\
(D)\ & -1 \\
(E)\ & -4
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang invers matriks $2 \times 2$ berikut ini mungkin membantu;
Misalkan matriks $ A = \left( \begin{matrix} a & b \\ c & d \end{matrix} \right) $
$det(A) = |A| = $$ a \times d - b\times c $
invers matriks $A$ adalah $ A^{-1} = \frac{1}{|A|} \left( \begin{matrix} d & -b \\ -c & a \end{matrix} \right) $


$\begin{align}
\begin{pmatrix}
a-b & -b \\
0 & 1
\end{pmatrix}^{-1} & =\begin{pmatrix}
a & 1 \\
-a+2b & 1
\end{pmatrix} \\
\dfrac{1}{(a-b)-0} \begin{pmatrix}
1 & b \\
0 & a-b
\end{pmatrix} & =\begin{pmatrix}
a & 1 \\
-a+2b & 1
\end{pmatrix} \\
\begin{pmatrix}
\dfrac{1}{ a-b } & \dfrac{b}{ a-b } \\
0 & 1
\end{pmatrix} & =\begin{pmatrix}
a & 1 \\
-a+2b & 1
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh:

  • $-a+2b=0$ sehingga $a=2b$
  • $\dfrac{1}{ a-b }=a$ sehingga $\dfrac{1}{ 2b-b }=a$
    $\dfrac{1}{ b }=a$
    $1=ab$

$\therefore$ Pilihan yang sesuai adalah $(B)\ 1$

25. Soal UM STIS 2011 (*Soal Lengkap)

Jika matriks $M$ berordo $2 \times 2$ sehingga $M \begin{pmatrix}
1 \\
-1
\end{pmatrix} =\begin{pmatrix}
-1 \\
5
\end{pmatrix}$ dan $M \begin{pmatrix}
2 \\
1
\end{pmatrix} =\begin{pmatrix}
4 \\
7
\end{pmatrix}$ maka $M^{2}=\cdots$
$\begin{align}
(A)\ & \begin{pmatrix}
1 & 2 \\
4 & -1
\end{pmatrix} \\
(B)\ & \begin{pmatrix}
9 & 0 \\
0 & 9
\end{pmatrix} \\
(C)\ & \begin{pmatrix}
9 & 0 \\
0 & 7
\end{pmatrix} \\
(D)\ & \begin{pmatrix}
7 & 0 \\
0 & 9
\end{pmatrix} \\
(E)\ & \begin{pmatrix}
7 & 0 \\
0 & 7
\end{pmatrix}
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang Perkalian matriks berikut ini mungkin membantu;
$ \begin{align}
AB & = \left( \begin{matrix} a & b \\ c & d \end{matrix} \right) \left( \begin{matrix} e & f \\ g & h \end{matrix} \right) \\
& = \left( \begin{matrix} \text{baris 1 } \times \text{ kolom 1} & \text{baris 1 } \times \text{ kolom 2} \\ \text{baris 2 } \times \text{ kolom 1} & \text{baris 2 } \times \text{ kolom 2}\end{matrix} \right) \\
& = \left( \begin{matrix} a.e+b.g & a.f + b.h \\ c.e + d.g & c.f + d.h \end{matrix} \right)
\end{align} $
Kita coba dengan memisalkan matriks $M=\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}$
$\begin{align}
M \begin{pmatrix}
1 \\
-1
\end{pmatrix} & =\begin{pmatrix}
-1 \\
5
\end{pmatrix} \\
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix} \begin{pmatrix}
1 \\
-1
\end{pmatrix} & =\begin{pmatrix}
-1 \\
5
\end{pmatrix} \\
\begin{pmatrix}
a-b \\
c-d
\end{pmatrix} & =\begin{pmatrix}
-1 \\
5
\end{pmatrix} \\
\hline
M \begin{pmatrix}
2 \\
1
\end{pmatrix} & =\begin{pmatrix}
4 \\
7
\end{pmatrix} \\
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix} \begin{pmatrix}
2 \\
1
\end{pmatrix} & =\begin{pmatrix}
4 \\
7
\end{pmatrix} \\
\begin{pmatrix}
2a+b \\
2c+d
\end{pmatrix} & =\begin{pmatrix}
4 \\
7
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh;
$\begin{array}{c|c|cc}
a-b = -1 & c-d = 5 & \\
2a+b = 4 & 2c+d = 7 & + \\
\hline
3a = 3 & 3c = 12 \\
a = 1 & c = 4 \\
b = 2 & d = -1
\end{array} $

$M=\begin{pmatrix}
1 & 2 \\
4 & -1
\end{pmatrix}$ maka $M^{2}=\begin{pmatrix}
9 & 0 \\
0 & 9
\end{pmatrix}$

$\therefore$ Pilihan yang sesuai adalah $(B)\ \begin{pmatrix}
9 & 0 \\
0 & 9
\end{pmatrix}$

26. Soal UM STIS 2011 (*Soal Lengkap)

Diketahui matriks $A =\begin{pmatrix}
2 & 4 \\
2b & 3c
\end{pmatrix}$ dan $B=\begin{pmatrix}
2c-3b & 2a+1 \\
a & b+7
\end{pmatrix}$. Jika $B^{T}$ adalah transpose dari matriks $B$, maka nilai $c$ yang memenuhi $A=2B^{T}$ adalah...
$\begin{align}
(A)\ & 2 \\
(B)\ & 3 \\
(C)\ & 5 \\
(D)\ & 8 \\
(E)\ & 10
\end{align}$
Alternatif Pembahasan:

Catatan calon guru tentang Transpose matriks berikut ini mungkin membantu;
Jika $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ maka $A^{T} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$

$\begin{align}
A & = 2B^{T} \\
\begin{pmatrix}
2 & 4 \\
2b & 3c
\end{pmatrix} & = 2 \begin{pmatrix}
2c-3b & a \\
2a+1 & b+7
\end{pmatrix} \\
\begin{pmatrix}
2 & 4 \\
2b & 3c
\end{pmatrix} & = \begin{pmatrix}
4c-6b & 2a \\
4a+2 & 2b+14
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh;

  • $2= 4c-6b$
  • $4=2a$ maka $a=2$
  • $2b=4a+2$ maka $2b=8+2 $, $b=5$
  • $3c=2b+14$ maka $3c=10+14$, $c=8$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 8$


Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras

Beberapa pembahasan soal Matematika Dasar Matriks (*Soal Dari Berbagai Sumber) di atas adalah coretan kreatif siswa pada
  • lembar jawaban penilaian harian matematika,
  • lembar jawaban penilaian akhir semester matematika,
  • presentasi hasil diskusi matematika atau
  • pembahasan quiz matematika di kelas.
Jadi saran, kritik atau masukan yang sifatnya membangun terkait masalah alternatif penyelesaian soal Matriks sangat diharapkan๐Ÿ˜ŠCMIIW

Jangan Lupa Untuk Berbagi ๐Ÿ™Share is Caring ๐Ÿ‘€ dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE๐Ÿ˜Š

Video pilihan khusus untuk Anda ๐Ÿ˜‚ Masih menganggap matematika hanya hitung-hitungan semata, mari kita lihat kreativitas siswa ini;
youtube image

Comment Policy: Silahkan tuliskan komentar atau pertanyaan yang berhubungan dengan "Bank Soal Matematika Dasar Matriks (*Soal dan Pembahasan)" ๐Ÿ˜Š and thank you for your concern in support of blog
Buka Komentar
Tutup Komentar