Gk7qp1DNYQGDurixnE7FWT3LyBvSK3asrvqSm057
Bookmark

Soal Latihan Ujian Sekolah (Ujian Madrasah) Matematika SMA (E) dan Pembahasan Kunci Jawaban

Soal Latihan Ujian Sekolah (US) - Ujian Madrasah (UM) Matematika SMA (E) dan Pembahasan Kunci Jawaban

Calon guru belajar matematika dasar SMA lewat Soal Latihan Ujian Sekolah (US) - Ujian Madrasah (UM) Matematika SMA dan Pembahasan Kunci Jawaban (E). Soal ini sangat baik dijadikan bahan latihan untuk meningkatkan pengetahuan kuantitatif atau kemampuan penalaran matematika untuk persiapan mengikuti Ujian Sekolah (US) atau Ujian Madrasah (UM) tingkat SMA pada tahun ini atau untuk persiapan mengikuti Seleksi Masuk Perguruan Tinggi Negeri.

Ujian Sekolah Matematika SMA adalah Ujian yang diselenggarakan oleh Satuan Pendidikan (ujian sekolah) bertujuan menilai pencapaian standar kompetensi lulusan untuk mata pelajaran matematika SMA.

Ujian sekolah juga tidak semata-mata hanya tes tertulis, tetapi dapat juga berbentuk portofolio, penugasan, dan/atau bentuk kegiatan lain yang ditetapkan Satuan Pendidikan sesuai dengan kompetensi yang diukur berdasarkan Standar Nasional Pendidikan.


Soal Simulasi Ujian Sekolah (US) - Ujian Madrasah (UM) Matematika SMA

Soal Ujian Sekolah (US) Matematika SMA yang diujikan di sekolah terus berkembang seiring dengan mengikuti perkembangan kurikulum dan teknologi, tetapi aturan dasar atau teorema-teorema dalam mengerjakan soal secara umum masih sama, terkhusus dalam pelajaran matematika. Sehingga soal yang sudah dujikan pada saat Simulasi UNBK Matematika SMA IPA Tahun 2019 ini masih relevan jadi bahan latihan untuk meningkatkan pengetahuan kuantitatif atau kemampuan penalaran matematika untuk persiapan mengikuti Ujian Sekolah (US) atau Ujian Madrasah (UM) SMA atau persiapan Seleksi Masuk Perguruan Tinggi Negeri.

Soal Simulasi Ujian Sekolah (US) - Ujian Madrasah (UM) Matematika SMA ini, silahkan dikerjakan terlebih dahulu secara mandiri sebelum membuka buku atau sumber lain untuk melihat pembahasan soal. Setelah selesai silahkan cek jawaban. Jika hasilnya belum memuaskan silahkan lakukan dicoba lagi tes ulang.

Ayo dicoba terlebih dahulu, Sebelum melihat pembahasan soal.
Tunjukkan Kemampuan Terbaikmu!
Nama Peserta :
Tanggal Tes :
Jumlah Soal :40 soal

Petunjuk Pengerjaan Soal:
Untuk soal-soal pilihan ganda sederhana, pilihlah jawaban yang benar di antara 5 (lima) opsi jawaban yang tersedia. Apabila Kamu merasa terdapat lebih dari satu jawaban yang benar, maka pilihlah yang paling benar.

1. Contoh Soal US-UM Matematika SMA

Persamaan kuadrat $x^{2}-2hx+(3h-2)=0$ mempunyai dua akar tidak real. Batas-batas nilai $h$ yang memenuhi adalah...





Alternatif Pembahasan:

Untuk persamaan kuadrat yang mempunyai akar-akar tidak real maka diskriminan kurang dari nol.
$\begin{align}
x^{2}-2hx+(3h-2) & = 0 \\
D & \lt 0 \\
b^{2}-4ac & \lt 0 \\
(-2h)^{2}-4(1)(3h-2)& \lt 0 \\
4h^{2}-12h+8 & \lt 0 \\
h^{2}-3h+2 & \lt 0 \\
(h-1)(h-2) & \lt 0 \\
\left[h=1 \right] & \left[h=2 \right] \\
1 \lt h \lt 2
\end{align}$
(*Jika masih kesulitan menyelesaikan pertidaksamaan kuadrat dengan cepat silahkan disimak caranya: Cara Kreatif Menentukan HP Pertidaksamaan Kuadrat)

$\therefore$ Pilihan yang sesuai adalah $(D)\ 1 \lt h \lt 2$

2. Contoh Soal US-UM Matematika SMA

Bentuk sederhana dari $\dfrac{2-2\ \log^{2}\ ab}{1-\log a^{5}b^{3}+2\ \log a^{2}b}$ adalah...





Alternatif Pembahasan:

Untuk menyederhanakan bentuk aljabar pada soal di atas, kita perlu mengetahui sifat-sifat dasar logaritma.
$\begin{align}
& \dfrac{2-2\ \log^{2}\ ab}{1- \log\ a^{5}b^{3}+2\ \log\ a^{2}b} \\
& = \dfrac{2\left (1- \log^{2}\ ab \right )}{1-\log\ a^{5}b^{3}+\log\ a^{4}b^{2}} \\
& = \dfrac{2\left (1- \log^{2}\ ab \right )}{1+\log\ a^{4}b^{2}-\log\ a^{5}b^{3}} \\
& = \dfrac{2\left (1+ \log\ ab \right )\left (1- \log\ ab \right )}{1+\log\ \dfrac{a^{4}b^{2}}{a^{5}b^{3}}} \\
& = \dfrac{2\left (1+ \log\ ab \right )\left (1- \log\ ab \right )}{1+\log\ a^{-1}b^{-1}} \\
& = \dfrac{2\left (1+ \log\ ab \right )\left (1- \log\ ab \right )}{1+\log\ (ab)^{-1}} \\
& = \dfrac{2\left (1+ \log\ ab \right )\left (1- \log\ ab \right )}{1-\log\ ab} \\
& = 2\left (1+ \log\ ab \right ) \\
& = 2\left (\log\ 10+ \log\ ab \right ) \\
& = 2\ \log\ 10ab
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(B)\ 2 \log\ 10ab$

3. Contoh Soal US-UM Matematika SMA

Grafik fungsi kuadrat seperti tampak pada gambar memotong sumbu $X$ di titik...
Simulasi Ujian Sekolah Matematika IPA 2020 (*Soal dan Pembahasan Paket A)





Alternatif Pembahasan:

Untuk menentukan titik potong kurva dengan sumbu $X$, maka kita perlu ketahui persamaan kurva. Kurva pada gambar melalui titik puncak $(-2,9)$ dan sebuah titik sembarang $(0,5)$.
Jika diketahui Titik Puncak $(x_{p},y_{p})$ dan sebuah titik sembarang $(x,y)$ maka FK adalah:
$\begin{align}
y & = a\left (x -x_{p}\right)^{2}+y_{p} \\
5 & = a\left (0 -(-2)\right)^{2}+9 \\
5 & = a\left (0 + 2 \right)^{2}+9 \\
5-9 & = 4a \\
\dfrac{-4}{4} & = a \\
-1 & = a
\end{align}$

Persamaan kurva
$\begin{align}
y & = a\left (x -x_{p}\right)^{2}+y_{p} \\
y & = (-1) \left (x -(-2)\right)^{2}+9 \\
y & = (-1) \left (x + 2 \right)^{2}+9 \\
y & = (-1) \left (x^{2} + 4x+4 \right)+9 \\
y & = -x^{2} - 4x-4+9 \\
y & = -x^{2} - 4x+5
\end{align}$

Memotong sumbu $X$, maka $y=0$:
$\begin{align}
0 & = -x^{2} - 4x+5 \\
0 & = x^{2} + 4x-5 \\
0 & = (x+5)(x-1) \\
& x=-5\ \text{atau}\ x=1
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(E)\ (-5,0)\ \text{dan}\ (1,0)$

4. Contoh Soal US-UM Matematika SMA

Suatu bangunan akan diselesaikan dalam $x$ hari dengan biaya pembangunan per hari sebesar $\left(4x+\dfrac{650}{x}-40 \right)$ juta rupiah. Biaya minimum pembangunan tersebut adalah...





Alternatif Pembahasan:

Biaya pembangunan per hari sebesar $\left(4x+\dfrac{650}{x}-40 \right)$ dan waktu pengerjaan adalah $x$ hari, sehingga biaya total adalah:

$\begin{align}
P(x) & = x \left(4x+\dfrac{650}{x}-40 \right) \\
P(x) & = 4x^{2}+650-40x
\end{align}$

Biaya minimum ketika:
$\begin{align}
P'(x) & = 0 \\
8x -40 & = 0 \\
8x & = 40 \\
x & = \dfrac{40}{8} \\
x & = 5
\end{align}$

Biaya minimum saat $x=5$
$\begin{align}
P(x) & = 4x^{2}+650-40x \\
P(5) & = 4(5)^{2}+650-40(5) \\
& = 100+650-200 \\
& = 550
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D)\ Rp550.000.000,00$

5. Contoh Soal US-UM Matematika SMA

Fungsi $g(x)=\frac{2}{3}x^{3}+\frac{7}{2}x^{2}+6x+1$ turun pada interval...





Alternatif Pembahasan:

Syarat suatu fungsi akan turun adalah turunan pertama kurang dari nol,
turunan pertama $g(x)$ adalah $g'(x)=2x^{2}+7x+6$
$ \begin{align}
g'(x) & \lt 0 \\
2x^{2}+7x+6 & \lt 0 \\
(2x+3)(x+2) & \lt 0 \\
\left[x=-\dfrac{3}{2} \right] & \left[x=-2 \right] \\
-2 \lt x \lt -\dfrac{3}{2} &
\end{align}$
(*Jika masih kesulitan menyelesaikan pertidaksamaan kuadrat dengan cepat silahkan disimak caranya: Cara Kreatif Menentukan HP Pertidaksamaan Kuadrat)

$\therefore$ Pilihan yang sesuai adalah $(D)\ -2 \lt x \lt -\dfrac{3}{2}$

6. Contoh Soal US-UM Matematika SMA

Persamaan lingkaran yang berpusat di $P(-2,3)$ dan melalui titik $(-1,3)$ adalah...





Alternatif Pembahasan:

Untuk membentuk persamaan lingkaran setidaknya ada 2 hal dasar harus kita ketahui, yaitu titik pusat dan jari-jari lingkaran.

Pada soal disampaikan titik pusat lingkaran $P(-2,3)$ dan lingkaran melalui titik $(-1,3)$, artinya jari-jari lingkaran adalah jarak titik pusat ke titik yang dilalui lingkaran.
$ \begin{align}
r & = \sqrt{(y_{2}-y_{1})^{2}+x_{2}-x_{1})^{2}} \\
& =\sqrt{(3-3)^{2}+(-1-(-2))^{2}} \\
& =\sqrt{0+1} \\
& =1
\end{align} $

Persamaan lingkaran engan pusat $(a,b)$ dan jari-jari $r$ adalah:
$ \begin{align}
(x-a)^{2}+(y-b)^{2}& =r^{2} \\
(x-(-2))^{2}+(y-3)^{2}& =1^{2} \\
x^{2}+4x+4+y^{2}-6y+9 & =1 \\
x^{2}+y^{2}+4x-6y+12 & = 0
\end{align} $

(*Jika tertarik untuk berlatih lagi tentang Matematika Dasar: Lingkaran [Soal SBMPTN dan Pembahasan])

$\therefore$ Pilihan yang sesuai adalah $(A)\ x^{2}+y^{2}+4x-6y+12=0$

7. Contoh Soal US-UM Matematika SMA

Salah satu persamaan garis singgung lingkaran $x^{2}+y^{2}-2x+4y-15=0$ yang tegak lurus dengan garis $x+2y-6=0$ adalah...





Alternatif Pembahasan:

Persamaan garis singgung pada lingkaran yang dicari pada soal adalah PGS lingkaran jika diketahui gradiennya karena garis singgung lingkaran tegak lurus dengan garis $x+2y-6=0$.

Garis singgung lingkaran tegak lurus dengan garis $x+2y-6=0$ maka gradien garis $x+2y-6=0$ ($m=-\frac{1}{2}$) dikali gradien garis singgung lingkaran adalah $-1$.

$m \times\ -\frac{1}{2}=-1$
$m =2$

Persamaan Garis Singgung Lingkaran $ x^{2} + y^{2} + Ax + By + C = 0$ jika diketahui gradiennya adalah $y - b = m(x-a) \pm r \sqrt{1 + m^{2}}$.
Dari persamaan lingkaran $x^{2}+y^{2}-2x+4y-15=0$ kita peroleh pusat lingkaran yaitu $(1,-2)$ dan $r = \sqrt{a^{2} + b^{2} - C}=\sqrt{1 + 4 +15}=\sqrt{20}$.
$\begin{align}
y - b & = m(x-a) \pm r \sqrt{1 + m^{2}} \\
y +2 & = 2(x-1) \pm \sqrt{20} \sqrt{1 + (2)^2} \\
y +2 & = 2x-2 \pm \sqrt{20} \sqrt{5} \\
y & = 2x-4 \pm \sqrt{100} \\
y & = 2x-4 \pm 10 \\
\text{(PGS 1) }:y & = 2x-4+10 \\
2x-y+6 & = 0 \\
\text{(PGS 2) }:y & = 2x-4-10 \\
2x-y-14 & = 0
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(D)\ 2x-y-14=0$

8. Contoh Soal US-UM Matematika SMA

8. Persamaan garis singgung kurva $y=x^{2}+x+3$ yang tegak lurus dengan garis $x-y=5$ adalah...





Alternatif Pembahasan:

Garis singgung kurva tegak lurus dengan garis $x-y=5$ maka gradien garis $x-y=5$ ($m=1$) dikali gradien garis singgung kurva adalah $-1$.

$m \times\ 1=-1$ maka $m =-1$

Untuk mendapatkan persamaan garis singgung kurva kita perlu sebuah titik singgung pada kurva dan gradien garis.
Gradien persamaan garis singgung pada kurva $y=x^{2}+x+3$ gradiennya adalah $m=-1$, sehingga:
$\begin{align}
y & = x^{2}+x+3 \\
m=y' & = 2x+1 \\
-1 & = 2x+1 \\
-2 & = 2x \\
x & = -1 \\
y & = x^{2}+x+3 \\
y & = (-1)^{2}+(-1)+3 \\
y & = 3
\end{align} $

Persamaan garis singgung kurva melalui titik $(-1,3)$ dengan gradien $m=-1$
$\begin{align}
y-y_{1} & = m (x-x_{1}) \\
y-3 & = -1 (x-(-1)) \\
y-3 & = -x-1 \\
y & = -x+2
\end{align} $

(*Jika tertarik untuk berlatih lagi tentang Matematika Dasar: Persamaan Garis [Soal SBMPTN dan Pembahasan])

$\therefore$ Pilihan yang sesuai adalah $(C)\ x+y-2=0$

9. Contoh Soal US-UM Matematika SMA

Diketahui fungsi $f(x)=\dfrac{x^{2}-1}{2x}$ untuk $x \neq 0$. Turunan pertama fungsi $f(x)$ adalah $f'(x)=\cdots$





Alternatif Pembahasan:

Turunan pertama dari $f(x)$ adalah $f'(x)$ yaitu:
$ \begin{align}
f(x) & = \dfrac{u(x)}{v(x)} \\
f'(x) & = \dfrac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v^{2}(x)} \\
& = \dfrac{(2x) \cdot (2x) - \left( x^{2}-1 \right) \cdot 2}{(2x)^{2}} \\
& = \dfrac{4x^{2} - 2x^{2}+2}{4x^{2}} \\
& = \dfrac{2x^{2} +2}{4x^{2}} \\
& = \dfrac{2x^{2}}{4x^{2}} + \dfrac{2}{4x^{2}} \\
& = \dfrac{1}{2} + \dfrac{1}{2x^{2}} \\
\end{align} $

(*Jika tertarik untuk berlatih lagi tentang Matematika Dasar: Turunan [Soal SBMPTN dan Pembahasan])

$\therefore$ Pilihan yang sesuai adalah $(B)\ \dfrac{1}{2}+\dfrac{1}{2x^{2}}$

10. Contoh Soal US-UM Matematika SMA

Diketahui $f(x)=3x+4$ dan $(gof)(x)=6x+6$. Nilai dari $g^{-1}(0)=\cdots$





Alternatif Pembahasan:

Berdasarkan informmasi pada soal, diketahui $(gof)(x)=6x+6$ maka
$ \begin{align}
g \left (f(x) \right ) & = 6x+6 \\
g \left (3x+4 \right ) & = 2(3x+4)-2 \\
g \left (a \right ) & = 2(a)-2
\end{align} $

Invers fungsi $g(a)$ adalah $g^{-1}(a)$, salah satu cara menentukan $g^{-1}(a)$ yaitu:
$ \begin{align}
y & = 2(a)-2 \\
y+2 & = 2(a) \\
\dfrac{y+2}{2} & = a \\
g^{-1}(a) & = \dfrac{a+2}{2} \\
g^{-1}(0) & = \dfrac{0+2}{2}=1
\end{align} $

(*Jika tertarik untuk berlatih lagi tentang Matematika Dasar: FKFI [Soal SBMPTN dan Pembahasan])

$\therefore$ Pilihan yang sesuai adalah $(B)\ 1$

11. Contoh Soal US-UM Matematika SMA

Usia Citra $8$ tahun lebih tua dari usia Salsa. Sedangkan $4$ tahun yang lalu usia Salsa sama dengan dua pertiga dari usia Citra. Usia Salsa sekarang...





Alternatif Pembahasan:

Kita misalkan umur Citra dan Salsa saat ini adalah $\text{Citra}=C$ dan $\text{Salsa}=S$.

Untuk empat tahun yang lalu umur mereka adalah $(C-4)$ dan $(S-4)$, berlaku:
$ \begin{align}
\dfrac{2}{3} (C-4) & = (S-4) \\
2C-8 & = 3S-12 \\
2C-3S & = -4 \text{(Pers.1)}
\end{align} $

Untuk saat ini umur mereka adalah $(C)$ dan $(S)$, berlaku:
$ \begin{align}
C & = S + 8 \\
C-S & = 8\ \text{(Pers.2)}
\end{align} $

Dari (Pers.1) dan (Pers.2) kita peroleh;
$\begin{array}{c|c|cc}
2C - 3S = -4 & \times 1 & 2C - 3S = -4 & \\
C- S = 8 & \times 2 & 2C-2S = 16 & - \\
\hline
& & -S = - 20 \\
& & S =20
\end{array} $

$\therefore$ Pilihan yang sesuai adalah $(C)\ 20\ \text{tahun}$

12. Contoh Soal US-UM Matematika SMA

Harga $4$ buku dan $4$ penggaris adalah $Rp40.000,00$, sedangkan harga $4$ buku dikurangi harga $4$ penggaris adalah $Rp20.000,00$. Jika harga buku adalah $a$ rupiah dan harga penggaris $b$ rupiah, persamaan matriks yang sesuai untuk menyelesaikan masalah tersebut adalah...





Alternatif Pembahasan:

Dengan memakai pemisalan $\text{harga buku}=a$ dan $\text{harga penggaris}=b$,
Harga $4$ buku dan $4$ penggaris adalah $Rp40.000,00$
$4a+4b=40.000$

Harga $4$ buku dikurangi $4$ penggaris adalah $Rp20.000,00$
$4a-4b=40.000$

$\begin{array}{c|c|cc}
4a+4b = 40.000 & \\
4a-4b = 20.000 & \\
\hline
\end{array} $

Sistem persamaan diatas jika tuliskan dalam bentuk matriks menjadi:
$\begin{align}
\begin{pmatrix}
4 & 4\\
4 & -4
\end{pmatrix}\begin{pmatrix}
a \\
b
\end{pmatrix} &= \begin{pmatrix}
40.000\\
20.000
\end{pmatrix} \\
\begin{pmatrix}
a \\
b
\end{pmatrix} &= \begin{pmatrix}
4 & 4\\
4 & -4
\end{pmatrix}^{-1}\begin{pmatrix}
40.000\\
20.000
\end{pmatrix} \\
\begin{pmatrix}
a \\
b
\end{pmatrix} &= \dfrac{1}{-16-16}\begin{pmatrix}
-4 & -4\\
-4 & 4
\end{pmatrix} \begin{pmatrix}
40.000\\
20.000
\end{pmatrix} \\
\begin{pmatrix}
a \\
b
\end{pmatrix} &= -\dfrac{1}{32}\begin{pmatrix}
-4 & -4\\
-4 & 4
\end{pmatrix} \begin{pmatrix}
40.000\\
20.000
\end{pmatrix} \\
\begin{pmatrix}
a \\
b
\end{pmatrix} &= \dfrac{1}{32}\begin{pmatrix}
4 & 4\\
4 & -4
\end{pmatrix} \begin{pmatrix}
40.000\\
20.000
\end{pmatrix}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(B)\ \begin{pmatrix}
a \\
b
\end{pmatrix}=\dfrac{1}{32}\begin{pmatrix}
4 & 4\\
4 & -4
\end{pmatrix}\begin{pmatrix}
40.000\\
20.000
\end{pmatrix}$

13. Contoh Soal US-UM Matematika SMA

Diketahui matriks $A=\begin{pmatrix}
2 & 1\\
1 & 2
\end{pmatrix}$ dan $B=\begin{pmatrix}
3 & -1\\
2 & 1
\end{pmatrix}$. Invers dari matriks $BA$ adalah $(BA)^{-1}=\cdots$





Alternatif Pembahasan:

$\begin{align}
BA &= \begin{pmatrix}
3 & -1\\
2 & 1
\end{pmatrix} \begin{pmatrix}
2 & 1\\
1 & 2
\end{pmatrix} \\
&= \begin{pmatrix}
6-1 & 3-2\\
4+1 & 2+2
\end{pmatrix} \\
&= \begin{pmatrix}
5 & 1\\
5 & 4
\end{pmatrix}
\end{align} $

$\begin{align}
BA &= \begin{pmatrix}
5 & 1\\
5 & 4
\end{pmatrix} \\
BA^{-1} &= \dfrac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix} \\
&= \dfrac{1}{20-5}\begin{pmatrix}
4 & -1\\
-5 & 5
\end{pmatrix} \\
&= \begin{pmatrix}
\frac{4}{15} & \frac{-1}{15} \\
\frac{-5}{15} & \frac{5}{15}
\end{pmatrix}
\end{align} $

(*Jika tertarik untuk berlatih lagi tentang Matematika Dasar: Matriks [Soal SBMPTN dan Pembahasan])

$\therefore$ Pilihan yang sesuai adalah $(B)\ \begin{pmatrix}
\frac{4}{15} & -\frac{1}{15} \\
-\frac{1}{3} & \frac{1}{3}
\end{pmatrix}$

14. Contoh Soal US-UM Matematika SMA

Sebuah pabrik memproduksi ban sepeda melalui dua tahap. Tahap pertama menggunakan mesin $A$ untuk mengolah karet mentah menjadi keret siap cetak. Tahap kedua menggunakan mesin $B$ untuk mengolah karet siap cetak menjadi ban. Misalkan $x$ menyatakan jumlah karet mentah dalam satuan $kg$ dan $y$ menyatakan jumlah bahan siap cetak dalam satuan $m^{2}$. Pada tahap pertama, banyak bahan siap cetak dihasilkan mengikuti fungsi $y=f(x)=5x-7$. Pada tahap kedua, jumlah ban yang dihasilkan mengikuti fungsi $g(y)=7y+3$. Jika satu buah ban sepeda seharga $Rp50.000$ dan terdapat $100\ kg$ karet mentah, pendapatan pabrik tersebut adalah...





Alternatif Pembahasan:

Banyak bahan mengikuti fungsi $y=f(x)=5x-7$, untuk $x=100$ maka $y=5(100)-7=493$

Jumlah ban yang dihasilkan mengikuti $g(y)=7y+3$, untuk $y=493$ maka $g(y)=7(493)+3=3.454$

Jumlah bahan yang dihasilkan adalah $3.454$ buah dengan harga satu buah $Rp50.000$ maka pendapatan pabrik adalah $3.454 \times 50.000=172.700.000$

$\therefore$ Pilihan yang sesuai adalah $(E)\ Rp172.700.000,00$

15. Contoh Soal US-UM Matematika SMA

Diketahui segitiga siku-siku $KLM$ dengan $sin\ L=\frac{7}{25}$ ($M$ dan $L$ sudut lancip). Nilai dari $(cosec\ L+tan\ M)(1-sin\ M)$ adalah...





Alternatif Pembahasan:

Sebagai ilustrasi segitiga siku-siku $KLM$ dapat digambarkan sebagai berikut:

Simulasi Ujian Sekolah Matematika IPA 2020 (*Soal dan Pembahasan Paket A)

Dengan menggunkan teorema phytagoras dapat kita hitung, $KL$ yaitu:
$\begin{align}
KL^{2} & = LM^{2}- KM^{2} \\
& = 25^{2}- 7^{2} \\
& = 625 - 49 \\
& = 576 \\
KL & = \sqrt{576}=24
\end{align}$

$\begin{align}
& \left( cosec\ L+tan\ M \right) \left( 1-sin\ M \right) \\
& = \left( \dfrac{1}{sin\ L}+tan\ M \right) \left( 1-sin\ M \right) \\
& = \left( \dfrac{25}{7}+ \dfrac{24}{7} \right) \left( 1- \dfrac{24}{25} \right) \\
& = \left( \dfrac{49}{7} \right) \left( \dfrac{1}{25} \right) \\
& = \left( 7 \right) \left( \dfrac{1}{25} \right) \\
& = \dfrac{7}{25}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ \frac{7}{25}$

16. Contoh Soal US-UM Matematika SMA

Seorang anak diminta untuk mengukur tinggi tiang listrik yang ada di depan sekolahnya dengan menggunakan klinometer. Pada posisi berdiri pertama dengan melihat ujung atas tiang listrik, terlihat klinometer menunjukkan sudut $30^{\circ}$. Kemudian dia bergerak mendekati tiang listrik sejauh $18$ meter dan terlihat klinometer menunjuk sudut $45^{\circ}$. Tinggi tiang listrik tersebut adalah...
Simulasi Ujian Sekolah Matematika IPA 2020 (*Soal dan Pembahasan Paket A)





Alternatif Pembahasan:

Sebagai bantuan istilah pada gambar, titik-titik sudut kita beri nama sebagai berikut;

Simulasi Ujian Sekolah Matematika IPA 2020 (*Soal dan Pembahasan Paket A)

Dengan menggunakan perbandingan trigonometri kita peroleh:
$\begin{align}
tan\ 45 & = \dfrac{CD}{BC} \\
1 & = \dfrac{CD}{BC} \\
BC & = CD \\
tan\ 30 & = \dfrac{CD}{AC} \\
\dfrac{1}{3}\sqrt{3} & = \dfrac{CD}{AC} \\
\dfrac{1}{3}AC \sqrt{3} & = CD
\end{align}$

$\begin{align}
BC & = \dfrac{1}{3}AC \sqrt{3} \\
BC & = \dfrac{1}{3} (BC+18) \sqrt{3} \\
BC & = \dfrac{1}{3}BC\sqrt{3}+6\sqrt{3} \\
BC - \dfrac{1}{3}BC\sqrt{3} & = 6\sqrt{3} \\
3BC - BC\sqrt{3} & = 18\sqrt{3} \\
BC \left(3 - \sqrt{3} \right) & = 18\sqrt{3} \\
BC & = \dfrac{18\sqrt{3}}{3 - \sqrt{3}} \times \dfrac{3 + \sqrt{3}}{3 + \sqrt{3}} \\
& = \dfrac{54\sqrt{3}+54}{9 -3} \\
& = \dfrac{54\sqrt{3}+54}{6} \\
& = 9\sqrt{3}+9 \\
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D)\ (9\sqrt{3}+9)\ m $

17. Contoh Soal US-UM Matematika SMA

Diketahui kubus $PQRS.TUVW$ dengan panjang rusuk $4\ cm$. Sudut anatar $UW$ dan $QV$ adalah...





Alternatif Pembahasan:

Untuk mempermudah melihat sudut kedua garis pada kubus, kita perhatikan gambar berikut ini;

Simulasi Ujian Sekolah Matematika IPA 2020 (*Soal dan Pembahasan Paket A)

Dari gambar dapat kita lihat bahwa garis $UW$ dan garis $QV$ adalah garis bersilangan. Untuk menemukan sudut kedua garis bersilangan, salah satu garis harus kita geser sejajar.

Kita pilih garis $QV$ sampai ke $PW$, sehingga sudut $PW$ dan $WU$ adalah sudut yang akan kita cari. Dengan menggunakan bantuan segitiga $PWU$, dimana segitiga $PWU$ adalah segitiga sama sisi $(PW=WU=UP=4\sqrt{2})$ sehingga besar sudut $PW$ dan $WU$ adalah $60^{\circ}$

$\therefore$ Pilihan yang sesuai adalah $(E)\ 60^{\circ}$

18. Contoh Soal US-UM Matematika SMA

Balok $ABCD.EFGH$ seperti tampak pada gambar memiliki ukuran $AB=10\ cm$, $BC=4\ cm$, $CG=8\ cm$, $AS=2\ cm$ dan $GM=3\ cm$. Seekor semut berjalan pada permukaan balok dari $S$ menuju makanan yang ada di $M$. Jarak terpendek dari asal semut $(S)$ ke makanan $(M)$ adalah...
Simulasi Ujian Sekolah Matematika IPA 2020 (*Soal dan Pembahasan Paket A)





Alternatif Pembahasan:

Lintasan semut adalah pada permukaan balok, sehingga tidak mungkin langsung berjalan dari $S$ ke $M$.
Jarak terpendek dapat pada balok dapat kita hitung dengan menggunakan teorema phytagoras, pada balok kita munculkan persegi panjang $MNOP$. Kita perhatikan pada gambar berikut:

Simulasi Ujian Sekolah Matematika IPA 2020 (*Soal dan Pembahasan Paket A)

Dari gambar dapat kita lihat bahwa jarak terpendek adalah dari $S$ ke $P$ lalu ke $M$.

Pada segitiga $SOP$ berlaku
$\begin{align}
SP^{2} & = OP^{2}+OS^{2} \\
& = 5^{2}+8^{2} \\
& = 25 +64 \\
& = 89 \\
SP & = \sqrt{89}
\end{align}$
Jarak terpendek dari $S$ ke $M$ adalah $SP+PM=\sqrt{89}+4$

$\therefore$ Pilihan yang sesuai adalah $(C)\ (4+\sqrt{89})\ cm$

19. Contoh Soal US-UM Matematika SMA

Segitiga $PQR$ dengan titik sudut $P(1,1)$, $Q(3,1)$, dan $R(2,2)$ dirotasi sebesar $180^{\circ}$ pada pusat rotasi $(3,4)$. Bayangan ketiga titik tersebut berturut-turut adalah...





Alternatif Pembahasan:

Bayangan titik $(x,y)$yang di rotasi dirotasi sejauh $\theta$ dengan pusat $(a,b)$ kita tentukan dengan matriks;
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
cos\ \theta & -sin\ \theta\\
sin\ \theta & cos\ \theta
\end{pmatrix}\begin{pmatrix}
x-a\\
y-b
\end{pmatrix}+\begin{pmatrix}
a\\
b
\end{pmatrix}$

Bayangan titik $(x,y)$ yang di rotasi dirotasi sejauh $180^{\circ}$ dengan pusat $(3,4)$ adalah;
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
cos\ 180 & -sin\ 180\\
sin\ 180 & cos\ 180
\end{pmatrix}\begin{pmatrix}
x-3\\
y-4
\end{pmatrix}+\begin{pmatrix}
3\\
4
\end{pmatrix}$

$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
x-3\\
y-4
\end{pmatrix}+\begin{pmatrix}
3\\
4
\end{pmatrix}$

Bayangan titik $P(1,1)$
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
1-3\\
1-4
\end{pmatrix}+\begin{pmatrix}
3\\
4
\end{pmatrix}$
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
-2\\
-3
\end{pmatrix}+\begin{pmatrix}
3\\
4
\end{pmatrix}$
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
2+3\\
3+4
\end{pmatrix}=\begin{pmatrix}
5\\
7
\end{pmatrix}$
Dengan cara yang sama bayangan titik $Q(3,1)$ adalah $Q'(3,7)$ dan bayangan titik $R(2,2)$ adalah $R'(4,6)$

$\therefore$ Pilihan yang sesuai adalah $(A)\ P'(5,7),\ Q'(3,7),\ R'(4,6)$

20. Contoh Soal US-UM Matematika SMA

Nilai dari $ \underset{x \to \infty}{lim} \left ( \sqrt{9x^2+7x-2}- 3x-1 \right )$ adalah...





Alternatif Pembahasan:

$ \begin{align}
& \underset{x \to \infty}{lim} \left ( \sqrt{9x^2+7x-2}- 3x-1\right ) \\
& = \underset{x \to \infty}{lim} \left ( \sqrt{9x^2+7x-2}- \left (3x+1 \right ) \right ) \\
& = \underset{x \to \infty}{lim} \left ( \sqrt{9x^2+7x-2}-\sqrt{ \left (3x+1 \right )^{2}} \right ) \\
& = \underset{x \to \infty}{lim} \left ( \sqrt{9x^2+7x-2}-\sqrt{9x^2+6x+1} \right ) \\
& = \frac{b-q}{2\sqrt{a}} \\
& = \frac{7-6}{2\sqrt{9}} \\
& = \frac{1}{6}
\end{align} $
(*Jika tertarik untuk berlatih lagi tentang Matematika Dasar: Limit Takhingga [Soal SBMPTN dan Pembahasan])

$\therefore$ Pilihan yang sesuai adalah $(A)\ \dfrac{1}{6}$

21. Contoh Soal US-UM Matematika SMA

Perhatikan gambar berikut!
Simulasi Ujian Sekolah Matematika IPA 2020 (*Soal dan Pembahasan Paket A)
Luas daerah persegi yang diarsir adalah...





Alternatif Pembahasan:

Jika kita perhatikan luas persegi pertama (terluar) adalah $8 \times 8 =64\ cm^{2}$
Persegi yang kedua $4\sqrt{2} \times 4\sqrt{2} =32\ cm^{2}$
Persegi yang ketiga $4 \times 4 =16\ cm^{2}$
Persegi yang keempat $2\sqrt{2} \times 2\sqrt{2} =8\ cm^{2}$
Persegi yang kelima $2 \times 2 =4\ cm^{2}$

atau bisa pakai deret geometri suku ke-5 dengan $a=64$ dan $r=\dfrac{32}{64}=\dfrac{1}{2}$ adalah:
$U_{n}=ar^{n-1}$
$U_{5}=(64)(\dfrac{1}{2})^{5-1}$
$U_{5}=(64)(\dfrac{1}{2})^{4}$
$U_{5}=(64)\left(\dfrac{1}{16} \right)$
$U_{5}=4$

$\therefore$ Pilihan yang sesuai adalah $(E)\ 4\ cm^{2}$

22. Contoh Soal US-UM Matematika SMA

Suku ke-8 suatu deret aritmatika adalah $15$ dan jumlah suku ke-2 dengan suku ke-16 adalah $26$. Jumlah $40$ suku pertama deret adalah...





Alternatif Pembahasan:

Catatan deret aritmatika untuk menyelesaikan soal diatas adalah suku ke-$n$ yaitu $U_{n}=a=(n-1)b$ dan jumlah $n$ suku pertama yaitu $S_{n}=\dfrac{n}{2} \left(2a+(n-1)b \right)$ atau $S_{n}=\dfrac{n}{2} \left(a+U_{n} \right)$

Suku ke-8 deret aritmatika adalah 15, berlaku:
$\begin{align}
U_{8} & = 15 \\
a+7b & = 15
\end{align}$

Jumlah suku ke-2 dengan suku ke-16 adalah $26$, berlaku:
$\begin{align}
U_{2} + U_{16} & = 26 \\
a+b + a+15b & = 26 \\
2a+16b & = 26 \\
a+8b & = 13
\end{align}$


$\begin{array}{c|c|cc}
a+8b = 13 & \\
a+7b=15 & - \\
\hline
b = - 2 & \\
a = 15 + 14 = 29 & \\
\end{array} $

Jumlah $40$ suku pertama deret adalah:
$\begin{align}
S_{n} & = \dfrac{n}{2} \left(2a+(n-1)b \right) \\
S_{40} & = \dfrac{40}{2} \left(2(29)+(40-1)(-2) \right) \\
& = 20 \left(58-78 \right) \\
& = 20 \left( -20 \right) \\
& = -400
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D)\ -400$

23. Contoh Soal US-UM Matematika SMA

23. Hasil dari $\int 4x\ \left ( 2x^{2}-1 \right )^{3}\ dx $ adalah...





Alternatif Pembahasan:

Hasil $\int 4x\ \left ( 2x^{2}-1 \right )^{4}\ dx $ kita coba kerjakan dengan pemisalan;
Misal:
$\begin{align}
u & = 2x^{2}-1 \\
\dfrac{du}{dx} & = 4x \\
du & = 4x\ dx
\end{align}$

Soal diatas, kini bisa kita rubah menjadi;
Misal:
$\begin{align}
& \int 4x\ \left ( 2x^{2}-1 \right )^{3}\ dx \\
& = \int \left ( u \right )^{3}\ 4x\ dx \\
& = \int \left ( u \right )^{3}\ du \\
& = \dfrac{1}{4} \left ( u \right )^{3+1} + C \\
& = \dfrac{1}{4} \left ( 2x^{2}-1 \right )^{4} +C
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(A)\ \dfrac{1}{4} \left ( 2x^{2}-1 \right )^{4} + C$

24. Contoh Soal US-UM Matematika SMA

Diketahui $\int_{-2}^{3} \left ( 3x^{2}-12x+m \right ) dx=30$. Nilai $m$ yang memenuhi adalah...





Alternatif Pembahasan:

$ \begin{align}
\int_{-2}^{3} \left ( 3x^{2}-12x+m \right ) dx & = 30 \\
\left [x^{3}-6x^{2}+mx \right ]_{-2}^{3} & = 30 \\
\left [(3)^{3}-6(3)^{2}+m(3) \right ]-\left [(-2)^{3}-6(-2)^{2}+m(-2) \right ] & = 30 \\
\left [27-54+3m \right ]-\left [-8-24-2m \right ] & = 30 \\
35-30+5m & = 30 \\
5 +5m & = 30 \\
m & = \frac{25}{5}=5
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(B)\ 5$

25. Contoh Soal US-UM Matematika SMA

Perhatikan daerah penyelesaian berikut!
Simulasi Ujian Sekolah Matematika IPA 2020 (*Soal dan Pembahasan Paket A)
Sistem pertidaksamaan linear yang memenuhi daerah penyelesaian yang diarsir adalah...





Alternatif Pembahasan:

Untuk menentukan sistem pertidaksamaan dari daerah yang diarsir pada gambar, pertama kita harus mendapatkan sistem persamaannya atau batas-batas daerah yang diarsir.
Pada gambar diatas ada 4 garis yang membatasi daerah yang diarsir, coba kita berikan ilustrasinya;

Soal dan Pembahasan Simulasi UNBK 2020
Batas-batas daerah yang memenuhi;
  • $I:\ 4x+2y=8\ \rightarrow\ 2x+y=4$
  • $II:\ 2x+6y=12\ \rightarrow\ x+3y=6$
  • $III:\ y=0$
  • $IV:\ x=0$
Untuk menentukan pertidaksamaannya, kita tentukan dengan titik uji. Kita pilih sebuah titik pada daerah yang merupakan himpunan penyelesaian atau daerah yang diarsir pada gambar.
  • Titik $(0,0)$ ke $2x+y=4$ diperoleh $ 0 \leq 4 $, maka pertidaksamaannya adalah $ 2x+y \leq 4 $.
  • Titik $(0,0)$ ke $x+3y=6$ diperoleh $ 0 \leq 6 $, maka pertidaksamaannya adalah $ x+3y\leq 6 $.
  • Untuk batas $III$ dan $IV$ daerah yang diarsir adalah daerah $x \geq 0;\ y \geq 0$

Trik untuk melihat atau menentukan daerah Himpunan Penyelesaian dapat dengan melihat koefisien $y$.
  • Jika koefisien $y$ positif dan tanda $\leq$ maka daerah HP berada di bawah garis.
  • Jika koefisien $y$ positif dan tanda $\geq$ maka daerah HP berada di atas garis.

$\therefore$ Pilihan yang sesuai adalah $(A)\ 2x+y \leq 4;\ x+3y \leq 6;\ x \geq 0;\ y \geq 0$

26. Contoh Soal US-UM Matematika SMA

Seoarang petani ikan ingin membuat 12 kolam ikan untuk ikan lele dan ikan gurami. Kolam ikan lele memerlukan lahan $20\ m^{2}$ dan kolam ikan gurmai memerlukan lahan $40\ m^{2}$, sedangkan lahan yang tersedia hanya $400\ m^{2}$. Setiap kolam ikan gurami menghasilakn keuntungan $Rp10.000.000,00$ dan setiap kolam ikan lele menghasilakn keuntungan $Rp6.000.000,00$. Keuntungan maksimum yang bisa diperoleh petani tersebut adalah...





Alternatif Pembahasan:

Informasi yang ada pada soal coba kita rangkum dalam bentuk tabel, dengan memisalkan banyak kolam $\text{lele}\ =x$ dan $\text{gurami}\ =y$ maka kurang lebih menjadi seperti berikut ini;

Jenis Kolam lahan banyak
Lele ($x$) $20$ $x$
Gurami ($y$) $40$ $y$
Tersedia $400$ $12$
Keuntungan yang diharapkan tergantung nilai $x$ dan $y$ yaitu $Z=6.000.000x+10.000.000y$.

Dari tabel diatas, dapat kita bentuk sistem pertidaksamaannya;
$\begin{align}
20x+40y & \leq 400 \\
\left( x+2y \leq 20 \right) & \\
x+y & \leq 12 \\
x & \geq 0 \\
y & \geq 0
\end{align} $
Trik untuk melihat atau menentukan daerah Himpunan Penyelesaian dapat dengan melihat koefisien $y$.
  • Jika koefisien $y$ positif dan tanda $\leq$ maka daerah HP berada di bawah garis.
  • Jika koefisien $y$ positif dan tanda $\geq$ maka daerah HP berada di atas garis.
Jika kita gambarkan ilustrasi daerah Himpunan Penyelesaian sistem pertidaksamaan diatas adalah;
Soal dan Pembahasan Simulasi Ujian Sekolah Matematika IPA 2020
Untuk mendapatkan penjualan maksimum, salah satu caranya dapat dengan titik uji pada titik sudut daerah HP kepada fungsi tujuan $Z=6x+10y$ (dalam jutaan).
  • titik $(0,0)$ maka $Z=6 (0)+10 (0)=0$
  • titik $(12,0)$ maka $Z=6 (12)+10 (0)=72 $
  • titik $(4,8)$ maka $Z=6 (4)+10 (8)=104 $
  • titik $(4,8)$ kita peroleh dengan mengeliminasi atau substitusi garis I dan garis II
  • titik $(0,10)$ maka $Z=6 (0)+10 (10)=100 $

$\therefore$ Pilihan yang sesuai adalah $(D)\ Rp104.000.000,00$

27. Contoh Soal US-UM Matematika SMA

Raras akan membuat kode dengan menyusun dari $5$ huruf dan diikuti oleh $2$ angka berbeda. Jika huruf yang disusun berasal dari huruf penyusun namanya, banyak kode yang dapat dibuat adalah...





Alternatif Pembahasan:

Huruf penyusun nama raras adalah $5$ huruf dimana dua huruf adalah sama, sehingga untuk menyusunnya kita pakai permutasi dengan ada unsur yang sama. Lalu diikuti oleh $2$ angka yang berasal dari $10$ angka yang ada.

Banyak susunan ode yang mungkin adalah:
$\begin{align}
& P_{2! 2!}^{5!} \times 10 \times 9 \\
& = \dfrac{5 \times 4 \times 3 \times 2 \times 1 }{ 2 \times 2} \times 90 \\
& = 30 \times 90 \\
& = 2.700
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(C)\ 2.700$

28. Contoh Soal US-UM Matematika SMA

Sebuah kotak berisi $5$ bola berwwarna merah dan $3$ bola berwarna putih. Dari dalam kotak diambil $2$ bola secara acak. Banyak cara pengambilan agar yang terambil satu bola merah dan satu bola putih adalah...





Alternatif Pembahasan:

Untuk mengambil $2$ bola dimana satu bola merah dan satu bola putih, berarti akan dipilih satu bola merah dari $5$ bola dan satu bola putih dari $3$ bola:

Banyak cara pengambilan adalah:
$\begin{align}
& _{5}C_{1} \times _{3}C_{1} \\
& = 5 \times 3 \\
& = 15
\end{align} $

$\therefore$ Pilihan yang sesuai adalah $(B)\ 15$

29. Contoh Soal US-UM Matematika SMA

Dari angka-angka $0,1,3,4,7,\ \text{dan}\ 9$ akan disusun bilangan yang terdiri atas tiga angka berlainan dan kurang dari $500$. Banyak bilangan yang dapat dibuat adalah...





Alternatif Pembahasan:

Bilangan yang akan disusun dari $0,1,3,4,7,\ \text{dan}\ 9$ adalah kurang dari $500$, maka angka ratusan yang mungkin (1,3,4), puluhan (0,1,3,4,7,9) dan satuan (0,1,3,4,7,9).

Banyak bilangan adalah $3 \times 5 \times 4 =60$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 60$

30. Contoh Soal US-UM Matematika SMA

Kotak I berisi $3$ bola merah dan $3$ bola putih, sedangkan kotak II berisi $5$ bola merah dan $3$ bola putih. Dari kedua kotak tersebut secara acak masing-masing diambil sebuah bola. Peluang terambil bola merah dari kotak I dan bola putih dari kotak II adalah...





Alternatif Pembahasan:

Peluang sebuah kejadian $E$ adalah $P(E)=\dfrac{n(E)}{n(S)}$

Pada kotak I, merah=3 dan putih=3
Peluang terambil bola merah dari kotak I
$\begin{align}
P(M_{I}) & = \dfrac{n(E_{I})}{n(S_{I})} \\
& = \dfrac{3}{6} = \dfrac{1}{2}
\end{align}$

Pada kotak II, merah=5 dan putih=3
Peluang terambil bola putih dari kotak II
$\begin{align}
P(P_{II}) & = \dfrac{n(E_{II})}{n(S_{II})} \\
& = \dfrac{3}{8}
\end{align}$

Peluang terambil bola merah dari kotak I dan bola putih dari kotak II
$\begin{align}
P(E) & =P(M_{I}) \times P(P_{II}) \\
& =\dfrac{n(E_{I})}{n(S_{I})} \times \dfrac{n(E_{II})}{n(E_{II})} \\
& =\dfrac{3)}{6} \times \dfrac{3}{8} \\
& =\dfrac{3)}{16}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(B)\ \dfrac{3}{16}$

31. Contoh Soal US-UM Matematika SMA

Diberikan Histogram sebagai berikut:
Simulasi Ujian Sekolah Matematika IPA 2020 (*Soal dan Pembahasan Paket A)
Gambar ogive dari histogram tersebut adalah...





Alternatif Pembahasan:

Dari histogram yang disajikan pada gambar, dapat kita buat ogive positif dan ogive negatif. Untuk membuat ogive kita membutuhkan distribusi frekuensi relatif. Kita sajikan dalam bentuk tabel sebagai berikut:

Tabel distribusi Frekuensi
Kelas Frekuensi $f_{k} \leq$ $f_{k} \geq$
$10-19$$15$$\leq 9,5: 0$$\geq 9,5: 120$
$20-29$$20$$\leq 19,5: 15$$\geq 19,5: 105$
$30-39$$30$$\leq 29,5: 35$$\geq 29,5: 85$
$40-49$$25$$\leq 39,5: 65$$\geq 39,5: 55$
$50-59$$15$$\leq 49,5: 90$$\geq 49,5: 30$
$60-69$$10$$\leq 59,5: 105$$\geq 59,5: 15$
$70-79$$5$$\leq 69,5: 115$$\geq 69,5: 5$
$80-89$$0$$\leq 79,5: 120$$\geq 79,5: 0$
Jumlah$120$$-$$-$

Dari tabel diatas ogive yang paling tepat mewakili tabel distribusi frekuensi kurang dari dan lebih dari adalah grafik $(D)$

$\therefore$ Pilihan yang sesuai adalah $(D)$

32. Contoh Soal US-UM Matematika SMA

Perhatikan grafik histogram berikut!
Simulasi Ujian Sekolah Matematika IPA 2020 (*Soal dan Pembahasan Paket A)
Modus dari data Histogram tersebut adalah...





Alternatif Pembahasan:

Modus adalah nilai yang paling sering muncul atau frekuensi yang paling besar.
Untuk data tunggal modus suatu data mudah ditemukan, tetapi untuk data berkelompok modus data sedikit lebih indah.
Modus data berkelompok dirumuskan seperti berikut ini;
$Mo = Tb_{mo} + \left( \frac{d_1}{d_1 + d_2} \right) c$
dimana;

  • $Tb_{mo}:$Tepi bawah kelas modus, dan Kelas modus adalah kelas dengan frekuensi paling besar.
  • Dari histogram terlihat bahwa kelas yang memiliki frekuensi tertinggi adalah kelas $21-26$ dengan frekuensi $12$, maka kelas modusnya adalah kelas ke-3 dengan interval $21-26$; $(Tb_{mo} = 21,5)$;
  • $d_1:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus; $(d_{1}=12-8=4)$;
  • $d_2:$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus; $(d_{2}=12-10=2)$;
  • $c:$ Panjang Kelas $(c=26,5-21,5=5)$;

$ \begin{align}
Mo & = Tb_{mo} + \left( \frac{d_1}{d_1 + d_2} \right) c \\
& = 21,5 + \left( \frac{4}{4 + 2} \right) \cdot 5 \\
& = 21,5 + \left( \frac{4}{6} \right) \cdot 5 \\
& = 21,5 + \frac{20}{6} \\
& = 21,5 + 3,33 \\
& = 24,83
\end{align} $

$\therefore$ Pilihan yang sesuai $(E)\ 24,83$

33. Contoh Soal US-UM Matematika SMA

Tabel berikut menunjukkan data berat badan anak (dalam kg) di suatu puskesmas.
Berat Badan (kg)
Frekuensi
$3-5$
$9$
$6-8$
$7$
$9-11$
$5$
$12-14$
$12$
$15-17$
$3$
$18-20$
$4$
Kuartil atas data berat badan anak tersebut adalah...





Alternatif Pembahasan:

Kuartil adalah suatu nilai pembatas yang membagi data menjadi empat bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Kuartil terdiri dari tiga jenis yaitu kuartil pertama $(Q_{1})$ yang disebut juga kuartil bawah, Kuartil kedua $(Q_{2})$ yang disebut juga median atau nilai tengah, dan Kuartil ketiga $(Q_{3})$ yang disebut juga kuartil atas.

Data pada tabel dapat kita hitung yaitu total frekuensi adalah $n=40$.

  • Untuk menentukan letak $Q_{3}$ ada pada data ke- $\left[\frac{3}{4}(n+1) \right]$
  • $Q_{3}$ terletak pada data ke- $\left[\frac{3}{4}(40+1) \right]=30,75$
  • $Q_{3}$ berada pada data ke-$30,75$ artinya $Q_{3}$ berada pada kelas interval $12-14$ (*9+7+5+12=33)
  • Tepi bawah kelas $Q_{3}$: $12-14$
    $t_{b}= 12 - 0,5 = 11,5 $
  • Frekuensi kumulatif sebelum kelas $Q_{3}$,
    $f_{k}= 9+7+5=21$
  • Frekuensi kelas $Q_{3}$, $f_{Q_{3}}=12$
  • Panjang kelas $c=14,5-11,5=3$

$ \begin{align}
Q_{3} & = t_{b} + \left( \frac{\frac{3}{4}n - f_{k}}{f_{Q_{3}}} \right)c \\
& = 11,5 + \left( \frac{\frac{3}{4} \cdot 40 - 21}{12} \right)3 \\
& = 11,5 + \left( \frac{30 - 21}{12} \right)3 \\
& = 11,5 + \left( \frac{9}{12} \right)3 \\
& = 11,5 + \frac{9}{4} \\
& = 13,75
\end{align} $

$\therefore$ Pilihan yang sesuai $(E)\ 13,75\ kg$

34. Contoh Soal US-UM Matematika SMA

Indri menggunting karton membentuk sebuah segitiga sembarang. Masing-masing titik sudutnya ditandai dengan huruf $P,\ Q,\ \text{dan}\ R$ Panjang sisi $PQ$ adalah $15\ cm$, panjang sisi $QR$ adalah $20\ cm$, dan besar sudut $Q$ adalah $30^{\circ}$. Luas segitiga $PQR$ yang dibuat oleh Indri adalah..





Alternatif Pembahasan:

Segitiga yang dibuat Indri adalah segitiga $PQR$ dimana diketahui $PQ=15\ cm$, $QR=20\ cm$, dan besar sudut $Q$ adalah $30^{\circ}$.
Luas segitiga $PQR$ dapat kita hitung dengan menggunakan luas segitiga jika diketahui panjang dua sisi dan satu sudut, yaitu:
$\begin{align}
L & = \dfrac{1}{2} \cdot PQ \cdot QR\ \cdot sin\ Q \\
& = \dfrac{1}{2} \cdot PQ \cdot QR\ \cdot sin\ 30^{\circ} \\
& = \dfrac{1}{2} \cdot 15 \cdot 20 \cdot \dfrac{1}{2} \\
& = 15 \cdot 5 \\
& = 75
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(A)\ 75\ cm^{2}$

35. Contoh Soal US-UM Matematika SMA

Bahtiar berangkat dari ke kampus pukul $06.30$ setiap pagi. Jika menggunakan mobil dengan kecepatan rata-rata $40$ km/jam, dia tiba di kampus terlambat $15$ menit. Jika menggunakan motor dengan kecepatan rata-rata $60$ km/jam, dia tiba di kampus $5$ menit sebelum perkuliahan dimualai. Perkuliahan di kampus Bahtiar dimuali pukul...





Alternatif Pembahasan:

Kita coba selesaikan dengan memisalkan jarak rumah ke kampus adalah $x$ km dan waktu yang dibutuhkan untuk sampai di kampus tepat waktu adalah $t$ jam.

Dengan kecepatan $40$ km/jam dia tiba di kampus $15$ menit terlambat maka waktu yang dibutuhkan adalah $t+\dfrac{15}{60}$ jam.
$\begin{align}
v & = \dfrac{s}{t} \\
40 & = \dfrac{x}{t+\dfrac{15}{60}} \\
40t+10 & = x
\end{align}$

Dengan kecepatan $60$ km/jam dia tiba di kampus $5$ menit lebih cepat maka waktu yang dibutuhkan adalah $t-\dfrac{5}{60}$ jam.
$\begin{align}
v & = \dfrac{s}{t} \\
60 & = \dfrac{x}{t-\dfrac{5}{60}} \\
60t-5 & = x
\end{align}$

dari nilai $x$ yang kiat peroleh diatas dapat kita simpulkan
$\begin{align}
40t+10 & = 60t-5 \\
10+5 & = 60t-40t \\
15 & = 20t \\
t & = \dfrac{15}{20}
t & = \dfrac{3}{4}
\end{align}$

Waktu tempuh yang dibutuhkan untuk hadir di kampus tepat waktu adalah $t$ jam atau $\dfrac{3}{4}$ jam atau $45$ menit. Sehingga jika berangkat dari rumah pukul $06.30$, kampus masuk $07.15$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 07.15$

36. Contoh Soal US-UM Matematika SMA

Diketahui barisan geometri dengan $U_{5}=6$ dan $U_{9}=24$. Suku ke-4 barisan tersebut adalah...





Alternatif Pembahasan:

Catatan tentang barisan geometri untuk menyelesaikan soal diatas adalah suku ke-n barisan geometri adalah $U_{n}=ar^{n-1}$.
$\begin{align}
U_{5} & = ar^{5-1} \\
6 & = ar^{4}
\end{align}$

$\begin{align}
U_{9} & = ar^{9-1} \\
24 & = ar^{8} \\
24 & = ar^{4} \cdot r^{4} \\
24 & = 6 \cdot r^{4} \\
4 & = r^{4} \\
4^{\dfrac{1}{4}} & = r \\
2^{\dfrac{1}{2}} & = r \\
\sqrt{2} & = r
\end{align}$

untuk $r=\sqrt{2}$ maka
$\begin{align}
6 & = ar^{4} \\
6 & = a (4) \\
a & = \dfrac{3}{2}
\end{align}$

$\begin{align}
U_{4} & = ar^{4-1} \\
& = ar^{3} \\
& = \dfrac{3}{2} \cdot (\sqrt{2})^{3} \\
& = \dfrac{3}{2} \cdot 2\sqrt{2} \\
& = 3\sqrt{2}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 3\sqrt{2}$

37. Contoh Soal US-UM Matematika SMA

Persamaan kuadrat $2x^{2}+12x+17=0$ mempunyai akar-akar $\alpha$ dan $\beta$. Persamaan kuadrat baru yang akar-akarnya $\dfrac{\alpha-2}{2}$ dan $\dfrac{\beta-2}{2}$ adalah $ax^{2}+bx+c=0$. Nilai $2a+b+c$ adalah...





Alternatif Pembahasan:

Persamaan kuadrat $2x^{2}+12x+17=0$ mempunyai akar-akar $\alpha$ dan $\beta$ maka:
$\begin{align}
\alpha + \beta & = -\dfrac{b}{a}=-\dfrac{12}{2}=-6 \\
\alpha \times \beta & = \dfrac{c}{a}=\dfrac{17}{2}=8\dfrac{1}{2}
\end{align}$

Salah satu cara menyusun persamaan kuadrat adalah dengan mengetahui hasil jumlah dan hasil kali akar persamaan kuadrat tersebut.
Jika sebuah persamaan kuadrat akar-akarnya adalah $x_{1}$ dan $x_{2}$ maka persamaan kuadrat tersebut adalah:
$x^{2}-\left( x_{1}+x_{2}\right)x+\left( x_{1} \times x_{2}\right)=0$

$\begin{align}
x_{1}+x_{2} & = \dfrac{\alpha-2}{2} + \dfrac{\beta-2}{2} \\
& = \dfrac{\alpha-2+\beta-2}{2} \\
& = \dfrac{\alpha+\beta-4}{2} \\
& = \dfrac{-6-4}{2} \\
& = -5
\end{align}$

$\begin{align}
x_{1} \times x_{2} & = \dfrac{\alpha-2}{2} \times \dfrac{\beta-2}{2} \\
& = \dfrac{\alpha \beta -2(\alpha + \beta)+4}{4} \\
& = \dfrac{8\dfrac{1}{2} -2(-6)+4}{4} \\
& = \dfrac{8\dfrac{1}{2} +16}{4} \\
& = \dfrac{24\dfrac{1}{2}}{4} \\
& = \dfrac{49}{8}
\end{align}$

Persamaan kuadrat yang baru adalah:
$\begin{align}
x^{2}-\left( x_{1}+x_{2}\right)x+\left( x_{1} \times x_{2}\right) & = 0 \\
x^{2}-\left( -5 \right)x+\left( \dfrac{29}{8} \right) & = 0 \\
x^{2}+5x+ \dfrac{49}{8} & = 0 \\
8x^{2}+40x+ 49 & =0
\end{align}$
(*soal ini memiliki banyak jawaban)

Nilai $2a+b+c$ adalah $2(8)+40+49=105$

$\therefore$ Pilihan yang sesuai adalah $(E)\ 105$

38. Contoh Soal US-UM Matematika SMA

Diketahui
$f(x)=\begin{cases}3x-a,\ x\leq 2 \\
2x+1,\ x \gt 2 \end{cases}$

Agar $\lim\limits_{x \to 2}f(x)$ mempunyai nilai, maka $a=...$





Alternatif Pembahasan:

Berdasarkan defenisi limit, agar $\lim\limits_{x \to 2}f(x)$ mempunyai nilai maka Limit Kiri = Limit Kanan secara simbol dituliskan $\lim\limits_{x \to 2^{+}}f(x)=\lim\limits_{x \to 2^{-}}f(x)=L$

Limit kanan $\lim\limits_{x \to 2^{+}}f(x)$
$\lim\limits_{x \to 2^{+}}(2x+1)=2(2)+1=5$

Limit kiri $\lim\limits_{x \to 2^{-}}f(x)$
$\lim\limits_{x \to 2^{-}}(3x-a)=3(2)-a=6-a$

Berdasarkan defenisi agar $\lim\limits_{x \to 2}f(x)$ mempunyai nilai yaitu Limit Kiri = Limit Kanan maka:
$\begin{align}
6-a & = 5 \\
6-5 & = a \\
a & = 1
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D)\ 1$

39. Contoh Soal US-UM Matematika SMA

Nilai $x$ yang memenuhi fungsi trigonometri $f(x)=\sqrt{2}\ cos\ 3x+1$ memotong sumbu $X$ pada interval $180^{\circ} \leq x \leq 270^{\circ}$ adalah...





Alternatif Pembahasan:

Fungsi $f(x)=\sqrt{2}\ cos\ 3x+1$ memotong sumbu $x$ sehingga:
$\begin{align}
\sqrt{2}\ cos\ 3x+1 & = 0 \\
\sqrt{2}\ cos\ 3x & = -1 \\
cos\ 3x & = -\dfrac{1}{\sqrt{2}} \\
cos\ 3x & = -\dfrac{1}{2}\sqrt{2} \\
cos\ 3x & = cos\ 225
\end{align}$

$\begin{align}
3x = 225+k \cdot 360\ & \vee\ 3x = -225+k \cdot 360 \\
x = 75+k \cdot 120\ & \vee\ x = -75+k \cdot 120
\end{align}$

  • Untuk $k=-1$
    $x = -45 \vee\ x = -195$
  • Untuk $k=0$
    $x = 75 \vee\ x = -75$
  • Untuk $k=1$
    $x = 195 \vee\ x = 45$
  • Untuk $k=2$
    $x = 315 \vee\ x = 165$
  • Untuk $k=3$
    $x = 435 \vee\ x = 285$

$\therefore$ Pilihan yang sesuai adalah $(D)\ 195^{\circ}$

40. Contoh Soal US-UM Matematika SMA

Gambar berikut merupakan denah arena pameran
Soal dan Pembahasan UNBK Matematika IPA 2018 (*Simulasi UNBK 2020)
Banyak cara seorang pengunjung dapat masuk dan keluar arena pameran tersebut adalah...





Alternatif Pembahasan:

Pintu masuk arena pameran ada $4$ pintu dan terdapat dua gedung di dalam arena pameran, sehingga banyak cara masuk dan keluar gedung ada $2$ cara yaitu lewat gedung $A$ atau $B$.
Total banyak cara adalah $4 \times 2 \times 2 + 4 \times 1 \times 3=16+12=28$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 28$



Soal dan Pembahasan Ujian Sekolah (US) Matematika SMA

Sebagai tambahan untuk latihan Ujian Sekolah (US) matematika SMA bentuk lain, beberapa catatan berikut dapat dijadikan bahan latihan dalam mempersiapkan diri menghadapi Ujian Sekolah (US) Matematika SMA.

Catatan Soal Latihan Ujian Sekolah (US) - Ujian Madrasah (UM) Matematika SMA (E) dan Pembahasan Kunci Jawaban di atas sifatnya "dokumen hidup" yang senantiasa diperbaiki atau diperbaharui sesuai dengan dinamika kebutuhan dan perubahan zaman. Catatan tambahan dari Anda untuk diharapkan dapat meningkatkan kualitas catatan ini 🙏 CMIIW.

JADIKAN HARI INI LUAR BIASA!
Ayo Share (Berbagi) Satu Hal Baik.
Jangan jadikan sekolah hanya untuk mencari nilai, tetapi bagaimana sekolah itu menjadikanmu bernilai.
close